1
|
Zhang S, Li S, Li X, Wan C, Cui L, Wang Y. Anti-fibrosis effect of astragaloside IV in animal models of cardiovascular diseases and its mechanisms: a systematic review. PHARMACEUTICAL BIOLOGY 2025; 63:250-263. [PMID: 40260854 PMCID: PMC12016237 DOI: 10.1080/13880209.2025.2488994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
CONTEXT Myocardial fibrosis is a common manifestation of end-stage cardiovascular disease, but there is a lack of means to reverse fibrosis. Astragaloside IV (AS-IV), the major active component of Astragalus membranaceus Fisch. ex Bunge Fabaceae, possesses diverse biological activities that have beneficial effects against cardiovascular disease. OBJECTIVE This systematic review aims to summarize the anti-fibrosis effect of AS-IV in animal models (rats or mice only) and its underlying mechanisms, and provide potential directions for the clinical use of AS-IV. METHODS PubMed, EMBASE, Web of Science, CNKI, Wanfang database, and SinoMed were searched from inception to 31 December 2024. The following characteristics of the included studies were extracted and summarized: animal model, route of administration, dose/concentration, measurement indicators, and potential mechanisms. The quality of the included studies was assessed used a 10-item scale from SYRCLE. RESULTS AND CONCLUSION AS-IV represents a promising multi-target candidate for myocardial fibrosis treatment in the 24 eligible studies included in the analysis. This systematic review is the first to comprehensively evaluate the anti-fibrosis mechanisms of AS-IV across heterogeneous cardiovascular disease animal models, including myocardial infarction, hypertension, ischemia-reperfusion injury, and myocarditis. The underlying mechanisms of the anti-fibrosis effects of AS-IV may include collagen metabolism, anti-apoptosis, anti-inflammation and, pyroptosis, antioxidants, improving mitochondrial function, regulating senescence, etc. Current evidence remains preclinical, with critical gaps in toxicological profiles, human safety thresholds, and clinical adverse reaction data. Future research must integrate robust toxicological evaluations, optimized combination therapies, and adaptive clinical trials to validate translational potential.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xue Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chen Wan
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Chen G, Wang W, Guan B, Zhang G, Zhang Z, Lin L, Han X, Xu T, Hu C, Pang M, Zhao X, Zhou Y, Li R. Cycloastragenol reduces inflammation in CLP-induced septic MICE by suppressing TLR4 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156645. [PMID: 40319834 DOI: 10.1016/j.phymed.2025.156645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 01/05/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Aggressive systemic inflammation due to activation of macrophage-derived excessive immune responses is a critical cause of sepsis leading to clinical death. The effect of cycloastragenol (CAG) on cecal ligation and puncture (CLP)-induced systemic inflammation in mice with sepsis and the underlying mechanism are still unknown. PURPOSE Here, we firstly investigated the ameliorative functions of CAG in CLP-induced systemic inflammation in sepsis and LPS-mediated inflammatory response, and the impact of Toll-like receptor 4 (TLR4) pathway on the anti-inflammatory effects of CAG. METHODS The in vitro effect of CAG on RAW264.7 cells and THP-1-derived macrophages induced by LPS was detected with quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blotting (WB) assays. In addition, the association of TLR4-MD2 complex with CAG was measured through molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance imaging (SPRi), cellular thermal shift assay (CETSA), immunofluorescence and WB. A specific inhibitor of TLR4 receptor TAK-242 and a TLR4-encoding adenovirus were adopted for verifying the functions of CAG. Meanwhile, the in vivo effects of CAG on cardiopulmonary structure, inflammatory factors and survival of CLP-induced septic mice were analyzed through hematoxylin and eosin staining, qPCR, ELISA, and survival analysis. RESULTS CAG hindered the LPS-induced production of inflammatory mediators like TNF-α, IL-6 and IL-1β within macrophages in vitro. It also inhibited MAPK and NF-κB pathway activation induced by binding of LPS to TLR4 receptor. As suggested by molecular docking results, the MD2-CAG binding energy was -9.53 kcal/mol. During the MD simulation, CAG could tightly bind to the binding pocket of MD2. SPRi revealed that the equilibrium dissociation constant (KD) value for CAG and TLR4 was 5.24× 10-9 M. Moreover, CAG enhanced the thermal stability of TLR4 by approximately 2.68 °C. It further inhibited the binding between LPS-488 and cell membrane receptors. These inhibitory effects of CAG could be partly reversed by TLR4 overexpression and could not increase by specifically blocking TLR4. In vivo, CAG attenuated cardiopulmonary injury and inflammation and improved survival in septic mice dose-dependently. CONCLUSION CAG exerts its anti-inflammatory activity through suppressing MAPK and NF-κB pathway activation caused by TLR4 activation and inhibiting inflammatory factor production dose-dependently.
Collapse
Affiliation(s)
- Guanghong Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wanyu Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Baoyi Guan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Guoyong Zhang
- school of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Zhimin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Liwen Lin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Xin Han
- school of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- school of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- school of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- school of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Xinjun Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Yingchun Zhou
- school of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| | - Rong Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
3
|
Xiao S, Liu L, Qin X, Xu L, Chai Z, Li Z. Astragenol alleviates neuroinflammation and improves Parkinson's symptoms through amino acid metabolism pathway and inhibition of ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119896. [PMID: 40306495 DOI: 10.1016/j.jep.2025.119896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus (Fisch.) Bunge, as a tonifying medicine, is widely used in the traditional Chinese medicine treatment of Parkinson's disease (PD). We found Astragenol (AST) in the acid hydrolysis product of Astragalus membranaceus, which has anti-inflammatory and neuroprotective effects. However, the pharmacological effects and molecular mechanisms of AST in MPTP induced PD models have not been elucidated. AIM OF THE STUDY This study aims to verify whether AST can improve the symptoms of MPTP induced PD model and elucidate the molecular mechanisms underlying its pharmacological effects. MATERIALS AND METHODS The pharmacological effects of AST on cell viability, cytotoxicity, behavior, and pathology were evaluated using PD in vitro (MPP+ induced SH-SY5Y cells) and in vivo models (MPTP induced mouse model). In addition, through metabolomics and transcriptomics, we investigate differential metabolites and differentially expressed genes, analyze potential signaling pathways, and conduct validation experiments around signaling pathways to explore molecular mechanisms. RESULTS The results showed that AST can protect SH-SY5Y cells from the cytotoxic effects of MPP+. Pharmacodynamic experiments on PD in vivo have shown that AST can alleviate motor disorders caused by MPTP, reduce inflammatory factors in serum and brain tissue, and improve abnormal aggregation of α-synuclein in PD models. Furthermore, metabolomics analysis revealed that AST may exert a relieving effect on neuroinflammation and PD symptoms by regulating amino acid metabolism. Transcriptomic analysis revealed that the VDR gene is a potential gene for AST to exert pharmacological effects, and differential gene analysis suggests that the "Ferroptosis" signaling pathway may be a key pathway. Therefore, based on the "Ferroptosis" signaling pathway, we conducted validation analysis and the results showed that AST can intervene in the expression of iron transport related proteins to significantly alleviate the abnormal aggregation of iron ions in brain tissue, regulate the Nrf2/HO-1/GPX4 signaling pathway to inhibit the process of ferroptosis. In addition, we demonstrated at the cellular level that AST can reverse the increase in ROS levels induced by MPP+, and thus observed that AST improves the cellular morphological changes of ferroptosis. CONCLUSIONS In summary, this study explored the potential application of AST in neurodegenerative diseases and found that AST can intervene in the progression of neuroinflammation and alleviate symptoms of PD by inhibiting ferroptosis. This discovery provides scientific basis for the development of drugs or dietary supplements for the neuroprotective effect of AST, and lays data support for the comprehensive elucidation of the development and application of Astragalus membranaceus in the "medicinal food homology".
