1
|
Wang H, Peng X, Wu K, Sun J. Microglia contribute to nociception via CSF-1R signaling pathway in rat orofacial carcinoma. Oral Dis 2025; 31:970-982. [PMID: 39039644 DOI: 10.1111/odi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Cancer-induced pain is the most common complication of the head and neck cancer. The microglia colony-stimulating factor receptor 1 (CSF1R) plays a crucial role in the inflammation and neuropathic pain. However, the effect of CSF1R on orofacial cancer-induced pain is unclear. Here, we aimed to determine the role of CSF1R in orofacial pain caused by cancer. METHODS We established an animal model of cancer-induced orofacial pain with Walker 256B cells. Von Frey filament test and laser-intensity pain tester were used to evaluate tumor-induced mechanical and thermal hypersensitivity. Minocycline and PLX3397 were used to alter tumor-induced mechanical and thermal hyperalgesia. Additionally, we evaluated the effect of PLX3397 on immunoinflammatory mediators and neuronal activation within the trigeminal spinal subnucleus caudalis (Vc). RESULTS Walker 256B cell-induced tumor growth resulted in mechanical and thermal hyperalgesia, accompanying by microglia activation and CSF1R upregulation. Treatment with minocycline or PLX3397 reversed the associated nocifensive behaviors and microglia activation triggered by tumor. As a result of PLX3397 treatment, tumor-induced increases in pro-inflammatory cytokine expression and neuronal activation of the Vc were significantly inhibited. CONCLUSIONS The results of our study showed that blocking microglial activation via CSF1R may help prevent cancer-induced orofacial pain.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Department of Stomatology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xiaohan Peng
- Department of Anesthesiology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jinhu Sun
- Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 PMCID: PMC10749601 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Baggio DF, da Luz FMR, Zortea JM, Lejeune VBP, Chichorro JG. Sex differences in carbamazepine effects in a rat model of trigeminal neuropathic pain. Eur J Pharmacol 2024; 967:176386. [PMID: 38311280 DOI: 10.1016/j.ejphar.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Carbamazepine (CBZ) represents the first-line treatment for trigeminal neuralgia, a condition of facial pain that affects mainly women. The chronic constriction of the infraorbital nerve (CCI-ION) is a widely used model to study this condition, but most studies do not include females. Thus, this study aimed to characterize sensory and affective changes in female rats after CCI-ION and compare the effect of CBZ in both sexes. Mechanical allodynia was assessed 15 days after CCI-ION surgery in rats treated with CBZ (10 and 30 mg/kg, i.p.) or vehicle, together with the open-field test. Independent groups were tested on the Conditioned Place Preference (CPP) paradigm and ultrasonic vocalization (USV) analysis. Blood samples were collected for dosage of the main CBZ metabolite. CBZ at 30 mg/kg impaired locomotion of CCI-ION male and sham and CCI-ION female rats and resulted in significantly higher plasma concentrations of 10-11-EPX-CBZ in the latter. Only male CCI-ION rats showed increased facial grooming which was significantly reduced by CBZ at 10 mg/kg. CBZ at 10 mg/kg significantly reduced mechanical allodynia and induced CPP only in female CCI-ION rats. Also, female CCI-ION showed reduced emission of appetitive USV but did not show anxiety-like behavior. In conclusion, male and female CCI-ION rats presented differences in the expression of the affective-motivational pain component and CBZ was more effective in females than males. Further studies using both sexes in trigeminal neuropathic pain models are warranted for a better understanding of potential differences in the pathophysiological mechanisms and efficacy of pharmacological treatments.
