1
|
Jiao X, Zhang Y, Wang Z, Chang H, Li Y, Wang B, Gan Y, Gu D. Isoliquiritigenin, an Extract from Licorice, Attenuates Dexamethasone-Induced Muscle Atrophy via Akt/mTOR Pathway. Mol Nutr Food Res 2025; 69:e70000. [PMID: 39981829 DOI: 10.1002/mnfr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Muscle atrophy is a pathological condition characterized by the excessive degradation of muscle proteins, leading to impaired physical performance. Isoliquiritigenin (ISL) is a promising extract known for its medical effects; however, its impact on muscle atrophy remains unclear. We investigated the effects of ISL on muscle atrophy both in vitro and in vivo. The results showed that 5-µM ISL exhibited no significant cytotoxicity on C2C12 cells, as reflected by cell count kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) tests. ISL increased the diameter of myotubes and downregulated forkhead box O proteins, muscle-specific RING finger protein 1 (MuRF-1), and Atrogin-1 induced by Dexamethasone (Dex). ISL could also enhance the phosphorylation of Akt, the mammalian target of rapamycin (mTOR), eIF4E-binding protein 1, and p70 S6 kinase in C2C12 myotubes. In animal experiments, ISL increased the muscle mass, improved the cross-sectional area of muscles, and inhibited the expression of MuRF-1 and Atrogin-1 in muscle tissues. For physical performance, ISL enhanced grip strength and running endurance. ISL ameliorated Dex-induced muscle atrophy both in vitro and in vivo, associated with increased diameter of myotubes and decreased Atrogin-1 and MuRF-1 expression via the Akt/mTOR signaling pathway. This suggested that ISL could be used as a natural drug for muscle atrophy.
Collapse
Affiliation(s)
- Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Oral Diseases, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Hanwen Chang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjin Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Binbin Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Yaokai Gan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyun Gu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| |
Collapse
|
2
|
Kwon MJ, Raut PK, Jang JH, Chun KS. Isoliquiritigenin Induces Apoptosis via ROS-Mediated Inhibition of p38/mTOR/STAT3 Pathway in Human Melanoma Cells. Biomol Ther (Seoul) 2025; 33:378-387. [PMID: 39933948 PMCID: PMC11893486 DOI: 10.4062/biomolther.2024.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 02/13/2025] Open
Abstract
Isoliquiritigenin (ISL), a phenolic compound derived from licorice, exhibits various biological activities, including anti-inflammatory, anti-viral, anti-tumor, and antioxidant effects. However, the molecular mechanisms underlying its anti-cancer effects are not well understood in SK-MEL-28 melanoma cells. Melanoma, a highly aggressive and treatment-resistant cancer, remains a significant health challenge. This study investigates the anti-cancer effects of ISL, focusing on identifying reactive oxygen species (ROS)-mediated apoptosis mechanisms on SK-MEL-28 melanoma cells. Our results show that ISL treatment induces apoptosis in SK-MEL-28 cells, as evidenced by the cleavage of caspase-9, -7, -3, and PARP. ISL increased Bax expression, decreased Bcl-2 expression, and promoted cytochrome C release into the cytosol. ISL also reduced the expression of cell cycle markers, including cyclin D1, D3, and survivin. Notably, ISL treatment markedly increased intracellular ROS levels and pretreatment with N-acetyl cysteine, a ROS scavenger, abrogated the ISL-induced inhibition of the p38/mTOR/STAT3 pathway and prevented apoptosis. Moreover, ISL significantly diminished the constitutive phosphorylation of mTOR and STAT3 in SK-MEL-28 cells by blocking the phosphorylation of p38 MAPK, an upstream kinase of mTOR. Pharmacological inhibition of mTOR attenuated the STAT3 signaling, indicating that mTOR acts as an upstream kinase of STAT3 in these cells. Collectively, these findings demonstrate that ISL inhibits SK-MEL-28 cell growth by downregulating cell survival proteins and inducing apoptosis through ROS generation.