Collapse
Affiliation(s)
- Shengnan Xiao
- Institute of Taihang Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030600, China
| | - Lianmei Liu
- Institute of Taihang Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030600, China
| | - Xuemei Qin
- Institute of Taihang Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030600, China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, NO.92, Wucheng Road, Taiyuan, 030006, China
| | - Lei Xu
- Institute of Taihang Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030600, China.
| | - Zhi Chai
- Institute of Taihang Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030600, China.
| | - Zhenyu Li
- Institute of Taihang Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030600, China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, NO.92, Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
5
|
Jin X, Zhang H, Xie X, Zhang M, Wang R, Liu H, Wang X, Wang J, Li D, Li Y, Xue W, Li J, He J, Liu Y, Yao J. From Traditional Efficacy to Drug Design: A Review of Astragali Radix. Pharmaceuticals (Basel) 2025; 18:413. [PMID: 40143189 PMCID: PMC11945149 DOI: 10.3390/ph18030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Astragali Radix (AR), a traditional Chinese herbal medicine, is derived from the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus var. mongholicus, AMM) or Astragalus membranaceus (Fisch.) Bge (A. membranaceus, AM). According to traditional Chinese medicine (TCM) theory, AR is believed to tonify qi, elevate yang, consolidate the body's surface to reduce sweating, promote diuresis and reduce swelling, generate body fluids, and nourish the blood. It has been widely used to treat general weakness and chronic illnesses and to improve overall vitality. Extensive research has identified various medicinal properties of AR, including anti-tumor, antioxidant, cardiovascular-protective, immunomodulatory, anti-inflammatory, anti-diabetic, and neuroprotective effects. With advancements in technology, methods such as computer-aided drug design (CADD) and artificial intelligence (AI) are increasingly being applied to the development of TCM. This review summarizes the progress of research on AR over the past decades, providing a comprehensive overview of its traditional efficacy, botanical characteristics, drug design and distribution, chemical constituents, and phytochemistry. This review aims to enhance researchers' understanding of AR and its pharmaceutical potential, thereby facilitating further development and utilization.
Collapse
Affiliation(s)
- Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Huijuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xiaorong Xie
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Ruifeng Wang
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Hao Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xinyu Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Jiao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Dangui Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Yaling Li
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Weiwei Xue
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 404100, China;
| | - Jintian Li
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Jianxin He
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| |
Collapse
|
6
|
Wang C, Mu X, Sun J. Research progress of cycloartane triterpenoids and pharmacological activities. Arch Pharm (Weinheim) 2025; 358:e2400923. [PMID: 40071692 DOI: 10.1002/ardp.202400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025]
Abstract
Cycloartane triterpenoids are widely distributed in the plant kingdom, and there have been reports of hundreds of families containing cycloartane triterpenoids. But the types and content of cycloartane are different among various plants. In recent years, a large amount of cycloartane triterpenoids have been extracted and studied from different plants, and some types of cycloartane triterpenoids exhibit great pharmacological activities in terms of antiaging, antioxidant, anti-inflammatory, anticancer, antiarrhythmic effects, and so on. Herein, we have systematically reviewed these research on the structure of naturally occurring, synthetic, and semisynthetic cycloartane triterpenoids, with particular emphasis on their pharmacological activities.
Collapse
Affiliation(s)
- Chen Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Xiaodong Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Jingyong Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
7
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2025; 8:67-91. [PMID: 39690876 PMCID: PMC11798751 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
| | - Samer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of PharmacyDhuleMaharashtraIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| |
Collapse
|
8
|
Feng L, Lo H, Zheng J, Weng W, Sun Y, Pan X. Cycloastragenol reduces microglial NLRP3 inflammasome activation in Parkinson's disease models by promoting autophagy and reducing Scrib-driven ROS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156210. [PMID: 39522252 DOI: 10.1016/j.phymed.2024.156210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND In Parkinson's disease (PD), microglial autophagy is crucial for the maintenance of cellular redox homeostasis. Meanwhile, cycloastragenol (CAG), a triterpenoid saponin and the principal active component of Astragalus, reduces the activation of NLRP3 inflammasomes. Nevertheless, the specific molecular mechanisms underlying the CAG-mitigated microglial neuroinflammation remains obscure in PD. PURPOSE This study explored the role of CAG in the activation of microglial NLRP3 inflammasome and the mechanisms underlying its therapeutic potential for PD treatment. STUDY DESIGN The effect of CAG was assessed in α-Syn-induced primary microglia and PD models. METHODS AAV1/2-hsyn-SNCA (A53T) was stereo-injected into the striatum of mice to induce PD models and CAG was orally administered. The mice underwent quantitative 4D proteomics analysis and behavioral assessments. The primary microglia and neuron cultures were analyzed by western blotting, immunofluorescence, transmission electron microscopy, etc. RESULTS: CAG reduced phagocytosis-induced reactive oxygen species (ROS) by suppressing the microglial Scribble (Scrib) and p22phox expression. Concurrently, CAG enhanced autophagy, promoted α-Syn clearance, and reduced mitochondrial damage. These synergistic effects downregulated NLRP3 inflammasome activation, in turn reducing gasdermin D cleavage, caspase-1 activation, and the release of interleukin-1β and interleukin-18. Further investigation revealed that CAG shielded neurons from α-Syn toxicity, thus attenuating behavioral impairments observed in the mouse PD model. CONCLUSION CAG mitigates neuroinflammation by inhibiting ROS-induced NLRP3 inflammasome activation in microglia via promoting microglial autophagy and reducing the activity of Scrib-associated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which signifies a promising alternative approach to PD management.
Collapse
Affiliation(s)
- Linjuan Feng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Weipin Weng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Yixin Sun
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China.
| |
Collapse
|
9
|
Meng YQ, Cui X, Li S, Jin CH. Application of Compounds with Anti-Cardiac Fibrosis Activity: A Review. Chem Biodivers 2024; 21:e202401078. [PMID: 39223082 DOI: 10.1002/cbdv.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xun Cui
- Department of Physiology, School of Medicinal Sciences, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
10
|
Wang J, Pu X, Zhuang H, Guo Z, Wang M, Yang H, Li C, Chang X. Astragaloside IV alleviates septic myocardial injury through DUSP1-Prohibitin 2 mediated mitochondrial quality control and ER-autophagy. J Adv Res 2024:S2090-1232(24)00471-5. [PMID: 39550027 DOI: 10.1016/j.jare.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
INTRODUCTION Septic cardiomyopathy (SCM) is a complication of myocardial injury in patients with severe sepsis. OBJECTIVES This study highlights the potential of Astragaloside IV(AS) in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2-related mitochondria-ER interaction. METHODS Dual specificity phosphatase-1 (DUSP1)/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) /DUSP1 transgenic mice (DUSP1/PHB2TG) were used to generate LPS-induced sepsis models. The pathological mechanism by which AS-IV improves heart injury was detected using cardiac ultrasound, fluorescence staining, transmission electron microscopy, and western blotting. After siRNA treatment of cardiomyocytes with DUSP-1/PHB2, changes in mitochondrial function and morphology were determined using qPCR, western blotting, ELISA, and laser confocal microscopy, and the targeted therapeutic effects of AS-IV were further examined. RESULTS SCM treatment leads to severe mitochondrial dysfunction. However, Astragaloside IV (AS) treatment normalizes mitochondrial homeostasis and ER function. Notably, the protective effect was blocked in DUSP1/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) but remained unaffected in DUSP1 transgenic mice (DUSP1/PHB2TG). CONCLUSION This study highlights the potential of AS in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2 related mitochondria-ER interaction.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huaihong Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Chun Li
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin 519000, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
11
|
Tang J, Liu Y, Wu Y, Li S, Zhang D, Wang H, Wang W, Song X, Li Y. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res 2024; 47:757-792. [PMID: 39549164 DOI: 10.1007/s12272-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is a downstream protein from the pattern recognition receptor family that forms the NLRP3 inflammasome. The NLRP3 inflammasome releases caspase-1, IL-1β, and IL-18, contributing to inflammatory responses associated with diabetes mellitus, arthritis, and ischemia-reperfusion injury. Recent studies suggest that specific saponin monomers and extracts from traditional Chinese medicines can inhibit inflammatory responses and related pathways, including the production of inflammatory factors. MCC950 is one of the most influential and specific NLRP3 inhibitors. Comparative molecular docking studies have identified 22 of the 37 saponin components as more robust binders to NLRP3 than MCC950. Dioscin, polyphyllin H, and saikosaponin-a have the highest binding affinities and potential NLRP3 inhibitors, offering a theoretical basis for developing novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jiamei Tang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yaxiao Liu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Wu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shixing Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongdong Zhang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China
| | - Wei Wang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaomei Song
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yuze Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
12
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Shi L, Deng J, He J, Zhu F, Jin Y, Zhang X, Ren Y, Du X. Integrative transcriptomics and proteomics analysis reveal the protection of Astragaloside IV against myocardial fibrosis by regulating senescence. Eur J Pharmacol 2024; 975:176632. [PMID: 38718959 DOI: 10.1016/j.ejphar.2024.176632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.