Collapse
Affiliation(s)
- Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
4
|
Yuasa GH, Costa NLVK, Lopes RV, Baggio DF, Rae GA, Chichorro JG. Role of endothelin in the pathophysiology of migraine: A new view on an old player. Neuropeptides 2022; 96:102286. [PMID: 36108557 DOI: 10.1016/j.npep.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
There is cumulating evidence that endothelin-1 (ET-1) may play a role in migraine, however controversial findings still impede a conclusion to be drawn. Herein we tested the hypothesis that endothelin ETB receptors are major contributors to migraine-like responses. ET-1, IRL-1620 (selective ETB receptor agonist) or CGRP were injected into the trigeminal ganglion (TG) of female Wistar rats, and the development of periorbital mechanical allodynia was assessed hourly with von Frey hairs. Twenty-four hours later, rats were exposed to an aversive light for 1 h, after which the reactivation of periorbital mechanical allodynia (indicating photic sensitivity) was assessed up to 4 h. Moreover, the effect of systemic Bosentan (ETA/ETB receptors antagonist) or the selective antagonists of ETA (BQ-123) and ETB (BQ-788) receptors injected into the TG were evaluated against CGRP-induced responses. ET-1 and IRL-1620 injection into the TG induced periorbital mechanical allodynia and photic sensitivity. Bosentan attenuated periorbital mechanical allodynia but failed to affect photic sensitivity induced by CGRP. Selective blockade of ETB receptors in the TG fully prevented the development of periorbital mechanical allodynia and photic sensitivity induced by CGRP, but ETA receptor blockade caused only a slight reduction of periorbital mechanical allodynia without affecting photic sensitivity. ETB receptor-operated mechanisms in the TG may contribute to migraine-like responses in female rats.
Collapse
Affiliation(s)
- Gianna Hissae Yuasa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | | - Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Giles Alexander Rae
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil.
| |
Collapse
|
5
|
Greco C, Basso L, Désormeaux C, Fournel A, Demuynck B, Lafendi L, Chapiro S, Lemoine A, Zhu YY, Knauf C, Cenac N, Boucheix C, Dietrich G. Endothelin-1 Exhibiting Pro-Nociceptive and Pro-Peristaltic Activities Is Increased in Peritoneal Carcinomatosis. FRONTIERS IN PAIN RESEARCH 2022; 2:613187. [PMID: 35295482 PMCID: PMC8915553 DOI: 10.3389/fpain.2021.613187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Peritoneal carcinomatosis often results in alterations in intestinal peristalsis and recurrent abdominal pain. Pain management in these patients is often unsatisfactory. This study aimed to investigate whether endothelin-1 (EDN1) was involved in pain mediation in peritoneal carcinomatosis, and thus whether the EDN1 pathway could be a new therapeutic target for peritoneal carcinomatosis-associated pain. Methods: EDN1 plasma levels and abdominal pain severity were assessed in patients with abdominal tumors, with or without peritoneal carcinomatosis, and in healthy donors. The effects of EDN1 on the visceromotor response to colorectal distension, and on colonic contractions were then examined in mice, and the mechanism of action of EDN1 was then investigated by measuring the impact of EDN1 exposure on calcium mobilization in cultured neurons. Inhibition studies were also performed to determine if the effects of EDN1 exposure could be reversed by EDN1-specific receptor antagonists. Results: A positive correlation between EDN1 plasma levels and abdominal pain was identified in patients with peritoneal carcinomatosis. EDN1 exposure increased visceral sensitivity and the amplitude of colonic contractions in mice and induced calcium mobilization by direct binding to its receptors on sensory neurons. The effects of EDN1 were inhibited by antagonists of the EDN1 receptors. Conclusions: This preliminary study, using data from patients with peritoneal carcinomatosis combined with data from experiments performed in mice, suggests that EDN1 may play a key role mediating pain in peritoneal carcinomatosis. Our findings suggest that antagonists of the EDN1 receptors might be beneficial in the management of pain in patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Céline Greco
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Cléo Désormeaux
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audren Fournel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Benedicte Demuynck
- Department of Oncology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Leila Lafendi
- Department of Medical Biology and Physiology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Sylvie Chapiro
- Department of Palliative Care, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Antoinette Lemoine
