1
|
Tasdurmazli S, Cinar I, Karamese M, Aksak Karamese S, Cadirci E, Melo LDR, Ozbek T. Exploring in vitro efficacy of rCHAPk with antibiotic combinations, and promising findings of its therapeutic potential for clinical-originated MRSA wound infection. Int J Biol Macromol 2025; 296:139630. [PMID: 39788229 DOI: 10.1016/j.ijbiomac.2025.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 10 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics. Application of 10 μg of rCHAPk reduced OD600 by 0.4 within 5 min against a clinical methicillin-resistant S. aureus (MRSA) strain. Combining rCHAPk (1.875 μg/mL) with oxacillin/vancomycin lowered their minimum bactericidal concentrations to 1 μg/mL from initial values over 64 μg/mL and 32 μg/mL, respectively, with a fractional inhibitory concentration index below 0.1. rCHAPk retained efficacy after one year of refrigerated storage. In in vivo experiments, rCHAPk outperformed commercial fucidin therapy in MRSA-induced murine wound models over two weeks, enhancing wound healing by modulating pro-inflammatory cytokine responses and the proliferative phase. This study, for the first time, investigates rCHAPk's in vitro combination with antibiotics and wound healing parameters, highlighting its potential as a potent antibacterial agent synergizing with antibiotics to address antibiotic-resistant bacterial wound infections.
Collapse
Affiliation(s)
- Semra Tasdurmazli
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Irfan Cinar
- Kastamonu University, Faculty of Medicine, Kastamonu, Turkey
| | | | | | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Erzurum, Turkey
| | - Luís D R Melo
- Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tulin Ozbek
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey.
| |
Collapse
|
2
|
Zhang X, Wang H, Cai X, Zhang A, Liu E, Li Z, Jiang T, Li D, Ding W. α7nAChR Activation Combined with Endothelial Progenitor Cell Transplantation Attenuates Lung Injury in Diabetic Rats with Sepsis through the NF-κB Pathway. Inflammation 2024; 47:1344-1355. [PMID: 38302679 DOI: 10.1007/s10753-024-01980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Chronic diabetes mellitus compromises the vascular system, which causes organ injury, including in the lung. Due to the strong compensatory ability of the lung, patients always exhibit subclinical symptoms. Once sepsis occurs, the degree of lung injury is more severe under hyperglycemic conditions. The α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating inflammation and metabolism and can improve endothelial progenitor cell (EPC) functions. In the present study, lung injury caused by sepsis was compared between diabetic rats and normal rats. We also examined whether α7nAChR activation combined with EPC transplantation could ameliorate lung injury in diabetic sepsis rats. A type 2 diabetic model was induced in rats via a high-fat diet and streptozotocin. Then, a rat model of septic lung injury was established by intraperitoneal injection combined with endotracheal instillation of LPS. The oxygenation indices, wet-to-dry ratios, and histopathological scores of the lungs were tested after PNU282987 treatment and EPC transplantation. IL-6, IL-8, TNF-α, and IL-10 levels were measured. Caspase-3, Bax, Bcl-2, and phosphorylated NF-κB (p-NF-κB) levels were determined by blotting. Sepsis causes obvious lung injury, which is exacerbated by diabetic conditions. α7nAChR activation and endothelial progenitor cell transplantation reduced lung injury in diabetic sepsis rats, alleviating inflammation and decreasing apoptosis. This treatment was more effective when PNU282987 and endothelial progenitor cells were administered together. p-NF-κB levels decreased following treatment with PNU282987 and EPCs. In conclusion, α7nAChR activation combined with EPC transplantation can alleviate lung injury in diabetic sepsis rats through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Haixu Wang
- Department of Anesthesiology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xuemin Cai
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Aijia Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Enran Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Zhiyuan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Tao Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Dongmei Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Wengang Ding
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
3
|
Çınar İ, Yayla M, Toktay E, Binnetoğlu D. Effects of gossypin on acetaminophen-induced hepatotoxicity in mice. TRAKYA UNIVERSITY JOURNAL OF NATURAL SCIENCES 2024; 25:81-90. [DOI: 10.23902/trkjnat.1410800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Liver injury from paracetamol (acetaminophen) (APAP) is common worldwide. To prevent intoxication with a drug with high poisoning, treatment can be made possible with an easily accessible and harmless substance. This study aimed to investigate the hepatoprotective ef-fects of Gossypin (GOS) in mice exposed to an overdose of APAP -the possible mechanism of action. Specifically, serum [alanine aminotransferase (ALT), aspartate transaminase (AST), and hepatic biochemical parameters (glutathione (GSH), malondialdehyde (MDA) and super-oxide dismutase (SOD)] were evaluated. Protein and mRNA levels of inflammatory, apoptot-ic, and cytochrome factors, including TNF-α, IL-1β, IL-6, NF-kB, and CYP2E1, were ana-lyzed using real-time PCR. Pretreatment with GOS significantly reduced APAP-induced he-patic injury via oxidative stress. Along with potent antioxidant activity, GOS promoted APAP hepatic detoxification by regulating AST, ALT, GSH, MDA, and SOD activities and mRNA levels of the cytochrome CYP2E1 gene. The anti-inflammatory activity of GOS in-creases its production. TNF-α, IL-1β and IL-6, through possible NF-kB blockade, are also responsible for its hepatoprotective effect. Taken together, GOS has the potential to be devel-oped as a preventive agent to be administered to patients suffering from APAP overdose.