Collapse
Affiliation(s)
- Lipeng Shi
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Jingwei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun He
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Feng Zhu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuxia Jin
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Xi Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yi Ren
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China.
| | - Xuqin Du
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
14
|
Pradhan S, Ali SA, Rachamalla M, Niyogi S, Datusalia AK. Oral arsenite exposure induces inflammation and apoptosis in pulmonary tissue: acute and chronic evaluation in young and adult mice. Biometals 2024; 37:587-607. [PMID: 38267778 DOI: 10.1007/s10534-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inorganic arsenic is a well-known environmental toxicant, and exposure to this metalloid is strongly linked with severe and extensive toxic effects in various organs including the lungs. In the present study, we aimed to investigate the acute and chronic effects of arsenite exposure on pulmonary tissue in young and adult mice. In brief, young and adult female Balb/C mice were exposed to 3 and 30 ppm arsenite daily via drinking water for 30 and 90 days. Subsequently, the animals were sacrificed and various histological and immunohistochemistry (IHC) analyses were performed using lung tissues. Our findings showed arsenite was found to cause dose-dependent pathological changes such as thickening of the alveolar septum, inflammatory cell infiltrations and lung fibrosis in young and adult mice. In addition, arsenite exposure significantly increased the expression of inflammatory markers NF-κB and TNF-α, indicating that arsenite-exposed mice suffered from severe lung inflammation. Moreover, the IHC analysis of fibrotic proteins demonstrated an increased expression of TGF-β1, α-SMA, vimentin and collagen-I in the arsenite-exposed mice compared to the control mice. This was accompanied by apoptosis, which was indicated by the upregulated expression of caspase-3 in arsenite-exposed mice compared to the control. Adult mice were generally found to be more prone to arsenite toxicity during chronic exposure relative to their younger counterparts. Overall, our findings suggest that arsenite in drinking water may induce dose-dependent and age-dependent structural and functional impairment in the lungs through elevating inflammation and fibrotic proteins.
Collapse
Affiliation(s)
- Samata Pradhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India.
| |
Collapse
|
15
|
Zheng M, Liu K, Li L, Feng C, Wu G. Traditional Chinese medicine inspired dual-drugs loaded inhalable nano-therapeutics alleviated idiopathic pulmonary fibrosis by targeting early inflammation and late fibrosis. J Nanobiotechnology 2024; 22:14. [PMID: 38166847 PMCID: PMC10763202 DOI: 10.1186/s12951-023-02251-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly debilitating and fatal chronic lung disease that is difficult to cure clinically. IPF is characterized by a gradual decline in lung function, which leads to respiratory failure and severely affects patient quality of life and survival. Oxidative stress and chronic inflammation are believed to be important pathological mechanisms underlying the onset and progression of IPF, and the vicious cycle of NOX4-derived ROS, NLRP3 inflammasome activation, and p38 MAPK in pulmonary fibrogenesis explains the ineffectiveness of single-target or single-drug interventions. In this study, we combined astragaloside IV (AS-IV) and ligustrazine (LIG) based on the fundamental theory of traditional Chinese medicine (TCM) of "tonifying qi and activating blood" and loaded these drugs onto nanoparticles (AS_LIG@PPGC NPs) that were inhalable and could penetrate the mucosal barrier. Our results suggested that inhalation of AS_LIG@PPGC NPs significantly improved bleomycin-induced lung injury and fibrosis by regulating the NOX4-ROS-p38 MAPK and NOX4-NLRP3 pathways to treat and prevent IPF. This study not only demonstrated the superiority, feasibility, and safety of inhalation therapy for IPF intervention but also confirmed that breaking the vicious cycle of ROS and the NLRP3 inflammasome is a promising strategy for the successful treatment of IPF. Moreover, this successful nanoplatform is a good example of the integration of TCM and modern medicine.
Collapse
Affiliation(s)
- Meiling Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Peking University People's Hospital, Beijing, 100032, China
| | - Kai Liu
- Division of Pulmonary and Critical Care Medicine, Kunming Children's Hospital, Kunming, 650000, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China.
| | - Cuiling Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China.
- Peking University People's Hospital, Beijing, 100032, China.
| | - Guanghao Wu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
16
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
17
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
18
|
Ren Z, Zhang Z, Ling L, Liu X, Wang X. Drugs for treating myocardial fibrosis. Front Pharmacol 2023; 14:1221881. [PMID: 37771726 PMCID: PMC10523299 DOI: 10.3389/fphar.2023.1221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Myocardial fibrosis, which is a common pathological manifestation of many cardiovascular diseases, is characterized by excessive proliferation, collagen deposition and abnormal distribution of extracellular matrix fibroblasts. In clinical practice, modern medicines, such as diuretic and β receptor blockers, and traditional Chinese medicines, such as salvia miltiorrhiza and safflower extract, have certain therapeutic effects on myocardial fibrosis. We reviewed some representative modern medicines and traditional Chinese medicines (TCMs) and their related molecular mechanisms for the treatment of myocardial fibrosis. These drugs alleviate myocardial fibrosis by affecting related signaling pathways and inhibiting myocardial fibrosis-related protein synthesis. This review will provide more references and help for the research and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zixuan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Ling
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
19
|
Zhang T, Zhang Y, Li S, Ge H, Song Q, Zhang Y, Yang G, Li A. Gentianella acuta-derived Gen-miR-1 suppresses myocardial fibrosis by targeting HAX1/HMG20A/Smads axis to attenuate inflammation in cardiac fibroblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154923. [PMID: 37352750 DOI: 10.1016/j.phymed.2023.154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Continuous activation and inflammation of cardiac fibroblasts (CFs) are essential for myocardial fibrosis. Gentianella acuta (Michx.) Hiitonen (G. acuta), that contains xanthones with cardioprotective properties, a typical healthful herb extensively used to treat cardiovascular diseases in Inner Mongolia region of China. However, it remains unknown whether or not G. acuta-derived miRNAs can shield CFs from activation by inflammatory stimulation. Therefore, we tend to investigated the role and core mechanism of G. acuta-derived Gen-miR-1 in regulating fibrosis and inflammation induced by TGF-β1. METHODS An animal model for myocardial infarction was built by subcutaneous injections of ISO and treated with Gen-miR-1 using intragastric administration. The protective effect of Gen-miR-1 on the heart was assessed by pathomorphological analysis of myocardial fibrosis. Using loss- and gain-of-function approaches, Gen-miR-1 regulation of HAX1/HMG20A/Smads axis was investigated by utilizing luciferase assay, Western blot, co-immunoprecipitation, etc. RESULTS: Screened and identified Gen-miR-1 from G. acuta. Gen-miR-1 can enter the mouse body, and markedly inhibit myocardial infarction induced by ISO in mice, as well as suppresses fibrosis in CFs and attenuates the inflammatory response elicited by TGF-β1 in vitro. Gen-miR-1 downregulates HCLS1-related Protein X-1 (HAX1) expression through direct binding to the 3' UTR of HAX1, which in turn relieves HAX1 from promoting the expression of high-mobility group protein 20A (HMG20A), whereas HMG20A downregulation restrains the activation of TGF-β1/Smads signaling pathways, subsequently resulting in a decrease of fibrosis and in facilitating CFs anti-inflammatory effects induced by Gen-miR-1 in the context of CFs activation induced by TGF-β1. CONCLUSIONS Our results first uncovered unique bioactive components in G. acuta and elucidated the molecular mechanism by which G. acuta-derived Gen-miR-1 suppress inflammation and myocardial fibrosis. These findings expand our understanding of G. acuta's therapeutic properties and bioactive constituents. Gen-miR-1-regulated HAX1/HMG20A/Smads axis will be one potential therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Hongyao Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Qiuhang Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China
| | - Gaoshan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China.