- UMR-S1093, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Biochemistry, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Ying-Ying Zhu
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Claude Boucheix
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
6
|
Hernández-Cruz EY, Silva-Islas CA, Maldonado PD, Pedraza-Chaverri J, Carballo-Villalobos AI. The antinociceptive effect of garlic, garlic preparations, and derivative compounds. Eur J Pain 2022; 26:947-964. [PMID: 35263014 DOI: 10.1002/ejp.1935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022]
Abstract
The antinociceptive effects of garlic have shown promise in treating different chronic diseases in humans, such as knee osteoarthritis, rheumatoid arthritis, and peripheral arterial occlusive disease stage II. The most common garlic products are garlic powder (dried garlic), steam distilled garlic oils, garlic oil macerate, and aged garlic extract. These commercial products contain organosulfur compounds (OSC) that have been extensively evaluated in preclinical models and some clinical assays to treat different diseases against pain. In this review, we describe the importance of some bioactive compounds found in garlic and its role in treating pain. A systematic search of the literature in Dimensions, PubMed, Scopus, Web of Science was performed. Terms and preselected keywords relating to garlic, its derivates and organusulfur compunds in pain, were used to perform a systematic literature search. Two independent reviewers screened papers for inclusion and assessed the methodological quality. The antinociceptive activity of garlic and its OSC is related to its antioxidant and anti-inflammatory properties, which may be explained by the ability to block the synthesis of PGs, pro-inflammatory cytokines and interferon-γ, by the reduction COX- 2 activity and by increases the levels of anti-inflammatory cytokines. Besides, garlic extract is an activator of TRPA1 and TRPV1, where the principal responsible for this activation are OSC. The relationship between these pathways allows a better understanding how garlic and its derivates could be carrying out its pharmacological action over the management of acute and chronic pain and provide a base by further investigations.
Collapse
Affiliation(s)
- Estefani Yaquelin Hernández-Cruz
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CDMX, 04510, México
| | - Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, 14269, México
| | - Perla D Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, 14269, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, México
| | - Azucena Ibeth Carballo-Villalobos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, México
| |
Collapse
|
7
|
Kuroda Y, Nonaka M, Kamikubo Y, Ogawa H, Murayama T, Kurebayashi N, Sakairi H, Miyano K, Komatsu A, Dodo T, Nakano-Ito K, Yamaguchi K, Sakurai T, Iseki M, Hayashida M, Uezono Y. Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors. Biomed Pharmacother 2021; 141:111800. [PMID: 34175819 DOI: 10.1016/j.biopha.2021.111800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
Collapse
Affiliation(s)
- Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakushun Sakairi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsushi Dodo
- Strategy Planning & Operations, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Kyoko Nakano-Ito
- Global Drug Safety, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, Chiba, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
8
|
Alamir AH, Patil S. Allicin Could Potentially Alleviate Oral Cancer Pain by Inhibiting "Pain Mediators" TNF-alpha, IL-8, and Endothelin. Curr Issues Mol Biol 2021; 43:187-196. [PMID: 34071008 PMCID: PMC8929120 DOI: 10.3390/cimb43010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
To evaluate the effects of allicin on mediators of pain secreted by oral cancer cells in vitro, single-cell suspensions were prepared by enzymatic method from oral squamous cell carcinoma (OSCC). Cancer stem cells were isolated by the CD133+ selection method with magnetic cell sorting. Stemness markers were checked in both cancer cells and cancer stem cells by RT-PCR. Comparative analysis of pain mediators TNF-alpha, IL-8, and endothelin at both RNA and protein levels for normal epithelial cells, cancer cells, and cancer stem cells was carried out with and without allicin treatment. CD133 and CD44 expression levels were checked in cancer cells and cancer stem cells flow cytometrically. Allicin inhibited both gene and protein expression of TNF-alpha, IL-8, and endothelin in both cancer cells and cancer stem cells. Allicin is more likely to be a promising treatment in alleviating the levels of pain and inflammation in OSCCs.