Collapse
|
4
|
Dincer B, Cinar I, Erol HS, Demirci B, Terzi F. Gossypin mitigates oxidative damage by downregulating the molecular signaling pathway in oleic acid-induced acute lung injury. J Mol Recognit 2023; 36:e3058. [PMID: 37696682 DOI: 10.1002/jmr.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
One of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayis University, Samsun, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Beste Demirci
- Department of Anatomy, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
5
|
Halici Z, Bulut V, Cadirci E, Yayla M. Investigation of the effects of urotensin II receptors in LPS-induced inflammatory response in HUVEC cell line through calcineurin/NFATc/IL-2 pathway. Adv Med Sci 2023; 68:433-440. [PMID: 37913738 DOI: 10.1016/j.advms.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/03/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE The effect of urotensin II (U-II), a powerful endogenous vasoconstrictor substance, on the immune system and its mediators is very important. It was herein aimed to demonstrate the possible relationship between the calcineurin/nuclear factor of activated T-cells cytoplasmic 1/interleukin-2 (CaN/NFATc/IL-2) pathway and urotensin receptors (UTRs) in inflammatory response due to lipopolysaccharide (LPS). METHODS An LPS-induced inflammation model was used on the human umbilical vein endothelial cells (HUVEC) cell line and drugs were applied accordingly, forming the following groups: Control Group, LPS Group, Agonist Group (10-8 M U-II), Antagonist Group (10-6 M palosuran), Tacrolimus (TAC) Group (10 ng/mL FK-506), Agonist + TAC Group, and Antagonist + TAC Group. Gene expression analyses were performed using real-time polymerase chain reaction (RT-PCR). RESULTS In the analysis of the cell viability at 48 and 72 h, there was a decrease in the Agonist Group, while in the Agonist + TAC Group, the cell viability increased. In the Antagonist Group, cell viability was maintained when compared to the LPS Group, while in the TAC Group, this effect was reduced. The mRNA expression levels of UTR, CaN, NFATc, IL-2 receptor (IL-2R), IL-6 and nuclear factor kappa B (NF-κB) were higher in the LPS Group than in the Control Group, and even the UTR, CaN, NFATc, IL-2R were higher with agonist administration. This effect of the agonist was shown to be completely mitigated in the presence of the CaN inhibitor. CONCLUSION U-II and its receptors can perform key functions regarding the endothelial cell damage via the CaN/NFATc/IL-2 pathway.
Collapse
Affiliation(s)
- Zekai Halici
- Department of Pharmacology, Ataturk University, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey.
| | - Vedat Bulut
- Department of Immunology, Gazi University, Ankara, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Ataturk University, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Kafkas University, Kars, Turkey
| |
Collapse
|
6
|
Ugan RA, Cadirci E, Un H, Cinar I, Gurbuz MA. Fisetin Attenuates Paracetamol-Induced Hepatotoxicity by Regulating CYP2E1 Enzyme. AN ACAD BRAS CIENC 2023; 95:e20201408. [PMID: 37018834 DOI: 10.1590/0001-3765202320201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/14/2020] [Indexed: 04/07/2023] Open
Abstract
Paracetamol is one of the drugs that cause hepatic damage. Fisetin has wide pharmacological effects such as anticancer, antiinflammatory and antioxidant. We aimed to evaluate the possible protective effect of fisetin on paracetamol-induced hepatotoxicity. Fisetin was administered at 25 and 50 mg/kg doses. Paracetamol was administered orally at a dose of 2 g/kg for induce hepatotoxicity 1 h after the fisetin and NAC treatments. The rats were sacrificed 24h after the Paracetamol administration. Tumor necrosis factor-alpha (TNF-α), NFκB and CYP2E1 mRNA levels and Superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels of livers were determined. Serum ALT, AST and ALP levels were measured. Histopathological examinations were also performed. Fisetin administration significantly decreased the ALT, AST and ALP levels in a dose dependent manner. In addition, SOD activity and GSH levels increased, and the MDA level decreased with the treatment of fisetin. The TNF-α, NFκB and CYP2E1 gene expressions were significantly lower in both doses of the fisetin groups compared with the PARA group. Histopathological examinations showed that fisetin has hepatoprotective effects. This study showed that fisetin has the liver protective effects by increasing GSH, decreasing inflammatory mediators and CYP2E1.
