1
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Pan SY, Gu YR, Zhao G, Wang Y, Qin ZH, Tang QY, Qin YY, Li Luo. NADPH mimics the antidepressant effects of exercise in a chronic unpredictable stress rat model. Biochem Biophys Res Commun 2024; 731:150360. [PMID: 39018970 DOI: 10.1016/j.bbrc.2024.150360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/26/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.
Collapse
Affiliation(s)
- Shan-Yao Pan
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yan-Rong Gu
- Changshu Xupu High School, Suzhou, 215513, China
| | - Gang Zhao
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yao Wang
- Department of Rehabilitation Medicine, Nan'ao People's Hospital of Dapeng New District, Shenzhen, 518121, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou, 215123, China.
| | - Qiu-Yue Tang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Yuan-Yuan Qin
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
3
|
Tang L, Zhang B, Li G, Qiu X, Dai Z, Liu H, Zhu Y, Feng B, Su Z, Han W, Huang H, Li Q, Zhang Z, Wang M, Liu H, Chen Y, Zhang Y, Wu D, Zheng X, Liu T, Zhao J, Li C, Zheng G. Upregulated SKP2 Empowers Epidermal Proliferation Through Downregulation of P27 Kip1. Ann Dermatol 2024; 36:282-291. [PMID: 39343755 PMCID: PMC11439983 DOI: 10.5021/ad.23.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Excessive growth of keratinocytes is the critical event in the etiology of psoriasis. However, the underlying molecular mechanism of psoriatic keratinocyte hyperproliferation is still unclear. OBJECTIVE This study aimed to figure out the potential contributory role of S-phase kinase-associated protein 2 (SKP2) in promoting the hyperproliferation of keratinocytes in psoriasis. METHODS We analyzed microarray data (GSE41662) to investigate the gene expression of SKP2 in psoriatic lesion skins compared with their adjacent non-lesional skin. Then, we further confirmed the mRNA and protein expression of SKP2 in human psoriatic skin tissues, imiquimod (IMQ)-induced psoriatic mice back skins and tumor necrosis factor α (TNF-α), interleukin (IL)-17A and IL-6-stimulated keratinocytes by using real-time quantitative polymerase chain reaction and western blot (WB). Furthermore, we explored the potential pathogenic role and its underlying cellular mechanism of SKP2 in promoting keratinocytes hyperproliferation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle detection, 5-ethynyl-2'-deoxyuridine staining and WB. Finally, we determined whether inhibition of SKP2 can effectively alleviate the keratinocytes hyperproliferation in vivo. RESULTS We identified that SKP2 is aberrantly upregulated in the psoriatic lesion skin and cytokines-stimulated keratinocytes. Moreover, upregulated SKP2 augments cytokines-induced keratinocytes hyperproliferation. Mechanistically, enhanced SKP2 increased the S phase ratio through inhibiting Cyclin-Dependent Kinase Inhibitor p27 (P27 Kip1) expression. Correspondingly, suppression of SKP2 with SMIP004 can significantly ease the epidermis hyperplasia in vivo. CONCLUSION Our results suggest that elevated SKP2 can empower keratinocytes proliferation and psoriasis-like epidermis hyperplasia via downregulation of P27 Kip1. Therefore, targeting SKP2-P27 Kip1 axis might be a promising therapeutic strategy for the treatment of psoriasis in future.
Collapse
Affiliation(s)
- Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanzhuo Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinmin Qiu
- Genetic Testing Lab, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixin Dai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongying Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuqing Su
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huilin Huang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuping Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Maojie Wang
- Department of Rheumatology Clinical and Basic Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Zhang
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dinghong Wu
- Department of Material Basis of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xirun Zheng
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taohua Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhao
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chutian Li
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Liu Q, Cheng L, Li F, Zhu H, Lu X, Huang C, Yuan X. NSC689857, an inhibitor of Skp2, produces antidepressant-like effects in mice. Behav Pharmacol 2024; 35:227-238. [PMID: 38651981 DOI: 10.1097/fbp.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pharmacy, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Jing J, Rui L, Junyuan S, Jinfeng Y, Zhihao H, Weiguo L, Zhenyu J. Small-molecule compounds inhibiting S-phase kinase-associated protein 2: A review. Front Pharmacol 2023; 14:1122008. [PMID: 37089937 PMCID: PMC10113621 DOI: 10.3389/fphar.2023.1122008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
S-phase kinase-associated protein 2 (Skp2) is a substrate-specific adaptor in Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases and widely regarded as an oncogene. Therefore, Skp2 has remained as an active anticancer research topic since its discovery. Accordingly, the structure of Skp2 has been solved and numerous Skp2 inhibiting compounds have been identified. In this review, we would describe the structural features of Skp2, introduce the ubiquitination function of SCFSkp2, and summarize the diverse natural and synthetic Skp2 inhibiting compounds reported to date. The IC50 data of the Skp2 inhibitors or inhibiting compounds in various kinds of tumors at cellular levels implied that the cancer type, stage and pathological mechanisms should be taken into consideration when selecting Skp2-inhibiting compound for cancer treatment.
