1
|
Carabulea AL, Janeski JD, Naik VD, Chen K, Mor G, Ramadoss J. A multi-organ analysis of the role of mTOR in fetal alcohol spectrum disorders. FASEB J 2023; 37:e22897. [PMID: 37000494 PMCID: PMC10841000 DOI: 10.1096/fj.202201865r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Alcohol exposure during gestation can lead to fetal alcohol spectrum disorders (FASD), an array of cognitive and physical developmental impairments. Over the past two and a half decades, Mammalian Target of Rapamycin (mTOR) has emerged at the nexus of many fields of study, and has recently been implicated in FASD etiology. mTOR plays an integral role in modulating anabolic and catabolic activities, including protein synthesis and autophagy. These processes are vital for proper development and can have long lasting effects following alcohol exposure, such as impaired hippocampal and synapse formation, reduced brain size, as well as cognitive, behavioral, and memory impairments. We highlight recent advances in the field of FASD, primarily with regard to animal model discoveries and discuss the interaction between alcohol and mTOR in the context of various tissues, including brain, placenta, bone, and muscle, with respect to developmental alcohol exposure paradigms. The current review focuses on novel FASD research within the context of the mTOR signaling and sheds light on mechanistic etiologies at various biological levels including molecular, cellular, and functional, across multiple stages of development and illuminates the dichotomy between the different mTOR complexes and their unique signaling roles.
Collapse
Affiliation(s)
- Alexander L. Carabulea
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Joseph D. Janeski
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Vishal D. Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Kang Chen
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Barbara Ann Karmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Gil Mor
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Department of Physiology, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Jayanth Ramadoss
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Department of Physiology, School of MedicineWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
2
|
Tu W, Qin M, Li Y, Wu W, Tong X. Metformin regulates autophagy via LGMN to inhibit choriocarcinoma. Gene X 2023; 853:147090. [PMID: 36464174 DOI: 10.1016/j.gene.2022.147090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Choriocarcinoma has the problem of chemotherapy insensitivity and recurrence. Metformin may be a promising candidate to restrict choriocarcinoma progress because of its indirect and direct beneficial role on inhabitations of cancer cells without severe adverse side effects. In this study, metformin pressed the proliferation and invasion of choriocarcinoma JAR cells in vitro and the growth of the JAR subcutaneous xenografts in vivo. The high throughput sequencing and bioinformatics technology identified the low expression of legumain (LGMN) in lysosomal pathway caused by metformin, which was upregulated in human choriocarcinoma tissues compared with the early pregnancy tissues. As elevating metformin concentration and treatment time, the mRNA and protein expression of LGMN both depressed in two choriocarcinoma cell lines (JAR and JEG-3). LGMN was involved in metformin-mediated inhibition of cell proliferation and invasion. Furthermore, metformin induced autophagy via inhibiting LGMN through AKT/mTOR/LC3II signaling pathway of choriocarcinoma. Autophagy inhibitor could depress metformin-induced autophagy and improve cell proliferation and invasion ability dropped by metformin, while autophagy inducer could partially reverse the change of cell proliferation and invasion modulated by combination of metformin and LGMN overexpression. These results indicated that metformin inhibited cell proliferation and invasion ability by inducing autophagy in a LGMN-dependent manner so as to play a role in the treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Weiyan Tu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Menglu Qin
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Li
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weimin Wu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
4
|
Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF- κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1806344. [PMID: 34804360 PMCID: PMC8601820 DOI: 10.1155/2021/1806344] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.
Collapse
|
5
|
Li A, Li S, Zhang C, Fang Z, Sun Y, Peng Y, Wang X, Zhang M. FPR2 serves a role in recurrent spontaneous abortion by regulating trophoblast function via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 24:838. [PMID: 34608500 PMCID: PMC8503740 DOI: 10.3892/mmr.2021.12478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023] Open
Abstract
Recurrent spontaneous abortion (RSA) effects both the physical and mental health of women of reproductive age. Trophoblast dysfunction may result in RSA due to shallow placental implantation. The mechanisms underlying formyl peptide receptor 2 (FPR2) on the biological functions of trophoblasts remain to be elucidated. The present study aimed to explore the potential functions of FPR2, a G protein‑coupled receptor, in placental trophoblasts. The location and expression levels of FPR2 in the villi tissue of patients with RSA were detected using immunohistochemical staining, reverse transcription‑quantitative PCR and western blotting. Following the transfection of small interfering RNA targeting FPR2 in HTR‑8/SVneo cells, a Cell Counting Kit‑8 assay was used to determine the levels of cell viability. Flow cytometry was used to examine the levels of cell apoptosis and gap closure and Transwell assays were carried out to evaluate the levels of cell migration and invasion. A tube formation assay was performed to detect the levels of capillary‑like structure formation. Western blotting was used to detect the expression levels of proteins in the associated signaling pathways. The expression of FPR2 was present in villi trophoblasts and was markedly increased in patients with RSA. The levels of trophoblast invasion, migration and tube formation were markedly increased following FPR2 knockdown, whereas the levels of apoptosis were markedly decreased. In addition, FPR2 knockdown caused an increase in the phosphorylation levels of AKT and PI3K. Thus, FPR2 may be involved in the regulation of trophoblast function via the PI3K/AKT signaling pathway. The results of the present study provided a theoretical basis for the use of FPR2 as a target for the treatment of trophoblast‑associated diseases, such as RSA.