Collapse
Affiliation(s)
- Rustem A Ugan
- Ataturk University, Faculty of Pharmacy, Department of Pharmacology, 25240, Erzurum, Turkey
- Ataturk University, Clinical Research, Development and Design Application and Research Center, 25240, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Department of Pharmacology, 25240, Erzurum, Turkey
- Ataturk University, Clinical Research, Development and Design Application and Research Center, 25240, Erzurum, Turkey
| | - Harun Un
- Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Biochemistry, 04100, Agri, Turkey
| | - Irfan Cinar
- Kafkas University, Faculty of Medicine, Department of Pharmacology, Kars, 36200, Turkey
| | - Muhammet A Gurbuz
- Ataturk University, Faculty of Medicine, Department of Histology and Embryology, 25240, Erzurum, Turkey
| |
Collapse
|
7
|
Yin L, Li N, Jia W, Wang N, Liang M, Shang J, Qiang G, Du G, Yang X. Urotensin receptor acts as a novel target for ameliorating fasting-induced skeletal muscle atrophy. Pharmacol Res 2022; 185:106468. [PMID: 36167277 DOI: 10.1016/j.phrs.2022.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
Urotensin receptor (UT) is a G-protein-coupled receptor, whose endogenous ligand is urotensin-II (U-II). Skeletal muscle mass is regulated by various conditions, such as nutritional status, exercise, and diseases. Previous studies have pointed out that the urotensinergic system is involved in skeletal muscle metabolism and function, but its mechanism remains unclear, especially given the lack of research on the effect and mechanism of fasting. In this study, UT receptor knockout mice were generated to evaluate whether UT has effects on fasting induced skeletal muscle atrophy. Furthermore, the UT antagonist palosuran (3, 10, 30mg/kg) was intraperitoneally administered daily for 5 days to clarify the therapeutic effect of UT antagonism. Our results found the mice that fasted for 48hours exhibited skeletal muscle atrophy, accompanied by enhanced U-II levels in both skeletal muscles and blood. UT receptor knockout effectively prevented fasting-induced skeletal muscle atrophy. The UT antagonist ameliorated fasting-induced muscle atrophy in mice as determined by increased muscle strengths, weights, and muscle fiber areas (including fast, slow, and mixed types). In addition, the UT antagonist reduced skeletal muscle atrophic markers, including F-box only protein 32 (FBXO32) and tripartite motif containing 63 (TRIM63). Moreover, the UT antagonist was also observed to enhance PI3K/AKT/mTOR while inhibiting autophagy signaling. In summary, our study provides the first evidence that UT antagonism may represent a novel therapeutic approach for the treatment of fasting-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Lin Yin
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Li
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weihua Jia
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Nuoqi Wang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Meidai Liang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiamin Shang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guifen Qiang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Terzi MY, Okuyan HM, Karaboğa İ, Gökdemir CE, Tap D, Kalacı A. Urotensin-II Prevents Cartilage Degeneration in a Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Un H, Ugan RA, Kose D, Yayla M, Tastan TB, Bayir Y, Halici Z. A new approach to sepsis treatment by rasagiline: a molecular, biochemical and histopathological study. Mol Biol Rep 2022; 49:3875-3883. [PMID: 35301652 DOI: 10.1007/s11033-022-07235-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
AIM We aimed to investigate the effects of rasagiline on acute lung injury that develops in the sepsis model induced with the cecal ligation and puncture in rats. MAIN METHODS The rats were separated into the following six groups, Group 1: Sham, Group 2: Sham + Rasagiline 4 mg/kg, Group 3: Sepsis, Group 4: Sepsis + Rasagiline 1 mg/kg, Group 5: Sepsis + Rasagiline 2 mg/kg, Group 6: Sepsis + Rasagiline 4 mg/kg. A total of four holes were opened with a 16-gauge needle through the cecum distal to the point of ligation. KEY FINDINGS Rasagiline treatment increased glutathione level and superoxide dismutase activity while decreased the malondialdehyde level after the sepsis. There was a statistically significant improvement in the doses of 2 mg/kg and 4 mg/kg. Rasagiline also increased Tnf-α, IL1β, IL6, NF-κβand HMGB1 gene expressions in dose-dependent at 2 mg/kg and 4 mg/kg doses. In increased doses, rasagiline prevent the development of edema, the formation of inflammation, and hemorrhage. SIGNIFICANCE Rasagiline exerts both antioxidant and anti-inflammatory effects on the cecal ligation and puncture induced acute lung injury in rats.
Collapse
Affiliation(s)
- Harun Un
- Faculty of Pharmacy, Department of Biochemistry, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Duygu Kose
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Muhammed Yayla
- Faculty of Medicine, Department of Pharmacology, Kafkas University, Kars, Turkey
| | - Tugba Bal Tastan
- Faculty of Medicine, Department of Histology and Embryology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yasin Bayir
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
10
|
Cinar I, Yayla M, Tavaci T, Toktay E, Ugan RA, Bayram P, Halici H. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol 2022; 22:52-62. [PMID: 34599475 DOI: 10.1007/s12012-021-09698-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to examine the protective effects and possible mechanism of gossypin against isoproterenol (ISO)-mediated myocardial damage in vivo and H9c2 cell damage in vitro. H9c2 cells were categorized into five groups. Viability was evaluated with MTT and LDH release in H9c2 cells. Apoptotic parameter analysis was performed with cytochrome c (Cyt-c), caspase-3 (CASP-3), and BCL2/Bax mRNA expression levels. In vivo, gossypin was administered orally to mice at doses of 5, 10, and 20 mg/kg for 7 days. ISO groups were injected with isoproterenol (150 mg/kg) subcutaneously (on 8th and 9th) for 2 days. Afterward, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) levels and Troponin-I (Tn-I) amount from their serum, oxidative stress parameters superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1 β), and NF-kB mRNA expression levels with inflammatory markers from heart tissue were evaluated. In addition, IL-1B, BCL-2, and cas-3 immunohistochemical staining was performed from heart tissue and TNF-a level was measured by ELISA method. Administration of Gossypin protected the cells by dose-dependent, eliminating the reduced cell viability and increased LDH release of ISO in H9c2 cells. In mice serum analyses, increased LDH, CK-MB levels, and Tn-I levels were normalized by gossypin. ISO administration in heart tissue is regulated by gossypin with increased SOD activity, GSH amount, TNF-α, IL-6, IL-1β, and NF-kB mRNA expression levels and decreased MDA amount. Overall, the present results demonstrated that gossypin has a potential cardioprotective treatment for ischemic heart disease on in vivo and in vitro.