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China.
| |
Collapse
|
20
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Kong J, Yin K, Zhang C, Liu X, Yang N. PLDδ, auxin, and H 2O 2 mediated the allelopathic effect of cycloastragenol on root growth in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153929. [PMID: 36724592 DOI: 10.1016/j.jplph.2023.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cycloastragenol (CAG) is a tetra-cyclic triterpenoid allelochemical. It has been widely studied in animals but rarely in plants. Here, we reported that a model allelochemical CAG inhibited primary root elongation of Arabidopsis by reducing the sizes of both the meristem and elongation zones. Phospholipase Dδ(PLDδ), hydrogen peroxide (H2O2), and auxin affected this process. After treatment with CAG, the expression of PLDδ and the activity of the Phospholipase D(PLD) enzyme increased in WT. Mutants analysis demonstrated that PLDδ negatively regulated the primary root elongation by CAG treatment. CAG treatment stimulated the accumulation of H2O2 in roots. The production of H2O2 was derived from cell wall peroxidase. Mutants analysis showed that PLDδ positively regulated the production of H2O2 by CAG treatment. CAG also decreased auxin content in the root tip by affecting the expression of auxin synthesis-related genes. PLDδ was involved in the auxin reduction mediated by CAG, but H2O2 did not participate in this process. In conclusion, PLDδ, auxin, and H2O2 mediated the inhibition of primary root growth by CAG in Arabidopsis.
Collapse
Affiliation(s)
- Juantao Kong
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Kai Yin
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Cuixia Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Xuan Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
22
|
Guo S, Yang L, Zhang Q, Zhang L, Li A. Metabolomics combined with serum pharmacochemistry discovering the potential effective compounds of Fangji Huangqi Tang against nephrotic syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123532. [PMID: 36462401 DOI: 10.1016/j.jchromb.2022.123532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Fangji Huangqi Tang (FHT) was first recorded in "Jin Gui Yao Lue," invented by the archaic Chinese medical doctor Zhongjing Zhang, and is a classic medicine that tonifies qi and expels wind, invigorates spleen for diuresis. A large number of literatures indicated that FHT showed a significant effect on Nephrotic Syndrome (NS). A comprehensive strategy was proposed to discover the potential effective compounds and therapeutic targets of FHT against NS as a case study. Serum metabolomics combined with multivariate statistical analysis was employed to analysis and screen the differential endogenous metabolites in serum samples of the control and model rats induced by Adriamycin. The correlation analysis between the efficacy biomarkers and different compounds absorbed in serum of FHT was conducted to explore the potential effective compounds of FHT against NS. With the help of network pharmacology, the therapeutic targets and the possible molecular mechanisms of FHT against NS were further investigated. Fifteen metabolites, including l-phenylalanine, 3-Hydroxybutyric acid and linolenic acid, were associated with renal damage based on the serum metabolomic results. Metabolic pathway analysis indicated that phenylalanine, tyrosine and tryptophan biosynthesis and linoleic acid metabolism were the key pathways associated with NS. Among them, 6 metabolites were defined as efficacy biomarkers such as uric acid, 2-methylbutyrylcarnitine and 10-HDA. The results of correlation analysis suggested that 14 constituents such as fanGhinoline, cycloastragenol, atractylenolide III, and glycyrrhetinic acid were recognized as potential effective compounds, whose potential protein targets participated in the MAPK signaling pathway, GnRH signaling pathway and aldoaterone-regulated sodium reabsorption. This study has clarified the potential effective compounds and therapeutic targets of FHT against NS. The results provided new evidence for the pharmacological mechanism of FHT on NS.
Collapse
Affiliation(s)
- Songjia Guo
- Nephrology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Liu Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, China
| | - Qingyu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences of Shanxi University, Taiyuan 030006, China.
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, China.
| |
Collapse
|
23
|
Zhu Y, Chai Y, Xiao G, Liu Y, Xie X, Xiao W, Zhou P, Ma W, Zhang C, Li L. Astragalus and its formulas as a therapeutic option for fibrotic diseases: Pharmacology and mechanisms. Front Pharmacol 2022; 13:1040350. [PMID: 36408254 PMCID: PMC9669388 DOI: 10.3389/fphar.2022.1040350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, characterized by accumulation of collagen and other extracellular matrix components, which causes organ dysfunction and even death. Despite advances in understanding fibrosis pathology and clinical management, there is no treatment for fibrosis that can prevent or reverse it, existing treatment options may lead to diarrhea, nausea, bleeding, anorexia, and liver toxicity. Thus, effective drugs are needed for fibrotic diseases. Traditional Chinese medicine has played a vital role in fibrotic diseases, accumulating evidence has demonstrated that Astragalus (Astragalus mongholicus Bunge) can attenuate multiple fibrotic diseases, which include liver fibrosis, pulmonary fibrosis, peritoneal fibrosis, renal fibrosis, cardiac fibrosis, and so on, mechanisms may be related to inhibition of epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS), transforming growth factor beta 1 (TGF-β1)/Smads, apoptosis, inflammation pathways. The purpose of this review was to summarize the pharmacology and mechanisms of Astragalus in treating fibrotic diseases, the data reviewed demonstrates that Astragalus is a promising anti-fibrotic drug, its main anti-fibrotic components are Calycosin, Astragaloside IV, Astragalus polysaccharides and formononetin. We also review formulas that contain Astragalus with anti-fibrotic effects, in which Astragalus and Salvia miltiorrhiza Bunge, Astragalus and Angelica sinensis (Oliv.) Diels are the most commonly used combinations. We propose that combining active components into new formulations may be a promising way to develop new drugs for fibrosis. Besides, we expect Astragalus to be accepted as a clinically effective method of treating fibrosis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojin Xiao
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Xie
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xiao
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Heart Disease of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
24
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
25
|
Takeuchi DM, Ozeki Y, Fukami H, Ogawa J, Kishino S. Analysis of Astragaloside IV metabolism to Cycloastragenol in human gut microorganism, bifidobacteria, and lactic acid bacteria. Biosci Biotechnol Biochem 2022; 86:1467-1475. [PMID: 35904311 DOI: 10.1093/bbb/zbac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022]
Abstract
This study investigated different gut bacteria in an anaerobic environment to identify specific candidates that could transform astragaloside IV (AIV) to cycloastragenol (CA). Two representative gut microbes, lactic acid bacteria (LAB) and bifidobacteria, could metabolize AIV to CA. Multiple screenings showed two metabolic pathways to metabolize AIV in two groups of bacteria. LAB metabolized AIV initiated by removing the C-6 glucose, whereas bifidobacteria indicated the initial removal of C-3 xylose. The final products differed between the two groups as bifidobacteria showed the production of CA, whereas LAB demonstrated preferential production of 20R, 24S-epoxy-6α, -16β, -25-trihydroxy-9, -19-cycloartan-3-one (CA-2H).