Collapse
Affiliation(s)
- Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Chongyu Zhang
- Department of Chronic Disease, Center for Disease Control and Prevention of Wulian, Rizhao, Shandong 262300, P.R. China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Yanjie Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
6
|
Poniedziałek-Czajkowska E, Mierzyński R, Dłuski D, Leszczyńska-Gorzelak B. Prevention of Hypertensive Disorders of Pregnancy-Is There a Place for Metformin? J Clin Med 2021; 10:jcm10132805. [PMID: 34202343 PMCID: PMC8268471 DOI: 10.3390/jcm10132805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility of prophylaxis of hypertensive disorders of pregnancy (HDPs) such as preeclampsia (PE) and pregnancy-induced hypertension is of interest due to the unpredictable course of these diseases and the risks they carry for both mother and fetus. It has been proven that their development is associated with the presence of the placenta, and the processes that initiate it begin at the time of the abnormal invasion of the trophoblast in early pregnancy. The ideal HDP prophylaxis should alleviate the influence of risk factors and, at the same time, promote physiological trophoblast invasion and maintain the physiologic endothelium function without any harm to both mother and fetus. So far, aspirin is the only effective and recommended pharmacological agent for the prevention of HDPs in high-risk groups. Metformin is a hypoglycemic drug with a proven protective effect on the cardiovascular system. Respecting the anti-inflammatory properties of metformin and its favorable impact on the endothelium, it seems to be an interesting option for HDP prophylaxis. The results of previous studies on such use of metformin are ambiguous, although they indicate that in a certain group of pregnant women, it might be effective in preventing hypertensive complications. The aim of this study is to present the possibility of metformin in the prevention of hypertensive disorders of pregnancy with respect to its impact on the pathogenic elements of development
Collapse
|
7
|
Interaction between Metformin, Folate and Vitamin B 12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J Mol Sci 2021; 22:ijms22115759. [PMID: 34071182 PMCID: PMC8198407 DOI: 10.3390/ijms22115759] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations of metformin and potentially restricting placental and fetal growth. Offspring exposed to metformin during gestation are at increased risk of being born small for gestational age (SGA) and show signs of ‘catch up’ growth and obesity during childhood which increases their risk of future cardiometabolic diseases. The mechanisms by which metformin impacts on the fetal growth and long-term health of the offspring remain to be established. Metformin is associated with maternal vitamin B12 deficiency and antifolate like activity. Vitamin B12 and folate balance is vital for one carbon metabolism, which is essential for DNA methylation and purine/pyrimidine synthesis of nucleic acids. Folate:vitamin B12 imbalance induced by metformin may lead to genomic instability and aberrant gene expression, thus promoting fetal programming. Mitochondrial aerobic respiration may also be affected, thereby inhibiting placental and fetal growth, and suppressing mammalian target of rapamycin (mTOR) activity for cellular nutrient transport. Vitamin supplementation, before or during metformin treatment in pregnancy, could be a promising strategy to improve maternal vitamin B12 and folate levels and reduce the incidence of SGA births and childhood obesity. Heterogeneous diagnostic and screening criteria for GDM and the transient nature of nutrient biomarkers have led to inconsistencies in clinical study designs to investigate the effects of metformin on folate:vitamin B12 balance and child development. As rates of diabetes in pregnancy continue to escalate, more women are likely to be prescribed metformin; thus, it is of paramount importance to improve our understanding of metformin’s transgenerational effects to develop prophylactic strategies for the prevention of adverse fetal outcomes.