Collapse
Affiliation(s)
- Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, 3700, Kastamonu, Turkey.
| | - Muhammed Yayla
- Faculty of Medicine, Department of Pharmacology, Kafkas University, Kars, Turkey
| | - Taha Tavaci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Pınar Bayram
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Hamza Halici
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
11
|
Bilen A, Calik I, Yayla M, Dincer B, Tavaci T, Cinar I, Bilen H, Cadirci E, Halici Z, Mercantepe F. Does daily fasting shielding kidney on hyperglycemia-related inflammatory cytokine via TNF-α, NLRP3, TGF-β1 and VCAM-1 mRNA expression. Int J Biol Macromol 2021; 190:911-918. [PMID: 34492249 DOI: 10.1016/j.ijbiomac.2021.08.216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the effects of blood glucose control and the kidneys' functions, depending on fasting, in the streptozotocin-induced diabetes model in rats via TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression in the present study. 32 Wistar albino rats were allocated randomly into four main groups; H (Healthy, n = 6), HF (Healthy fasting, n = 6), D (Diabetes, n = 10), DF (Diabetes and fasting, n = 10). Blood glucose and HbA1c levels significantly increased in the D group compared to the healthy ones (p < 0.05). However, the fasting period significantly improved blood glucose and HbA1c levels 14 days after STZ induced diabetes in rats compared to the D group. Similar findings we obtained for serum (BUN-creatinine) and urine samples (creatinine and urea levels). STZ induced high glucose levels significantly up-regulated TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression and fasting significantly decreased these parameters when compared to diabetic rats. Histopathological staining also demonstrated the protective effects of fasting on diabetic kidney tissue. In conclusion, intermittent fasting regulated blood glucose level as well as decreasing harmful effects of diabetes on kidney tissue. The fasting period significantly decreased the hyperglycemia-related inflammatory cytokine damage on kidneys and also reduced apoptosis in favor of living organisms.
Collapse
Affiliation(s)
- Arzu Bilen
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ilknur Calik
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Taha Tavaci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Habip Bilen
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey; Ataturk University, Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey; Ataturk University, Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
12
|
Köse D, Köse A, Halıcı Z, Çadırcı E, Tavacı T, Gürbüz MA, Maman A. Bosentan, a drug used in the treatment of pulmonary hypertension, can prevent development of osteoporosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:922-927. [PMID: 34712422 PMCID: PMC8528255 DOI: 10.22038/ijbms.2021.54152.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): We examined the antiosteoporotic effect of bosentan (Bose) by radiographic, histopathological, and molecular methods. Materials and Methods: Rats were divided into 4 groups of 8 rats each: one control (Sham), one osteoporosis only (OP), and two osteoporosis groups treated with Bose doses of 50 and 100 mg/kg (OP+Bose50, OP+Bose100). Six weeks later, Bose was administered for eight weeks to animals undergoing ovariectomy. The left femoral bone of the rats was evaluated in vitro after surgical removal. Bone mineral density (BMD) was analyzed by Dual-energy X-ray absorptiometry (DEXA). Endothelin 1 (ET-1), ET-A, and ET-B expressions were examined by real-time polymerase chain reaction (real time-PCR). In addition, bone tissue was evaluated histopathologically. Results: Compared with the osteoporosıs group, Bose significantly increased BMD values at both 50 and 100 mg/kg doses. ET-1 mRNA levels were significantly higher in the OP group than in the Sham group, while ET-1 mRNA levels were significantly lower in Bose treatment groups. ET-A mRNA levels were significantly lower in the OP group than in the Sham group, while ET-A mRNA levels were significantly higher in Bose treatment groups. Histopathological results supported the molecular results. Conclusion: Our study is the first to demonstrate the molecular, radiological, and histopathological effects of Bose in preventing osteoporosis in rats.
Collapse
Affiliation(s)
- Duygu Köse
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey, 905074704150
| | - Ahmet Köse
- University of Health Sciences, Faculty of Medicine, Department of Orthopedics And Traumatology, Erzurum, Turkey, 905066330520
| | - Zekai Halıcı
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey, 905323868884
| | - Elif Çadırcı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey, 905362328001
| | - Taha Tavacı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey, 9005059177816
| | - Muhammed Ali Gürbüz
- Faculty of Medicine, Department of Histology And Embryology Department, Atatürk University, Erzurum, Turkey, 905522265686
| | - Adem Maman
- Faculty of Medicine, Department of Nuclear Medicine, Atatürk University, Erzurum, Turkey, 905063661925
| |
Collapse
|
13
|
Kose D, Un H, Ugan RA, Halici Z, Cadirci E, Tastan TB, Kahramanlar A. Aprepitant: an antiemetic drug, contributes to the prevention of acute lung injury with its anti-inflammatory and antioxidant properties. J Pharm Pharmacol 2021; 73:1302-1309. [PMID: 34160038 DOI: 10.1093/jpp/rgab088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We investigated, the effects of aprepitant (APRE) on the lung tissues of rats with an experimental polymicrobial sepsis model (CLP: cecal ligation and puncture) biochemically, molecularly and histopathologically. METHODS A total of 40 rats were divided into 5 groups with 8 animals in each group. Group 1 (SHAM), control group; Group 2 (CLP), cecal ligation and puncture; Group 3 (CLP + APRE10), rats were administered CLP + 10 mg/kg aprepitant; Group 4 (CLP + APRE20), rats were administered CLP + 20 mg/kg aprepitant; and Group 5 (CLP + APRE40), rats were administered CLP + 40 mg/kg aprepitant. A polymicrobial sepsis model was induced with CLP. After 16 h, lung tissues were taken for examination. Tumour necrosis factor α (TNF-α) and nuclear factor-kappa b (NFK-b) messenger ribonucleic acid (mRNA) expressions were analysed by real-time PCR (RT-PCR), biochemically antioxidant parameters such as superoxide dismutase (SOD) and glutathione (GSH) and oxidant parameters such as malondialdehyde (MDA) and lung damage histopathologically. KEY FINDINGS AND CONCLUSIONS The GSH level and SOD activity increased while the MDA level and the expressions of TNF-α and NFK-b were reduced in the groups treated with APRE, especially in the CLP + APRE40 group. The histopathology results supported the molecular and biochemical results.