Collapse
Affiliation(s)
- Daniel M Takeuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuuki Ozeki
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiroyuki Fukami
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Du XQ, Shi LP, Chen ZW, Hu JY, Zuo B, Xiong Y, Cao WF. Astragaloside IV Ameliorates Isoprenaline-Induced Cardiac Fibrosis in Mice via Modulating Gut Microbiota and Fecal Metabolites. Front Cell Infect Microbiol 2022; 12:836150. [PMID: 35656031 PMCID: PMC9152365 DOI: 10.3389/fcimb.2022.836150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 01/15/2023] Open
Abstract
Aim Gut microbiota is of crucial importance to cardiac health. Astragaloside IV (AS-IV) is a main active ingredient of Huangqi, a traditional edible and medicinal herb that has been shown to have beneficial effects on cardiac fibrosis (CF). However, it is still uncertain whether the consumption of AS-IV alleviates cardiac fibrosis through the gut microbiota and its metabolites. Therefore, we assessed whether the anti-fibrosis effect of AS-IV is associated with changes in intestinal microbiota and fecal metabolites and if so, whether some specific gut microbes are conducive to the benefits of AS-IV. Methods Male C57BL-6J mice were subcutaneously injected with isoprenaline (ISO) to induce cardiac fibrosis. AS-IV was administered to mice by gavage for 14 days. The effects of AS-IV on cardiac function, myocardial enzyme, cardiac weight index (CWI), and histopathology of ISO-induced CF mice were investigated. Moreover, 16S rRNA sequencing was used to establish gut-microbiota profiles. Fecal-metabolites profiles were established using the liquid chromatograph-mass spectrometry (LC-MS). Results AS-IV treatment prevented cardiac dysfunction, ameliorated myocardial damage, histopathological changes, and cardiac fibrosis induced by ISO. AS-IV consumption increased the richness of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella. AS-IV also modulated gut metabolites in their feces. Among 141 altered gut metabolites, amino acid production was sharply changed. Furthermore, noticeable correlations were found between several specific gut microbes and altered fecal metabolites. Conclusions An increase of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella abundance, and modulation of amino acid metabolism, may contribute to the anti-fibrosis and cardiac protective effects of Astragaloside IV.
Collapse
Affiliation(s)
- Xu-Qin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Li-Peng Shi
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Zhi-Wei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jin-Yuan Hu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Biao Zuo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yu Xiong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Wen-Fu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Wen-Fu Cao,
| |
Collapse
|
27
|
Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang R, Yang Z, Tian Y, Zhu Y, Wang C, Deng C, Zhang S, Yang Y. The NLRP3 inflammasome in fibrosis and aging: The known unknowns. Ageing Res Rev 2022; 79:101638. [PMID: 35525426 DOI: 10.1016/j.arr.2022.101638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/27/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Aging-related diseases such as cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases are often accompanied by fibrosis. The NLRP3 inflammasome triggers the inflammatory response and subsequently promotes fibrosis through pathogen-associated molecular patterns (PAMPs). In this review, we first introduce the general background and specific mechanism of NLRP3 in fibrosis. Second, we investigate the role of NLRP3 in fibrosis in different organs/tissues. Third, we discuss the relationship between NLRP3 and fibrosis during aging. In summary, this review describes the latest progress on the roles of NLRP3 in fibrosis and aging and reveals the possibility of NLRP3 as an antifibrotic and anti-aging treatment target.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuxuan Hou
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanli Zhu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
28
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
29
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | |
Collapse
|
30
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J ADAMCAKOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - D MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
31
|
Shen J, Ma H, Wang C. Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:533-543. [PMID: 34697264 PMCID: PMC8552823 DOI: 10.4196/kjpp.2021.25.6.533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Myocardial fibrosis (MF) is the result of persistent and repeated aggravation of myocardial ischemia and hypoxia, leading to the gradual development of heart failure of chronic ischemic heart disease. Triptolide (TPL) is identified to be involved in the treatment for MF. This study aims to explore the mechanism of TPL in the treatment of MF. The MF rat model was established, subcutaneously injected with isoproterenol and treated by subcutaneous injection of TPL. The cardiac function of each group was evaluated, including LVEF, LVFS, LVES, and LVED. The expressions of ANP, BNP, inflammatory related factors (IL-1β, IL-18, TNF-α, MCP-1, VCAM-1), NLRP3 inflammasome factors (NLRP3, ASC) and fibrosis related factors (TGF-β1, COL1, and COL3) in rats were dete cted. H&E staining and Masson staining were used to observe myocardial cell inflammation and fibrosis of rats. Western blot was used to detect the p-P65 and t-P65 levels in nucleoprotein of rat myocardial tissues. LVED and LVES of MF group were significantly upregulated, LVEF and LVFS were significantly downregulated, while TPL treatment reversed these trends; TPL treatment downregulated the tissue injury and improved the pathological damage of MF rats. TPL treatment downregulated the levels of inflammatory factors and fibrosis factors, and inhibited the activation of NLRP3 inflammasome. Activation of NLRP3 inflammasome or NF-κB pathway reversed the effect of TPL on MF. Collectively, TPL inhibited the activation of NLRP3 inflammasome by inhibiting NF-κB pathway, and improved MF in MF rats.
Collapse
Affiliation(s)
- Jianyao Shen
- Department of Cardiology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| | - Hailiang Ma
- Department of Cardiology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| | - Chaoquan Wang
- Department of Cardiology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| |
Collapse
|
32
|
Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl) 2021; 134:2647-2655. [PMID: 34608069 PMCID: PMC8631411 DOI: 10.1097/cm9.0000000000001772] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Cell death occurs in various tissues and organs in the body. It is a physiological or pathological process that has different effects. It is of great significance in maintaining the morphological function of cells and clearing abnormal cells. Pyroptosis, apoptosis, and necrosis are all modes of cell death that have been studied extensively by many experts and scholars, including studies on their effects on the liver, kidney, the heart, other organs, and even the whole body. The heart, as the most important organ of the body, should be a particular focus. This review summarizes the mechanisms underlying the various cell death modes and the relationship between the various mechanisms and heart diseases. The current research status for heart therapy is discussed from the perspective of pathogenesis.
Collapse
|
33
|
Zhu X, Cao Y, Su M, Chen M, Li C, Yi L, Qin J, Tulake W, Teng F, Zhong Y, Tang W, Wang S, Dong J. Cycloastragenol alleviates airway inflammation in asthmatic mice by inhibiting autophagy. Mol Med Rep 2021; 24:805. [PMID: 34542166 PMCID: PMC8477186 DOI: 10.3892/mmr.2021.12445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Cycloastragenol (CAG), a secondary metabolite from the roots of Astragalus zahlbruckneri, has been reported to exert anti-inflammatory effects in heart, skin and liver diseases. However, its role in asthma remains unclear. The present study aimed to investigate the effect of CAG on airway inflammation in an ovalbumin (OVA)-induced mouse asthma model. The current study evaluated the lung function and levels of inflammation and autophagy via measurement of airway hyperresponsiveness (AHR), lung histology examination, inflammatory cytokine measurement and western blotting, amongst other techniques. The results demonstrated that CAG attenuated OVA-induced AHR in vivo. In addition, the total number of leukocytes and eosinophils, as well as the secretion of inflammatory cytokines, including interleukin (IL)-5, IL-13 and immunoglobulin E were diminished in bronchoalveolar lavage fluid of the OVA-induced murine asthma model. Histological analysis revealed that CAG suppressed inflammatory cell infiltration and goblet cell secretion. Notably, based on molecular docking simulation, CAG was demonstrated to bind to the active site of autophagy-related gene 4-microtubule-associated proteins light chain 3 complex, which explains the reduced autophagic flux in asthma caused by CAG. The expression levels of proteins associated with autophagy pathways were inhibited following treatment with CAG. Taken together, the results of the present study suggest that CAG exerts an anti-inflammatory effect in asthma, and its role may be associated with the inhibition of autophagy in lung cells.