Collapse
Affiliation(s)
- Abdulwahab H. Alamir
- Division of Oral Medicine, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence:
| |
Collapse
|
9
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain 2020; 161:2830-2840. [DOI: 10.1097/j.pain.0000000000001970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
12
|
Epstein JB, Miaskowski C. Oral Pain in the Cancer Patient. J Natl Cancer Inst Monogr 2019; 2019:5551353. [DOI: 10.1093/jncimonographs/lgz003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Abstract
Oral pain due to cancer and associated treatments is common. The prevalence and severity of oral cancer is high. Painful oral mucositis develops in head and neck cancer patients following surgery and associated radiation therapy and/or chemotherapy. In addition, oral pain, including pain from mucositis, occurs in patients receiving chemotherapy for cancers of the hematopoietic system and cancers at other anatomic sites. Despite pain management practices that include high-dose opioid analgesics, patients rarely obtain relief from either head and neck cancer pain or mucositis pain. Because oral pain in cancer patients is likely due to both nociceptive and neuropathic mechanisms, effective management of pain requires treatments for both processes. As knowledge of the pathophysiology of oral pain in cancer patients increases, new approaches for the prevention and management are anticipated. This article focuses on the emerging evidence that supports the molecular mechanisms and the unique oral micro-neuroanatomy that in combination produce the severe oral pain experienced by cancer patients. In addition, this article summarizes the current state of clinical management of oral mucositis pain.
Collapse
Affiliation(s)
- Joel B Epstein
- Department of Surgery, City of Hope, Duarte, CA
- Department of Surgery, Cedars-Sinai Health System, Los Angeles, CA
- Seattle Cancer Care Alliance, Seattle, WA
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA
| |
Collapse
|
13
|
Kopruszinski CM, dos Reis RC, Rae GA, Chichorro JG. Blockade of peripheral endothelin receptors abolishes heat hyperalgesia and spontaneous nociceptive behavior in a rat model of facial cancer. Arch Oral Biol 2019; 97:231-237. [DOI: 10.1016/j.archoralbio.2018.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
|
14
|
Khodorova A, Zhang Y, Nicol G, Strichartz G. Interactions of peripheral endothelin-1 and nerve growth factor as contributors to persistent cutaneous pain. Physiol Res 2018; 67:S215-S225. [PMID: 29947541 DOI: 10.33549/physiolres.933819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endothelin-1 (ET-1) and Nerve Growth Factor (NGF) are proteins, released from cancer-ridden tissues, which cause spontaneous pain and hypersensitivity to noxious stimuli. Here we examined the electrophysiological and behavioral effects of these two agents for evidence of their interactions. Individual small-medium cultured DRG sensory neurons responded to both ET-1 (50 nM, n=6) and NGF (100 ng/ml, n=4), with increased numbers of action potentials and decreased slow K(+) currents; pre-exposure to ET-1 potentiated NGF´s actions, but not vice versa. Behaviorally, single intraplantar (i.pl.) injection of low doses of ET-1 (20 pmol) or NGF (100 ng), did not increase hindpaw tactile or thermal sensitivity, but their simultaneous injections sensitized the paw to both modalities. Daily i.pl. injections of low ET-1 doses in male rats caused tactile sensitization after 21 days, and enabled further tactile and thermal sensitization from low dose NGF, in ipsilateral and contralateral hindpaws. Single injections of 100 ng NGF, without changing the paw's tactile sensitivity by itself, acutely sensitized the ipsilateral paw to subsequent injections of low ET-1. The sensitization from repeated low ET-1 dosing and the cross-sensitization between NGF and ET-1 were both significantly greater in female than in male rats. These findings reveal a synergistic interaction between cutaneously administered low doses of NGF and ET-1, which could contribute to cancer-related pain.
Collapse
Affiliation(s)
- A Khodorova
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|