1
|
Liu P, Zhang X, Zhao N, Dai J, Liang G. Effects of exogenous hydrogen sulfide and honokiol intervention on the proliferation, apoptosis, and calcium signaling pathway of rat enteric glial cells. Biomed Pharmacother 2024; 179:117290. [PMID: 39153433 DOI: 10.1016/j.biopha.2024.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that influences digestive and nervous system functions. Enteric glial cells (EGCs) are integral to the enteric nervous system and play a role in regulating gastrointestinal motility. This study explored the dual effects of exogenous H2S on EGCs and the influence of apoptosis-related pathways and ion channels in EGCs. We also administered honokiol for further interventional studies. The results revealed that low-concentration H2S increased the mitochondrial membrane potential (MMP) of EGCs, decreased the whole-cell membrane potential, downregulated BAX and caspase-3, upregulated Bcl2 expression, reduced apoptosis, and promoted cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also increased. A high concentration of H2S had the opposite effect. In addition, GFAP mRNA expression was upregulated in the test-low group, downregulated in the test-high group, and upregulated in the test-high + Hon group. Honokiol treatment increased MMP, reduced whole-cell membrane potential, inhibited BAX and caspase-3 expression, increased Bcl2 expression, decreased cell apoptosis, and increased cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also upregulated. In conclusion, our study showed that exogenous H2S can bidirectionally regulate EGC proliferation and apoptosis by affecting MMP and cell membrane potential via the Bcl2/BAX/caspase-3 pathway and modulate Cx43-mediated Ca2+ responses in EGCs to regulate colonic motility bidirectionally. Honokiol can ameliorate the damage to EGCs induced by high H2S concentrations through the Bcl2/BAX/caspase-3 pathway and improve colon motility by increasing Cx43 expression and Ca2+ concentration.
Collapse
Affiliation(s)
- PengFei Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - XiaoDan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Nan Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - JiaLing Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - GuoGang Liang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
2
|
Pang PP, Zhang HY, Zhang DC, Tang JX, Gong Y, Guo YC, Zheng CB. Investigating the impact of protein S-sulfhydration modification on vascular diseases: A comprehensive review. Eur J Pharmacol 2024; 966:176345. [PMID: 38244760 DOI: 10.1016/j.ejphar.2024.176345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
The post-translational modification of cysteine through redox reactions, especially S-sulfhydration, plays a critical role in regulating protein activity, interactions, and spatial arrangement. This review focuses on the impact of protein S-sulfhydration on vascular function and its implications in vascular diseases. Dysregulated S-sulfhydration has been linked to the development of vascular pathologies, including aortic aneurysms and dissections, atherosclerosis, and thrombotic diseases. The H2S signaling pathway and the enzyme cystathionine γ-lyase (CSE), which is responsible for H2S generation, are identified as key regulators of vascular function. Additionally, potential therapeutic targets for the treatment of vascular diseases, such as the H2S donor GYY4137 and the HDAC inhibitor entinostat, are discussed. The review also emphasizes the antithrombotic effects of H2S in regulating platelet aggregation and thrombosis. The aim of this review is to enhance our understanding of the function and mechanism of protein S-sulfhydration modification in vascular diseases, and to provide new insights into the clinical application of this modification.
Collapse
Affiliation(s)
- Pan-Pan Pang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Hong-Ye Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Ding-Cheng Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Jia-Xiang Tang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Yu Gong
- Yunnan Provincial Hospital of Infection Disease/ Yunnan AIDS Care Center/ Yunnan Mental Health Center, Kunming, 650301, China
| | - Yu-Chen Guo
- University of Sydney Pharmacy School, Sydney, 2006, Australia
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China; Yunnan Vaccine Laboratory, Kunming, 650500, China.
| |
Collapse
|
3
|
Quan X, Zhang M, Qiao Z, Kou X, Xue Q, Wang J, Li L. Nitric oxide and ion channels mediate L-cysteine-induced inhibition of colonic smooth muscle contraction. J Muscle Res Cell Motil 2024; 45:11-20. [PMID: 38141146 DOI: 10.1007/s10974-023-09664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Previous studies have suggested that L-cysteine regulates gut motility through hydrogen sulfide. However, the mechanisms involved in the L-cysteine-induced response have not been extensively studied. This study aimed to investigate the underlying mechanisms of action of L-cysteine on spontaneous contraction of rat colon. Longitudinal and circular muscle strips from rat middle colon were prepared to measure the spontaneous contractile activities of colon in an organ bath system. Whole-cell voltage-clamp techniques were applied to record the currents of L-type voltage-dependent Ca2+ channels (VDCCs) and voltage-gated K+ channels (Kv) in isolated smooth muscle cells (SMCs) from colon. L-cysteine inhibited the spontaneous contraction of longitudinal and circular muscle strips from the rat colon in a concentration-dependent manner. The inhibition induced by L-cysteine was significantly decreased by inhibitors of H2S synthesis (p < 0.05). Furthermore, the suppression induced by L-cysteine was partially attenuated by tetrodotoxin, L-NNA and glibenclamide (p < 0.05). Whole-cell voltage-clamp recordings showed that L-cysteine caused a remarkable reduction in the peak currents of VDCCs and significantly increased the membrane currents of Kv channels in isolated SMCs (p < 0.05). We concluded that L-cysteine inhibits the contractile activities of smooth muscle strips from the rat colon. The relaxation in response to L-cysteine may be in part mediated by a nitrergic pathway and by inhibiting the VDCCs in combination with a direct activation of the KV channels and KATP channels.