Collapse
Affiliation(s)
- Duygu Kose
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Harun Un
- Faculty of Pharmacy, Department of Biochemistry, Agri İbrahim Çeçen University, Ağrı, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Tugba Bal Tastan
- Faculty of Medicine, Department of Histology and Embryology Department, Binali Yıldırım University, Erzincan, Turkey
| | - Aysenur Kahramanlar
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
14
|
Urantide Improves Cardiac Function, Modulates Systemic Cytokine Response, and Increases Survival in A Murine Model of Endotoxic Shock. Shock 2021; 54:574-582. [PMID: 31568223 DOI: 10.1097/shk.0000000000001448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Urotensin II is a potent vasoactive peptide activating the the G protein-coupled urotensin II receptor UT, and is involved in systemic inflammation and cardiovascular functions. The aim of our work was to study the impact of the UT antagonist urantide on survival, systemic inflammation, and cardiac function during endotoxic shock. METHODS C57Bl/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) and then randomized to be injected either by urantide or NaCl 0.9% 3, 6, and 9 h (H3, H6, H9) after LPS. The effect of urantide on the survival rate, the levels of cytokines in plasma at H6, H9, H12, the expression level of nuclear factor-kappa B (NF-κB-p65) in liver and kidney (at H12), and the cardiac function by trans-thoracic echocardiography from H0 to H9 was evaluated. RESULTS Urantide treatment improved survival (88.9% vs. 30% on day 6, P < 0.05). This was associated with changes in cytokine expression: a decrease in IL-6 (2,485 [2,280-2,751] pg/mL vs. 3,330 [3,119-3,680] pg/mL, P < 0.01) at H6, in IL-3 (1.0 [0.40-2.0] pg/mL vs. 5.8 [3.0-7.7] pg/mL, P < 0.01), and IL-1β (651 [491-1,135] pg/mL vs. 1,601 [906-3,010] pg/mL, P < 0.05) at H12 after LPS administration. Urantide decreased the proportion of cytosolic NF-κB-p65 in liver (1.3 [0.9-1.9] vs. 3.2 [2.3-4], P < 0.01) and kidney (0.3 [0.3-0.4] vs. 0.6 [0.5-1.1], P < 0.01). Urantide improved cardiac function (left ventricular fractional shortening: 24.8 [21.5-38.9] vs. 12.0 [8.7-17.6] %, P < 0.01 and cardiac output: 30.3 [25.9-39.8] vs. 15.1 [13.0-16.9] mL/min, P < 0.0001). CONCLUSION These results show a beneficial curative role of UT antagonism on cytokine response (especially IL-3), cardiac dysfunction, and survival during endotoxic shock in mice, highlighting a potential new therapeutic target for septic patients.
Collapse
|
15
|
Köse D, Yüksel TN, Halıcı Z, Çadırcı E, Gürbüz MA. The Effects of Agomelatine Treatment on Lipopolysaccharide-Induced Septic Lung Injuries in Rats. Eurasian J Med 2021; 53:127-131. [PMID: 34177296 DOI: 10.5152/eurasianjmed.2021.20342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective We designed an experimental model of sepsis in rats to investigate the effects of agomelatine (AGO) on lung tissues using molecular and histopathological methods. Materials and Methods In our experimental model, the 32 rats were divided into 4 groups: group 1: control group (HEALTHY); group 2: lipopolysaccharide group (LPS); group 3: LPS plus 50 mg/kg AGO group (LPS + AGO50); and group 4: LPS plus 100 mg/kg AGO group (LPS + AGO100). An LPS-induced sepsis model was performed to replicate the pathology of sepsis. Rats from all 4 groups were killed after 12 hours, and their lungs were quickly collected. To investigate the therapeutic strategy, we evaluated tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB) messenger RNA expressions by real-time polymerase chain reaction using molecular methods and lung tissue damage indicators using histopathological methods. Results The expressions of TNF-α and NF-κB were reduced in the groups treated with AGO. The histopathology results supported the molecular results. Conclusion In this experimental study, we demonstrated for the first time the positive effects of AGO on LPS-induced sepsis in lung tissue using molecular and histopathological methods, indicating that it contributes to the prevention of lung damage.