Collapse
Affiliation(s)
- Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Mingyue Su
- Department of Pulmonary Diseases and Oncology, Pu'er Hospital of Traditional Chinese Medicine, Kunming, Yunnan 665000, P.R. China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wuniqiemu Tulake
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
34
|
NLRP3 Ubiquitination-A New Approach to Target NLRP3 Inflammasome Activation. Int J Mol Sci 2021; 22:ijms22168780. [PMID: 34445484 PMCID: PMC8395773 DOI: 10.3390/ijms22168780] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
In response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the maturation and release of some inflammatory cytokines in the state of an inflammatory response. After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase 1-mediated proteolytic cleavage and maturation of the IL-1β and IL-18, followed by pyroptotic cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of many inflammatory disorders. Since NLRP3 inflammasome activation can be triggered by a wide range of stimuli and the activation process occurs in a complex, it is difficult to target the NLRP3 inflammasome. During the activation process, various post-translational modifications (PTM) of the NLRP3 protein are required to form a complex with other components. The regulation of ubiquitination and deubiquitination of NLRP3 has emerged as a potential therapeutic target for NLRP3 inflammasome-associated inflammatory disorders. In this review, we discuss the ubiquitination and deubiquitination system for NLRP3 inflammasome activation and the inhibitors that can be used as potential therapeutic agents to modulate the activation of the NLRP3 inflammasome.
Collapse
|
35
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
36
|
Zheng P, Ding Y, Lu F, Liu N, Wu H, Bian Z, Chen X, Yang D. Atorvastatin reverses high cholesterol-induced cardiac remodelling and regulates mitochondrial quality-control in a cholesterol-independent manner: An experimental study. Clin Exp Pharmacol Physiol 2021; 48:1150-1161. [PMID: 33891707 DOI: 10.1111/1440-1681.13507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023]
Abstract
Mitochondria are key regulators of cell fate, maintaining self-stability by a fine-tuned quality-control network including mitophagy, biogenesis, fission and fusion processes. Myocardial mitochondria can be impaired by hypercholesterolemia. Statins, such as atorvastatin, are considered the cornerstone in the management of hypercholesterolaemia primarily due to their marked cholesterol-lowering ability. The direct effect of atorvastatin on myocardial mitochondria remains unclear. We aimed to explore whether atorvastatin could attenuate myocardial mitochondrial defects induced by high cholesterol, and whether cycloastragenol, a potent telomerase activator, could be used as a potential complementary bioactive compound for obesity and hypercholesterolaemia treatment. We found that atorvastatin at a low dose (3 mg/kg) did not reduce elevated serum cholesterol, but reversed cardiac remodelling and dysfunction in C57BL/6J mice fed with high-fat diet (HFD). Atorvastatin reversed the upregulated mitophagy, mitochondrial fission and fusion, accompanied by mitochondrial biogenesis activation in HFD-fed mice hearts. Mitochondrial structural impairments were attenuated by atorvastatin in HFD-fed mice and oxidized low-density lipoprotein (ox-LDL) exposed HL-1 cardiomyocytes. The depolarized mitochondrial membrane potential and increased mitochondrial oxygen consumption rates in ox-LDL exposed HL-1 cells were recovered by atorvastatin. Furthermore, atorvastatin co-treated with cycloastragenol had better effects on reducing body weight, improving cardiac remodelling and dysfunction, and protecting mitochondria in high cholesterol. Conclusively, low-dose atorvastatin exhibited a cholesterol-independent cardioprotective effect through improving the mitochondrial quality-control network and repairing mitochondrial ultrastructure in high cholesterol. Atorvastatin plus cycloastragenol supplement therapy has a better effect on treating obesity and hypercholesterolaemia.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzi Ding
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nannan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Science and Technology Office, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q, Zhang J. Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. J Inflamm Res 2021; 14:2647-2666. [PMID: 34188515 PMCID: PMC8235951 DOI: 10.2147/jir.s308177] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of pro-inflammatory cell death. Compared with autophagy and apoptosis, pyroptosis has unique characteristics in morphology and mechanism. Specifically, pyroptosis is a kind of cell lysis mediated by the Gasdermin family, releases inflammatory cytokines IL-1β and IL-18. There are three different forms of mechanism, which are caspase-1-mediated, caspase-4/5/11-mediated and caspase-3-mediated. A large number of studies have proved that pyroptosis is closely related to cardiovascular disease. This paper reviewed the recent progress in the related research on pyroptosis and myocardial infarction, ischemia-reperfusion, atherosclerosis, diabetic cardiomyopathy, arrhythmia, heart failure hypertension and Kawasaki disease. Therefore, we believe that pyroptosis may be a new therapeutic target in the cardiovascular field.
Collapse
Affiliation(s)
- Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Zhongwen Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| |
Collapse
|
38
|
Zhao H, Yang H, Geng C, Chen Y, Tang Y, Li Z, Pang J, Shu T, Nie Y, Liu Y, Jia K, Wang J. Elevated IgE promotes cardiac fibrosis by suppressing miR-486a-5p. Theranostics 2021; 11:7600-7615. [PMID: 34158869 PMCID: PMC8210611 DOI: 10.7150/thno.47845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Cardiac fibrosis is an important feature of cardiac remodeling and is a hallmark of heart failure. Recent studies indicate that elevated IgE plays a causal role in pathological cardiac remodeling. However, the underlying mechanism of how IgE promotes cardiac fibrosis has not been fully elucidated. Methods and Results: To explore the function of IgE in cardiac fibrosis, we stimulated mouse primary cardiac fibroblasts (CFs) with IgE and found that both IgE receptor (FcεR1) and fibrosis related proteins were increased after IgE stimulation. Specific deletion of FcεR1 in CFs alleviated angiotensin II (Ang II)-induced cardiac fibrosis in mice. To investigate the mechanisms underlying the IgE-mediated cardiac fibrosis, deep miRNA-seq was performed. Bioinformatics and signaling pathway analysis revealed that IgE upregulated Col1a1 and Col3a1 expression in CFs by repressing miR-486a-5p, with Smad1 participating downstream of miR-486a-5p in this process. Lentivirus-mediated overexpression of miR-486a-5p was found to alleviate Ang II-induced myocardial interstitial fibrosis in mice. Moreover, miR-486-5p serum levels were lower in patients with heart failure than in healthy controls, and were negatively correlated with NT-proBNP levels. Conclusions: Our study demonstrates that elevated IgE promotes pathological cardiac fibrosis by modulating miR-486a-5p and downstream factors, such as Smad1. These findings suggest new targets for pathological cardiac fibrosis intervention.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yang Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102308, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Kegang Jia
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Tianjin 300457, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
39
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
40
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation in mice. Biomed Pharmacother 2021; 139:111562. [PMID: 33839492 DOI: 10.1016/j.biopha.2021.111562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Periplocymarin is an effective component of Periplocae Cortex, which was wildly used as an ingredient in Traditional Chinese Medicine. Our group previously reported that periplocymarin exerted cardiotonic role via promoting calcium influx. However, its exact role in the pathogenesis of myocardial fibrosis has not been elucidated yet. The present study was aimed at determining the potential effect and underlying mechanism of periplocymarin in isoproterenol (ISO)-induced myocardial fibrosis. C57BL/6 mice were subcutaneously injected with ISO (5 mg/kg/day) or saline for 1 week. The early-to-atrial wave ratio (E/A ratio) measured by echocardiography revealed that ISO-induced heart stiffness was remarkably reversed by administration of periplocymarin (5 mg/kg/day). Masson trichrome staining exhibited that treatment of periplocymarin reduced the excessive deposition of extracellular matrix (ECM). Further investigations employing real-time PCR and western blot demonstrated that periplocymarin suppressed the expression of fibrosis related genes (Col1a1, Col3a1, Acta2 and Tgfb1) and proteins (Collagen I, Collagen III, α-SMA and TGF-β1) induced by ISO. Metabolomics analysis demonstrated that periplocymarin ameliorated the disorders triggered by ISO and many of the differential metabolic substances were involved in amino acid, glucose and lipid metabolism. Further analysis using network pharmacology revealed that three key genes, namely NOS2, NOS3 and Ptgs2, may be the potential targets of periplocymarin and responsible for the disorders. Validation using heart tissues showed that the mRNA expression of NOS3 was decreased while Ptgs2 was increased upon ISO treatment, which were reversed by periplocymarin. Moreover, the expression of COX-2 (Ptgs2 encoded protein) was consistent with the aspect of Ptgs2 mRNA, while eNOS (NOS3 encoded protein) expression was unchanged. In vitro studies exhibited that periplocymarin exerts anti-fibrotic function via regulating at least eNOS and COX-2 in cardiomyocyte. Taken together, periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation, the potential mechanism was that periplocymarin targeted on, at least eNOS and COX-2, to improve the metabolic processes of cardiomyocyte and thus attenuated the myocardial fibrosis. Our study highlighted that periplocymarin is a potential therapeutic agent for the prevention of myocardial fibrosis.