Collapse
Affiliation(s)
- Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Min Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhaojun Qiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xuan Kou
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
4
|
Lin M, Hu G, Yu B. Dysregulated cystathionine-β-synthase/hydrogen sulfide signaling promotes chronic stress-induced colonic hypermotility in rats. Neurogastroenterol Motil 2023; 35:e14488. [PMID: 36371703 DOI: 10.1111/nmo.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2 S), an important endogenous gasotransmitter, is involved in the modulation of gastrointestinal motility, but whether it mediates the intestinal dysmotility in irritable bowel syndrome (IBS) is not known. This study explored the significance of cystathionine-β-synthase (CBS)/H2 S signaling in stress-induced colonic dysmotility. METHODS A rat model of IBS was established using chronic water avoidance stress (WAS). Colonic pathological alterations were detected histologically. Intestinal motility was determined by intestinal transit time (ITT) and fecal water content (FWC). Visceral sensitivity was assessed using the visceromotor response (VMR) to colorectal distension (CRD). Real-time PCR, Western blotting, and immunostaining were performed to identify the expression of CBS in the colon. The contractions of distal colon were studied in an organ bath system and H2 S content was measured by ELISA. The effects of SAM, a selective CBS activator, on colonic dysmotility were examined. MEK1 was tested as a potential upstream effector of CBS/H2 S loss. KEY RESULTS After 10 days of WAS, the ITT was decreased and FWC was increased, and the VMR magnitude in response to CRD was enhanced. The colonic CBS expression and H2 S levels were significantly declined in WAS-exposed rats, and the density of CBS-positive enteric neurons in the myenteric plexus in WAS-treated rats was lower than that in controls. SAM treatment relieved WAS-induced colonic hypermotility via increased H2 S production. AZD6244, a selective inhibitor of MEK1, partially reversed CBS downregulation and colonic hypermotility in WAS-treated rats. CONCLUSIONS & INFERENCES Decreased CBS/H2 S signaling through increased MEK1 signaling might be important in the pathogenesis of chronic stress-induced colonic hypermotility. SAM could be administered for disorders associated with intestinal hypermotility.
Collapse
Affiliation(s)
- Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Guiying Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
5
|
Quan X, Chen W, Qin B, Wang J, Luo H, Dai F. The excitatory effect of hydrogen sulfide on rat colonic muscle contraction and the underlying mechanism. J Pharmacol Sci 2022; 149:100-107. [DOI: 10.1016/j.jphs.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
|
6
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
7
|
Fu B, Tao C, Chen N, Lin JR, Zhao P. ZnO QD covalently coated, GSH/pH dual-responsive drug delivery system for chemotherapeutic/ionic synergistic therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
The Role of H 2S in the Gastrointestinal Tract and Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:67-98. [PMID: 34302689 DOI: 10.1007/978-981-16-0991-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathways and mechanisms of the production of H2S in the gastrointestinal tract are briefly described, including endogenous H2S produced by the organism and H2S from microorganisms in the gastrointestinal tract. In addition, the physiological regulatory functions of H2S on gastrointestinal motility, sensation, secretion and absorption, endocrine system, proliferation and differentiation of stem cells, and the possible mechanisms involved are introduced. In view of the complexity of biosynthesis, physiological roles, and the mechanism of H2S, this chapter focuses on the interactions and dynamic balance among H2S, gastrointestinal microorganisms, and the host. Finally, we focus on some clinical gastrointestinal diseases, such as inflammatory bowel disease, colorectal cancer, functional gastrointestinal disease, which might occur or develop when the above balance is broken. Pharmacological regulation of H2S or the intestinal microorganisms related to H2S might provide new therapeutic approaches for some gastrointestinal diseases.
Collapse
|
9
|
Figliuolo VR, Coutinho-Silva R, Coutinho CMLM. Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sci 2018; 215:145-151. [PMID: 30414430 DOI: 10.1016/j.lfs.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Alteration in microbial populations and metabolism are key events associated with disruption of intestinal homeostasis and immune tolerance during intestinal inflammation. A substantial imbalance in bacterial populations in the intestine and their relationships with the host have been observed in patients with inflammatory bowel disease (IBD), believed to be part of an intricate mechanism of triggering and progression of intestinal inflammation. Because elevated numbers of sulfate-reducing bacteria (SRB) have been found in the intestines of patients with IBD, the study of their interaction with intestinal cells and their potential involvement in IBD has been the focus of investigation to better understand the intestinal pathology during IBD, as well as to find new ways to treat the disease. SRB not only directly interact with intestinal epithelial cells during intestinal inflammation but may also promote intestinal damage through generation of hydrogen sulfide at high levels. Herein we review the literature to discuss the various aspects of SRB interaction with host intestinal tissue, focusing on their interaction with intestinal epithelial and immune cells during intestinal inflammation.
Collapse
Affiliation(s)
- Vanessa Ribeiro Figliuolo
- Instituto de Biofísica Carlos Chagas Filho - IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil; LITEB, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho - IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Claudia Mara Lara Melo Coutinho
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil; LITEB, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|