Collapse
Affiliation(s)
- Duygu Köse
- Clinical Research, Development and Design Application, and Research Center, Atatürk University, Erzurum
| | - Tuğba Nurcan Yüksel
- Department of Pharmacology, Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Zekai Halıcı
- Clinical Research, Development and Design Application, and Research Center, Atatürk University, Erzurum
| | - Elif Çadırcı
- Department of Pharmacology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Muhammed Ali Gürbüz
- Department of Histology and Embryology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
16
|
Bayraktutan Z, Dincer B, Keskin H, Kose D, Bilen A, Toktay E, Sirin B, Halici Z. Roflumilast as a Potential Therapeutic Agent for Cecal Ligation and Puncture-Induced Septic Lung Injury. J INVEST SURG 2021; 35:605-613. [PMID: 33843406 DOI: 10.1080/08941939.2021.1908462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE/AIMS This study focused on delineating the possible effects of roflumilast (ROF), a selective phosphodiesterase 4 (PDE4) inhibitor, in rats with cecal ligation and puncture (CLP)-induced polymicrobial sepsis, and investigated whether ROF can act as a protective agent in sepsis-induced lung damage. MATERIAL AND METHODS Four experimental groups were organized, each comprising eight rats: Control, Sepsis, Sepsis + ROF 0.5 mgkg-1, and Sepsis + ROF 1 mgkg-1 groups. A polymicrobial sepsis model was induced in the rats by cecal ligation and puncture under anesthesia. Twelve hours after sepsis induction, the lungs were obtained for biochemical, molecular, and histopathological analyses. RESULTS In the sepsis group's lungs, the TNF-α, IL-1β, and IL-6 mRNA expression levels peaked in the sepsis group's lung tissues, and ROF significantly decreased these levels compared with the sepsis group dose-dependently. ROF also significantly decreased MDA levels in septic lungs and increased antioxidant parameters (SOD and GSH) compared with the sepsis group. Histopathological analysis results supported biochemical and molecular results. CONCLUSIONS ROF, a PDE4 inhibitor, suppressed the expression levels of pro-inflammatory cytokines, alleviated lung damage (probably by blocking neutrophil infiltration), and increased the capacity of the antioxidant system.
Collapse
Affiliation(s)
| | - Busra Dincer
- Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halil Keskin
- Department of Child Health and Diseases, Ataturk University, Erzurum, Turkey
| | - Duygu Kose
- Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Arzu Bilen
- Department of Internal Medicine, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Busra Sirin
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University, Erzurum, Turkey.,Department of Internal Medicine, Ataturk University, Erzurum, Turkey.,Department of Histology and Embryology, Kafkas University, Kars, Turkey.,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
17
|
Ugan RA, Un H, Kose D, Cadirci E, Bal Tastan T, Yayla M, Halici Z. Can aprepitant used for nausea and vomiting be good gastrointestinal complaints? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2463-2472. [PMID: 32743741 DOI: 10.1007/s00210-020-01956-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Aprepitant is a selective SP/NK-1 receptor antagonist and used in postoperative and chemotherapeutics induced emesis and vomiting. The aim of our study is to show aprepitant may have beneficial effects on gastrointestinal complaints in cancer patients undergoing chemotherapeutics by indomethacin-induced gastric ulcer model. A total of 48 rats were fasted 24 h for ulcer experiment. Aprepitant doses of 5, 10, 20, and 40 mg/kg were evaluated for their antiulcer activity. Omeprazole (20 mg/kg) was used as a positive control group. Six hours after 25 mg/kg indomethacin administration, all stomachs were dissected out. After macroscopic analyses, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), COX-1, and COX-2 mRNA levels and SOD activity, and GSH and MDA levels of stomachs were determined. Histopathological examinations were evaluated. Aprepitant administration exerted 48.14%, 49.62%, 65.92%, and 76.77% ulcer inhibition effects at 5, 10, 20, and 40 mg/kg, respectively. Aprepitant administration decreased oxidative stress and inflammatory parameters in stomach tissues dose dependently. Aprepitant administration increased stomach COX-2 mRNA levels at 20 and 40 mg/kg doses. Although aprepitant appears to be disadvantageous in terms of treating gastric ulcer due to COX enzyme inhibition according to the previous studies, aprepitant has been shown to have ulcer healing effect in our study. When aprepitant is given as an anti-nausea and vomiting drug to cancer patients undergoing chemotherapy, we can argue that it will not be necessary to add a new gastric protective agent as it also shows beneficial effects in gastrointestinal complaints.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey.
| | - Harun Un
- Department of Biochemistry, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Duygu Kose
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Tugba Bal Tastan
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yidirim University, Erzincan, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Dincer B, Halici Z, Cadirci E. Investigation of the Role of Stimulation and Blockade of 5-HT 7 Receptors in Ketamine Anesthesia. J Mol Neurosci 2020; 71:1095-1111. [PMID: 33200380 DOI: 10.1007/s12031-020-01732-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Although several pieces of evidence have indicated the ability of the serotonin-7 receptor (5-HTR7) to modulate N-methyl-D-aspartate receptor (NMDAR) activation, the possible impact on ketamine anesthesia has not been examined directly. The purpose of the present study is thus to investigate the possible role of the 5-HTR7 in ketamine anesthesia using a 5-HTR7 agonist and/or antagonist. The influence of a 5-HTR7 agonist/antagonist on ketamine anesthesia for behavioral impact was assessed by testing potential anesthetic parameters. Its functional impact was assessed by mRNA expression with real-time PCR and immunostaining in the hippocampus and prefrontal cortex of mice. Two different doses of ketamine-high and low-were administered to induce anesthesia. In the high-dose ketamine-applied group in particular, the administration of both the 5-HTR7 agonist and antagonist intensified the anesthetic effect of ketamine. The reflection of the change in anesthesia parameters to 5-HTR7 expression was observed as an increase in the hippocampus and a decrease in the prefrontal cortex in the anesthetized groups by stimulation of 5-HTR7. It is noteworthy that the results of NMDAR expressions are parallel to the results of the 5-HTR7 expressions of both the hippocampus and the prefrontal cortex. The 5-HTR7 may play a role in ketamine anesthesia. It may act through NMDAR in ketamine anesthesia, depending on the parallelism between both receptors.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25240, Turkey.,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, 25240, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25240, Turkey. .,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, 25240, Turkey.