Collapse
Affiliation(s)
- Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
41
|
Su HF, Shaker S, Kuang Y, Zhang M, Ye M, Qiao X. Phytochemistry and cardiovascular protective effects of Huang-Qi (Astragali Radix). Med Res Rev 2021; 41:1999-2038. [PMID: 33464616 DOI: 10.1002/med.21785] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Huang-Qi (Astragali Radix) is an herbal tonic widely used in China and many other countries. It is derived from the roots of Astragalus membranaceus and A. membranaceus var. mongholicus and shows potent cardiovascular protective effects. In this article, we comprehensively reviewed 189 small molecules isolated from the two Astragalus species and discussed the interspecies chemical differences. Moreover, we summarized the pharmacological activities and mechanisms of action of Huang-Qi and its major bioactive compounds for the treatment of cardiovascular diseases. This review covers 171 references published between February 1983 and March 2020.
Collapse
Affiliation(s)
- Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sharpkate Shaker
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Liu H, Lv C, Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin Med 2020; 15:124. [PMID: 33292321 PMCID: PMC7683279 DOI: 10.1186/s13020-020-00400-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ginseng (Panax ginseng C. A. Meyer), a representative Chinese herbal medicine, can improve the body’s antioxidant and anti-inflammatory capacity. Recently, scientists have shifted emphasis towards the initial stages of different malignant diseases—corresponding organ fibrosis and explored the essential role of P. ginseng in the treatment of fibrotic diseases. Main body In the first instance, the review generalizes the molecular mechanisms and common therapeutic methods of fibrosis. Next, due to the convenience and safety of individual medication, the research progress of ginseng extract and formulas in treating liver fibrosis, pulmonary fibrosis, myocardial fibrosis, and renal fibrosis has been systematically summarized. Finally, we describe active ingredients isolated from P. ginseng for their outstanding anti-fibrotic properties and further reveal the potential therapeutic prospect and limitations of P. ginseng in fibrotic diseases. Conclusions P. ginseng can be regarded as a valuable herbal medicine against fibrous tissue proliferation. Ginseng extract, derived formulas and monomers can inhibit the abundant deposition of extracellular matrix which caused by repeated damage and provide protection for fibrotic organs. Although the molecular mechanisms such as transforming growth factor β signal transduction have been confirmed, future studies should still focus on exploring the underlying mechanisms of P. ginseng in treating fibrotic disease including the therapeutic targets of synergistic action of multiple components in P. ginseng. Moreover, it is also necessary to carry out clinical trial to evaluate the feasibility of P. ginseng in combination with common fibrosis drugs.
Collapse
Affiliation(s)
- Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China. .,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
43
|
Wu J, Zeng Z, Li Y, Qin H, Zuo C, Zhou C, Xu D. Cycloastragenol protects against glucocorticoid-induced osteogenic differentiation inhibition by activating telomerase. Phytother Res 2020; 35:2034-2044. [PMID: 33165990 DOI: 10.1002/ptr.6946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) that is mainly featured as low bone density and increased risk of fracture is prone to occur with the administration of excessive glucocorticoids. Cycloastragenol (CAG) has been verified to be a small molecule that activates telomerase. Studied showed that up-regulated telomerase was associated with promoting osteogeneic differentiation, so we explored whether CAG could promote osteogenic differentiation to protect against GIOP and telomerase would be the target that CAG exerted its function. Our results demonstrated that CAG prominently increased the ALP activity, mineralization, mRNA of runt-related transcription factor 2, osteocalcin, osteopontin, collagen type I in both MC3T3-E1 cells and dexamethasone (DEX)-treated MC3T3-E1 cells. CAG up-regulated telomerase reverse transcriptase and the protective effect of CAG was blocked by telomerase inhibitor TMPyP4. Moreover, CAG improved bone mineralization in DEX-induced bone damage in a zebrafish larvea model. Therefore, the study showed that CAG could alleviate the osteogenic differentiation inhibition induced by DEX in vitro and in vivo, and CAG might be considered as a candidate drug for the treatment of GIOP.
Collapse
Affiliation(s)
- Jiahuan Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yuyun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huiyi Qin
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Changqing Zuo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
44
|
Wu X, Liu Y, Tu D, Liu X, Niu S, Suo Y, Liu T, Li G, Liu C. Role of NLRP3-Inflammasome/Caspase-1/Galectin-3 Pathway on Atrial Remodeling in Diabetic Rabbits. J Cardiovasc Transl Res 2020; 13:731-740. [PMID: 32048199 DOI: 10.1007/s12265-020-09965-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Both diabetes mellitus (DM) and atrial fibrillation (AF) are usually associated with enhanced inflammatory response. The effect of the "NACHT, LRR and PYD domain containing protein 3" (NLRP3)-inflammasome/caspase-1/galectin-3 pathway and the potential benefits of NLRP3-inflammasome inhibitor glibenclamide (GLB) on atrial remodeling in the DM state are still unknown. Here, we demonstrated that higher AF inducibility and conduction inhomogeneity, slower epicardial conduction velocity, and increased amount of fibrosis in diabetic rabbits as against normal ones were markedly reduced by GLB. Atrial caspase-1 activity as well as serum IL-1β and IL-18 levels were elevated in diabetic animals but suppressed by GLB. Moreover, GLB decreased the DM-induced protein expression enhancement of NLRP3, Gal-3, TGF-β1, and CaV1.2 according to western blot analysis. Summarily, our findings indicate that the NLRP3-inflammasome/caspase-1/Gal-3 signaling pathway is related to the pathogenesis of AF in the diabetic state. NLRP3-inflammasome inhibitor GLB prevents AF inducibility and moderates atrial structural remodeling in DM.