Collapse
|
8
|
Zhang Y, Liu X, Yang L, Zou L. Current Researches, Rationale, Plausibility, and Evidence Gaps on Metformin for the Management of Hypertensive Disorders of Pregnancy. Front Pharmacol 2020; 11:596145. [PMID: 33381040 PMCID: PMC7768035 DOI: 10.3389/fphar.2020.596145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are a group of morbid pregnancy complications, with preeclampsia (PE) being the most common subclassification among them. PE affects 2%–8% of pregnancies globally and threatens maternal and fetal health seriously. However, the only effective treatment of PE to date is the timely termination of pregnancy, albeit with increased perinatal risks. Hence, more emerging therapies for PE management are in urgent need. Originally introduced as the first-line therapy for type 2 diabetes mellitus, metformin (MET) has now been found in clinical trials to significantly reduce the incidence of gestational hypertension and PE in pregnant women with PE-related risks, including but not limited to pregestational diabetes mellitus, gestational diabetes mellitus, polycystic ovary syndrome, or obesity. Additionally, existing clinical data have preliminarily ensured the safety of taking MET during human pregnancies. Relevant lab studies have indicated that the underlying mechanism includes angiogenesis promotion, endothelial protection, anti-inflammatory effects, and particularly protective effects on trophoblast cells against the risk factors, which are beneficial to placental development. Together with its global availability, easy administration, and low cost, MET is expected to be a promising option for the prevention and treatment of PE. Nevertheless, there are still some limitations in current studies, and the design of the relevant research scheme is supposed to be further improved in the future. Herein, we summarize the relevant clinical and experimental researches to discuss the rationale, safety, and feasibility of MET for the management of HDP. At the end of the article, gaps in current researches are proposed. Concretely, experimental MET concentration and PE models should be chosen cautiously. Besides, the clinical trial protocol should be further optimized to evaluate the reduction in the prevalence of PE as a primary endpoint. All of those evidence gaps may be of guiding significance to improve the design of relevant experiments and clinical trials in the future.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Sangaunchom P, Dharmasaroja P. Caffeine Potentiates Ethanol-Induced Neurotoxicity Through mTOR/p70S6K/4E-BP1 Inhibition in SH-SY5Y Cells. Int J Toxicol 2020; 39:131-140. [DOI: 10.1177/1091581819900150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caffeine is a popular psychostimulant, which is frequently consumed with ethanol. However, the effects of caffeine on neuronal cells constantly exposed to ethanol have not been investigated. Apoptosis and oxidative stress occurring in ethanol-induced neurotoxicity were previously associated with decreased phosphorylation of the mTOR/p70S6K/4E-BP1 signaling proteins. Evidence also suggested that caffeine inhibits the mTOR pathway. In this study, human SH-SY5Y neuroblastoma cells were exposed to caffeine after pretreatment for 24 hours with ethanol. Results indicated that both ethanol and caffeine caused neuronal cell death in a dose- and time-dependent manner. Exposure to 20-mM caffeine for 24 hours magnified reduced cell viability and enhanced apoptotic cell death induced by 200 mM of ethanol pretreatment. The phosphorylation of mTOR, p70S6K, and 4E-BP1 markedly decreased in cells exposed to caffeine after ethanol pretreatment, associated with a decrease of the mitochondrial membrane potential (ΔΨm). These findings suggested that caffeine treatment after neuronal cells were exposed to ethanol resulted in marked cell damages, mediated through enhanced inhibition of mTOR/p70S6K/4E-BP1 signaling leading to impaired ΔΨm and, eventually, apoptotic cell death.
Collapse
Affiliation(s)
- Pongsak Sangaunchom
- Faculty of Science, Toxicology Graduate Program, Mahidol University, Bangkok, Thailand
| | - Permphan Dharmasaroja
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand. Dharmasaroja is now with Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
10
|
Basak S, Srinivas V, Duttaroy AK. Bisphenol-A impairs cellular function and alters DNA methylation of stress pathway genes in first trimester trophoblast cells. Reprod Toxicol 2018; 82:72-79. [PMID: 30352284 DOI: 10.1016/j.reprotox.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023]
Abstract
Humans are exposed to Bisphenol A (BPA) from the consumer products and plastic substances. However, impacts of low levels of BPA exposure on placental developmental processes such as first trimester trophoblast cell growth, angiogenesis and epigenetic modifications are not well studied. Low concentration of BPA (1 nM) affected cell proliferation of human placental first trimester trophoblasts using a model cell, HTR8/SVneo. BPA abolished both basal- and vascular endothelial growth factor (VEGF)-stimulated tube formation in these cells. BPA significantly down regulated mRNA expression of VEGF, proliferating cell nuclear antigen, intercellular adhesion molecule 1 with concomitant upregulation of 11-β-hydroxysteroid dehydrogenase 2 mRNA and protein expression in HTR8/SVneo cells. BPA also lowered CpG methylation of gene promoter associated with metabolic and oxidative stress. This study demonstrated that BPA at 1 nM not only affected cellular growth, development and angiogenic activities but also affected DNA methylation of stress response and down-regulation of angiogenic growth factors in first trimester trophoblast cells.
Collapse
Affiliation(s)
- Sanjay Basak
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; National Institute of Nutrition, Hyderabad, India
| | | | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|