| |
Collapse
|
19
|
Ugan RA, Un H. The Protective Roles of Butein on Indomethacin Induced Gastric Ulcer in Mice. Eurasian J Med 2020; 52:265-270. [PMID: 33209079 DOI: 10.5152/eurasianjmed.2020.20022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Butein is a potential agent first isolated from Rhus verniciflua that has medicinal value in East Asia and has been used in the treatment of gastritis, gastric cancer, and atherosclerosis since ancient times. The aim of our study is to show, for the first time, the anti-ulcerative effect of butein in indomethacin induced gastric ulcer in mice. Materials and Methods A total of 42 mice were fasted 24 hours for the ulcer experiment, and 10, 20, and 40 mg/kg doses of butein were evaluated for their antiulcer activity. Famotidine 40 mg/kg was used as a positive control group. For ulcer induction, 25 mg/kg dose of indomethacin was administered to the mice and after 6 hours all stomachs were dissected out. After macroscopic analyses, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), COX-1, and COX-2 mRNA levels of stomachs were evaluated by Real Time PCR, and Superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) were determined by ELISA. Results Butein administration exerted 50.8%, 65.9%, and 87.1% antiulcer effects at 10, 20, and 40 mg/kg, respectively. Butein administration decreased oxidative stress and inflammatory parameters in stomach tissues dose dependently. Furthermore, butein administration increased stomach PGE2 levels and decreased COX-1 and COX-2 mRNA levels. Conclusion Butein has been shown to have a healing effect on ulcers in macroscopic examinations in our study. We observed that butein has antioxidant and anti-cytokine properties in gastric tissue. Butein could be an important alternative in the treatment of indomethacin-induced ulcers. Whether butein is a partial agonist of the COX enzyme should be investigated in future studies.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Department of Pharmacology, Ataturk University, Faculty of Pharmacy, Erzurum, Turkey
| | - Harun Un
- Department of Biochemistry, Agri Ibrahim Cecen University, Faculty of Pharmacy, Agri, Turkey
| |
Collapse
|
20
|
UĞAN RA, YAYLA M, ÜN H, CİVELEK MS, KILIÇLE PA. Nar Kabuğu Ekstresinin Sıçanlarda Diyabetik Şartlarda Sepsis ile İndüklenen Akciğer Hasarına Karşı Etkileri. DICLE MEDICAL JOURNAL 2020. [DOI: 10.5798/dicletip.800270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Köse D, Köse A, Halıcı Z, Gürbüz MA, Aydın A, Ugan RA, Karaman A, Toktay E. Do peripheral melatonin agonists improve bone fracture healing? The effects of agomelatine and ramelteon on experimental bone fracture. Eur J Pharmacol 2020; 887:173577. [PMID: 32949602 DOI: 10.1016/j.ejphar.2020.173577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Melatonin improves fracture healing, but the long-term use of melatonin seems impracticable in the treatment of fracture due to side effects caused by hormonal stress on chronological rhythm. Ramelteon (RAMEL) and agomelatine (AGO) are non-selective peripheral melatonin receptor (MT) agonists. This study investigated the effects on bone fracture healing of these MT agonists, which do not affect the central nervous system. The rats were divided into 6 groups, including Group 1 (SHAM): sham operated group; Group 2 (FRACTURE): femoral fracture control; Group 3 (FR + AGO30): femoral fracture + agomelatine 30 mg/kg; Group 4 (FR + AGO60): femoral fracture + agomelatine 60 mg/kg; Group 5 (FR + RAMEL3): femoral fracture + ramelteon 3 mg/kg; and Group 6 (FR + RAMEL6): femoral fracture + ramelteon 6 mg/kg. After 21 days, the rats were subjected to X-ray imaging. Bone healing was evaluated with hematoxylin-eosin (HE) staining. Messenger RNA (mRNA) expressions of bone formation markers, such as bone alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OP), were evaluated by real-time polymerase chain reaction (RT-PCR) and with immunohistochemistry (IHC) staining. The radiographic fracture healing scores were statistically significantly higher in the FR + AGO60 group and the FR + RAMEL3 group than in the FRACTURE group. The histopathology and molecular results supported the radiographic results. It was shown that agomelatine and ramelteon increase bone fracture healing, leading to the conclusion that a preference for agomelatine, an antidepressant, and ramelteon, a sleep aid, will increase bone fracture healing in patients with fractures.
Collapse
Affiliation(s)
- Duygu Köse
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey.
| | - Ahmet Köse
- Department of Orthopedics and Traumatology, Erzurum Regional Education and Research Hospital, Turkey
| | - Zekai Halıcı
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Muhammed Ali Gürbüz
- Faculty of Medicine, Department of Histology and Embryology Department, Ataturk University, Erzurum, Turkey
| | - Ali Aydın
- Faculty of Medicine, Department of Orthopedics and Traumatology, Ataturk University, Erzurum, Turkey
| | - Rüstem Anıl Ugan
- Faculty of Pharmacy, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Adem Karaman
- Faculty of Medicine, Department of Radiology, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embryology Department, Kafkas Univeristy, Kars, Turkey
| |
Collapse
|
22
|
Ugan RA, Un H, Gurbuz MA, Kaya G, Kahramanlar A, Aksakalli-Magden ZB, Halici Z, Cadirci E. Possible contribution of the neprilysin/ACE pathway to sepsis in mice. Life Sci 2020; 258:118177. [PMID: 32738364 DOI: 10.1016/j.lfs.2020.118177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
AIM Omapatrilat is an antagonist of angiotensin-converting (ACE) and neprilysin-neuropeptidase (NEP) enzymes. The aim of our study is to show that omapatrilat may have beneficial effects as a treatment for polymicrobial sepsis. MAIN METHODS A cecal ligation and puncture (CLP) sepsis model was used to evaluate 10 and 20 mg/kg doses of omapatrilat in mice (n = 30) fasted for 12 h. The lungs were removed 12 h after CLP, and lung levels of cytokines (tumor necrosis factor-alpha [TNF-α], interleukin-6 [IL-6], NF-κB), iNOS and eNOS mRNA expression, GSH and MDA levels, and ACE and NEP activities were determined. Histopathological examinations were also performed. KEY FINDINGS Omapatrilat treatment provided a dose-dependent reduction in oxidative stress and inflammatory parameters in lung tissues. Omapatrilat administration decreased lung iNOS and eNOS mRNA levels at 20 mg/kg dose. Histopathological analysis revealed a decline in the thickening and edema areas in the alveolar septa in the Sepsis+OMA20 group. SIGNIFICANCE Omapatrilat, a dual ACE and NEP inhibitor, protected lung tissue from sepsis damage by reducing ACE and NEP activities, by decreasing the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and NF-κB), by suppressing leukocyte infiltration and edema, by restoring iNOS and eNOS levels, and by restoring SOD activity and GSH and MDA levels, thereby reducing oxidative stress.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Ataturk University Faculty of Pharmacy, Department of Pharmacology, Erzurum, Turkey.