Collapse
Affiliation(s)
- Xiaohan Wu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Yang Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Daimiao Tu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Xianjian Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Shulin Niu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
| | - Changle Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
45
|
Tan YQ, Chen HW, Li J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug Des Devel Ther 2020; 14:3731-3746. [PMID: 32982178 PMCID: PMC7507407 DOI: 10.2147/dddt.s272355] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD), the number one cause of death worldwide, has always been the focus of clinical and scientific research. Due to the high number of deaths each year, it is essential to find alternative therapies that are safe and effective with minimal side effects. Traditional Chinese medicine (TCM) has a long history of significant impact on the treatment of CVDs. The mode of action of natural active ingredients of drugs and the development of new drugs are currently hot topics in research on TCM. Astragalus membranaceus is a commonly used Chinese medicinal herb. Previous studies have shown that Astragalus membranaceus has anti-tumor properties and can regulate metabolism, enhance immunity, and strengthen the heart. Astragaloside IV (AS-IV) is the active ingredient of Astragalus membranaceus, which has a prominent role in cardiovascular diseases. AS-IV can protect against ischemic and hypoxic myocardial cell injury, inhibit myocardial hypertrophy and myocardial fibrosis, enhance myocardial contractility, improve diastolic dysfunction, alleviate vascular endothelial dysfunction, and promote angiogenesis. It can also regulate blood glucose and blood lipid levels and reduce the risk of cardiovascular diseases. In this paper, the mechanism of AS-IV intervention in cardiovascular diseases in recent years is reviewed in order to provide a reference for future research and new drug development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Heng-Wen Chen
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| |
Collapse
|
46
|
Liu C, Hu T, Cai Z, Xie Q, Yuan Y, Li N, Xie S, Yao Q, Zhao J, Wu QQ, Tang Q. Nucleotide-Binding Oligomerization Domain-Like Receptor 3 Deficiency Attenuated Isoproterenol-Induced Cardiac Fibrosis via Reactive Oxygen Species/High Mobility Group Box 1 Protein Axis. Front Cell Dev Biol 2020; 8:713. [PMID: 32850832 PMCID: PMC7431462 DOI: 10.3389/fcell.2020.00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
Nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) is involved in fibrosis of multiple organs, such as kidney, liver, lung, and the like. However, the role of NLRP3 in cardiac fibrosis is still controversial and remains unclear. The study aims to investigate the role of NLRP3 on cardiac fibrosis induced by isoproterenol (ISO). In vivo, NLRP3 knockout and wild-type mice were subcutaneously injected with ISO to induce the cardiac fibrosis model. The results showed that NLRP3 deficiency alleviated the cardiac fibrosis and inflammation induced by ISO. In vitro, neonatal rat ventricular myocytes (NRVMs) and primary adult mouse cardiac fibroblasts of NLRP3 knockout and wild-type mice were isolated and challenged with ISO. Adenovirus (Ad-) NLRP3 and small interfering RNAs targeting NLRP3 were used to transfect NRVMs to overexpress or knockdown NLRP3. We found that NLRP3 could regulate high-mobility group box 1 protein (HMGB1) secretion via reactive oxygen species production in NRVMs and the HMGB1 secreted by NRVMs promoted the activation and proliferation of cardiac fibroblasts. Thus, we concluded that the NLRP3/reactive oxygen species/HMGB1 pathway could be the underlying mechanism of ISO-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhulan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingwen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Jinhua Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
47
|
A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Biol Macromol 2020; 154:1460-1470. [DOI: 10.1016/j.ijbiomac.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
|
48
|
Yang R, Jia Q, Li Y, Mehmood S. Protective effect of exogenous hydrogen sulfide on diaphragm muscle fibrosis in streptozotocin-induced diabetic rats. Exp Biol Med (Maywood) 2020; 245:1280-1289. [PMID: 32493122 DOI: 10.1177/1535370220931038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Diabetes mellitus is a group of chronic metabolic disorders, which causes serious damage to a variety of organs, such as the retina, heart, and skeletal muscle. The diaphragm is an important skeletal muscle involved in respiration in mammals. Fibrosis of the diaphragm muscle affects its contractility, which in turn impairs respiratory function. Accumulating evidence suggests that exogenous hydrogen sulfide (H2S) exhibits anti-fibrotic activity in diabetes mellitus, but whether and how H2S exerts this anti-fibrotic effect in the diabetic diaphragm remains unclear. The current work for the first time reveals that exogenous H2S attenuates hyperglycemia-induced fibrosis of the diaphragm muscle and strengthens diaphragmatic biomechanical properties in diabetes mellitus, and the mechanism may involve the alleviation of collagen deposition by suppression of the nucleotide-binding oligomerization domain-like receptor protein (NLRP) 3 inflammasome-mediated inflammatory reaction. Therefore, H2S supplementation could be used as an efficient targeted therapy against the NLRP3 inflammasome in the diabetic diaphragm.
Collapse
Affiliation(s)
- Rui Yang
- School of Life Sciences, Anhui University, Hefei 230601, China.,Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - Yan Li
- Clinical College, Bengbu Medical College, Bengbu 233030, China
| | | |
Collapse
|
49
|
Xu GR, Zhang C, Yang HX, Sun JH, Zhang Y, Yao TT, Li Y, Ruan L, An R, Li AY. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2020; 126:110071. [DOI: 10.1016/j.biopha.2020.110071] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
|
50
|
Ren YS, Li HH, Yao JC, Tan YJ, Pan LH, Peng T, Zhao LL, Zhang GM, Yue J, Hu XM, Liu Z, Li J. Application quantitative proteomics approach to identify differentially expressed proteins associated with cardiac protection mediated by cycloastragenol in acute myocardial infarction rats. J Proteomics 2020; 222:103691. [PMID: 32068187 DOI: 10.1016/j.jprot.2020.103691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Acute myocardial infarction (AMI) is an acute heart disease. Cycloastragenol, as a natural product, inhibits inflammation and protects cardiomyocytes. Cycloastragenol (Y006) modulates inflammation in AMI is not known. To explore the function of Cycloastragenol in AMI, this study investigated the effect of Y006 and its mechanisms both in vitro and in vivo. Y006 influences the concentration of 11 proteins, as shown by a proteomics analysis, immunohistochemistry and western blotting. Among these 11 proteins, Erk1/2, PLCG1, IKBKG, and ZEB1 are related to inflammatory regulation. BAX, COX2, and GSK3β are involved in modulating cardiomyocyte apoptosis, and RhoA and DSC2 are directly associated with myocardial function. However, the functions of ARHGAP17 and Rit2 in heart are less well established. Additionally, Y006 suppressed TNF-α, IFN-γ and IL-17 production in PBMCs (peripheral blood monocytes) from patients with acute myocardial infarction and enhanced IL-10 and IL-4 expression. Similar results were obtained in a rat model of AMI by flow cytometry detection and ELISA. Our findings indicate that Y006 protects rats from AMI through direct or indirect inhibition of inflammation and cardiomyocyte apoptosis. However, the specific mechanism of Y006's protective function requires further study. Nonetheless, this research revealed a novel aspect for the treatment of myocardial infarction. SIGNIFICANCE: In the present study, we undertook the first proteomic evaluation of Cycloastragenol (Y006) function in acute myocardial infarction (AMI). Y006 significantly improved myocardial function in vivo by regulating multiple molecular expressions. Hypoxia is a direct reason for AMI. And our data support a role of Y006 in gene expression, cell apoptosis under hypoxia. The conclusions of this research assist to explain the potential molecular mechanism in Cycloastragenol treating AMI and supply a new method for ameliorating AMI.
Collapse
Affiliation(s)
- Yu-Shan Ren
- Department of Immunology, Binzhou Medical University, Yantai 264003, China
| | - Hong-Hua Li
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Hong Pan
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Tao Peng
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Li Zhao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; School of Pharmacy, Linyi University, Linyi, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xue-Mei Hu
- Department of Immunology, Binzhou Medical University, Yantai 264003, China
| | - Zhong Liu
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jie Li
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.
| |
Collapse
|