Collapse
Affiliation(s)
- Jia Jing
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Li Rui
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sun Junyuan
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yang Jinfeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Hong Zhihao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lu Weiguo
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| | - Jia Zhenyu
- Institute of Occupation Diseases, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| |
Collapse
|
6
|
Bao XF, Zhu YX, Xie WX, Liu ZY, Zhu L, Jiang H, Zhao Y. Synthesis of 1-substituted phenazines as novel antichlamydial agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:827-838. [PMID: 34657526 DOI: 10.1080/10286020.2021.1982909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
A novel series of 1-substituted phenazines 4a-4l were designed and synthesized via Palladium-catalyzed reactions from 1-phenazine trifluoromethanesulfonate. These phenazines showed antichlamydial activity with IC50 values from 1 to 10 μM. Among them, compounds 4c and 4i exhibited the best antichlamydial activity with IC50 values from 2.06 to 2.74 μM without apparent cytotoxicity to host cells.
Collapse
Affiliation(s)
- Xiao-Feng Bao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yi-Xin Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wen-Xia Xie
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zi-Yi Liu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - He Jiang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Identification of the antidepressive properties of C1, a specific inhibitor of Skp2, in mice. Behav Pharmacol 2021; 32:62-72. [PMID: 33416256 DOI: 10.1097/fbp.0000000000000604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported that SMIP004, an inhibitor of S-phase kinase-associated protein 2 (Skp2), displays antidepressant-like activities in stress-naïve and chronically stressed mice. Here, we investigated the antidepressant-like effect of C1, another inhibitor of Skp2, in mouse models following acute or chronic drug administration at different doses and treatment times by using the tail suspension test (TST), forced swimming test (FST), and social interaction test (SIT). The time- and dose-dependent results showed that the antidepressant-like effect of C1 occurred 8 days after the drug treatment, and C1 produced antidepressant-like activities at the dose of 5 and 10 but not 1 mg/kg in male or female mice. C1 administration (5 mg/kg) also induced antidepressant-like effects in stress-naïve mice in a three-times administration mode within 24 h (24, 5, and 1 h before the test) but not in an acute administration mode (1 h before the test). The C1 and fluoxetine co-administration produced additive effect on depression-like behaviors in stress-naïve mice. The antidepressant-like effect of C1 was not associated with the change in locomotor activity, as no increased locomotor activity was observed in different treatment modes. Furthermore, the long-term C1 treatment (5 mg/kg) was found to ameliorate the depression-like behaviors in chronic social defeat stress-exposed mice, suggesting that C1 can produce antidepressant-like actions in stress conditions. Since C1 is a specific inhibitor of Skp2, our results demonstrate that inhibition of Skp2 might be a potential strategy for the treatment of depression, and Skp2 may be potential target for the development of novel antidepressants.
Collapse
|
8
|
Abstract
β-hydroxybutyrate, a ketone body metabolite, has been shown to suppress depression-like behavior in rodents. In this study, we examined its antidepressive property in acute and chronic administration modes in mice by using forced swim test and tail suspension test. Results showed that the decrease effect of β-hydroxybutyrate (300 mg/kg) on immobility time in the tail suspension test and forced swim test in stress-naive mice began to be significant at day 11. In a dose-dependent experiment, β-hydroxybutyrate treatment (11 days) showed significant antidepressant activities at the dose of 200 and 300 mg/kg. Unlike fluoxetine, β-hydroxybutyrate treatment (300 mg/kg) showed no antidepressant activities in the acute (1 hour before the test) and three times administration mode within 24 hours (1, 5, and 24 hours before the test). But in a co-administration mode, β-hydroxybutyrate (100 mg/kg) -fluoxetine (2.5 mg/kg) co-administration exhibited an obvious antidepressant activity in the tail suspension test and forced swim test. Further analysis showed that the antidepressant effects of β-hydroxybutyrate and fluoxetine were not associated with the change in mouse locomotor activity. Furthermore, both chronic β-hydroxybutyrate treatment and β-hydroxybutyrate-fluoxetine co-treatment suppressed chronic unpredictable stress-induced increase in immobility time in the tail suspension test and forced swim test as well as chronic unpredictable stress-induced decrease in mouse body weight. Taken together, these results indicate that β-hydroxybutyrate (1) needs a relatively long time to show comparable behavioral activity to that of fluoxetine in assays that are sensitive to the behavioral effects of established antidepressant compounds and (2) can augment the antidepressant action of a sub-therapeutic dose of fluoxetine.
Collapse
|
9
|
Effect of Electroacupuncture on Reuptake of Serotonin via miRNA-16 Expression in a Rat Model of Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7124318. [PMID: 31929820 PMCID: PMC6942800 DOI: 10.1155/2019/7124318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
The current study aimed to investigate the effects and mechanisms of electroacupuncture (EA) treatment applied to Bai hui (GV20) and Yin tang (GV29) acupoints (1 mA, 2 Hz, continuous wave, 20 minutes) for 28 days in a rat model of chronic unpredictable mild stress (CUMS) on reuptake of serotonin (5-hydroxytryptamine (5-HT)) and miRNA-16 levels in the hippocampus and serum. Rats were housed in individual cages, and CUMS was used to establish a rat model of depression. After EA treatment for 4 weeks, behavioral changes and indices including 5-HT transporter (SERT), 5-HT, and miRNA-16 levels in the hippocampus and serum were examined. The EA treatment significantly improved base levels of sucrose preference and exploratory behavior and significantly decreased SERT protein and mRNA expression in the hippocampus of depressed rats. Significantly increased 5-HT levels were observed, and miRNA-16 levels were significantly decreased in the hippocampus and serum of depressed rats. In conclusion, the antidepressant effects of EA treatment may be affected via inhibition of 5-HT reuptake, upregulation of 5-HT levels, and inhibition of miRNA-16 expression in the hippocampus and serum.
Collapse
|