| | - Harun Un
- Agri Ibrahim Cecen University Faculty of Pharmacy, Department of Biochemistry, Agri, Turkey
| | - Muhammed Ali Gurbuz
- Ataturk University Faculty of Medicine, Department of Histology and Embryology, Erzurum, Turkey
| | - Gokce Kaya
- Ataturk University Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey
| | - Aysenur Kahramanlar
- Ataturk University Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkey
| | | | - Zekai Halici
- Ataturk University Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Ataturk University Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Ataturk University Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| |
Collapse
|
23
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
24
|
Un H, Ugan RA, Kose D, Bayir Y, Cadirci E, Selli J, Halici Z. A novel effect of Aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur J Pharmacol 2020; 880:173168. [PMID: 32423870 DOI: 10.1016/j.ejphar.2020.173168] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
Cisplatin is widely used chemotherapeutic drug and have some serious side effects as tissue toxicity and nausea and vomiting. Aprepitant is used in clinic as an anti-emetic drug for cisplatin treated patient to prevent nausea and vomiting. We aimed to investigate the protective effects of Aprepitant on cisplatin-induced nephrotoxicity and hepatotoxicity. In total 42 male rats were separated into six groups (n = 7). A single dose of cisplatin (10 mg/kg i.p.) was administered to induce toxicity on first day. Different doses of Aprepitant (5, 10 and 20 mg/kg, p.o.) were given to treatment groups during 3 days. After the experimental procedures serum enzymes (ALT, AST, ALP, BUN and Creatinin), kidney and liver oxidative parameters (SOD, GSH and MDA), inflammatory cytokines (TNF-α and NF-κB) and Cyp2e1 expressions analyzed. Histopathological investigations also performed for all groups. Cisplatin caused tissue toxicity in both kidney and liver. Serum enzymes, tissue cytokines and oxidative stress were increased after the Cis treatment. Aprepitant treatment normalized all parameters compared to cisplatin treated group. Cisplatin significantly increased the Cyp2e1 expression in the kidney while significantly decreased in the liver compared to Healthy group. Histopathologically, it was shown that cisplatin causes a lot of abnormal structures as inflammatory infiltration and necrosis on the liver and kidney. Similar the biochemical and molecular results, aprepitant showed positive effects on tissue pathological parameters. With its main anti-emetic effect, Aprepitant treatment may be an effective option for cancer patients if they have additional injury as nephrotoxicity and hepatotoxicity due to cisplatin.
Collapse
Affiliation(s)
- Harun Un
- Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Biochemistry, Agri, Turkey.
| | - Rustem Anil Ugan
- Ataturk University, Faculty of Pharmacy, Department of Pharmacology, Erzurum, Turkey
| | - Duygu Kose
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey
| | - Yasin Bayir
- Ataturk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Jale Selli
- Ataturk University, Faculty of Medicine, Department of Histology and Embryology, Erzurum, Turkey
| | - Zekai Halici
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
25
|
Cinar I, Sirin B, Aydin P, Toktay E, Cadirci E, Halici I, Halici Z. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sci 2019; 221:327-334. [DOI: 10.1016/j.lfs.2019.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
26
|
Sun SL, Liu LM. Urotensin II: an inflammatory cytokine. J Endocrinol 2019; 240:JOE-18-0505.R2. [PMID: 30601760 DOI: 10.1530/joe-18-0505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a polypeptide molecule with neurohormone-like activity. It has been confirmed that UII is widely distributed in numerous organs of different animal species from fish to mammals, including humans. The UII receptor is orphan G-protein coupled receptor 14, also known as UT. The tissue distribution of UII and UT is highly consistent, and their expression may be regulated by autocrine and paracrine mechanisms. In the body, UII has many physiological and pathophysiological activities, such as vasoconstrictor and vasodilatory actions, cell proliferation, pro-fibrosis, neuroendocrine activity, insulin resistance, and carcinogenic and inflammatory effects, which have been recognized only in recent years. In fact, UII is involved in the process of inflammatory injury and plays a key role in the onset and development of inflammatory diseases. In this paper, we will review the roles UII plays in inflammatory diseases.
Collapse
Affiliation(s)
- Sui-Lin Sun
- S Sun, Department of Infection, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China, Nanchang, China
| | - Liang-Ming Liu
- L Liu, Department of Infection, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| |
Collapse
|
27
|
Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:135-145. [DOI: 10.1007/s00210-018-1571-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
|