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Yang J, Chang X, Xue Y, Liu G, Zhang T, Chen W, Fan W, Tian J, Ren X. Isoliquiritigenin Alleviates Diabetic Kidney Disease via Oxidative Stress and the TLR4/NF-κB/NLRP3 Inflammasome Pathway. Mol Nutr Food Res 2024; 68:e2400215. [PMID: 39082076 DOI: 10.1002/mnfr.202400215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Diabetic kidney disease (DKD) is the primary factor that causes chronic kidney disease and causes increasing mortality and morbidity due to its severe consequences. Isoliquiritigenin (ISL) is the primary element of licorice root that is physiologically active and has antifree radical, antioxidation, and antiapoptotic properties. However, the effect of ISL on DKD is still unclear and needs to be further improved. This study aims to evaluate the renoprotective effects of ISL on diabetes-induced renal injury and explores the underlying mechanisms involved. Male C57BL/6 mice are fed a high-fat diet and then injected with streptozotocin for 2 consecutive days to establish a diabetic model, and high-glucose-treated NRK-52E cells are used to investigate the renoprotective effects of ISL in DKD. The results show that ISL significantly preserves renal function and architecture in DKD. ISL suppresses oxidative stress and reduces ROS levels, inhibiting the activation of the NF-κB and the NLRP3 inflammasome and the occurrence of pyroptosis. Moreover, the study finds that ISL can inhibit the mitochondrial apoptotic pathway. In addition, the study confirms the inhibitory effect of ISL on the TLR4/NF-κB/NLRP3 inflammasome pathway. These observations demonstrate that the natural flavonoid compound ISL can be a promising agent for the treatment of DKD.
Collapse
Affiliation(s)
- Yanhong Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jia Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xinyue Chang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yuan Xue
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Gaohong Liu
- Department of Nephrology, Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Tingting Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Weihao Chen
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jihua Tian
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaojun Ren
- Department of Nephrology, Third Hospital of Shanxi, Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
4
|
Hu Y, Yu C, Cheng L, Zhong C, An J, Zou M, Liu B, Gao X. Flavokawain C inhibits glucose metabolism and tumor angiogenesis in nasopharyngeal carcinoma by targeting the HSP90B1/STAT3/HK2 signaling axis. Cancer Cell Int 2024; 24:158. [PMID: 38711062 DOI: 10.1186/s12935-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.
Collapse
Affiliation(s)
- YuQiang Hu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - LiangJun Cheng
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chang Zhong
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun An
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - MingZhen Zou
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing Liu
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
5
|
Luo X, Gong Y, Jiang Q, Wang Q, Li S, Liu L. Isoquercitrin promotes ferroptosis and oxidative stress in nasopharyngeal carcinoma via the AMPK/NF-κB pathway. J Biochem Mol Toxicol 2024; 38:e23542. [PMID: 37712196 DOI: 10.1002/jbt.23542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Isoquercitrin has been discovered with various biological properties, including anticancer, anti-inflammation, antioxidation, and neuroprotection. The aim of this study is to explore the efficacy of isoquercitrin in nasopharyngeal carcinoma (NPC) and to disclose its potential regulating mechanisms. CNE1 and HNE1 cells were treated with various concentrations of isoquercitrin. Ferrostatin-1 (Fer-1, a ferroptosis inhibitor) and alpha-lipoic acid (ALA, an activator of the AMP-activated protein kinase [AMPK] pathway) treatments were conducted to verify the effects of isoquercitrin, respectively. Cell viability, proliferation, reactive oxygen species (ROS) generation, and lipid peroxidation were determined, respectively. GPX4 expression and ferroptosis- and pathway-related protein expression were measured. A xenograft tumor model was constructed by subcutaneously inoculating CNE1 cells into the middle groin of each mouse. We found that the IC50 values of CNE1 and HNE1 cells were 392.45 and 411.38 μM, respectively. CNE1 and HNE1 viability and proliferation were both markedly reduced with the increasing concentration of isoquercitrin. ROS generation and lipid peroxidation were both enhanced with declined ferroptosis-related markers under isoquercitrin treatment. The nuclear factor kappa B (NF-κB) pathway, the AMPK pathway, and the interleukin (IL)-1β expression were all markedly suppressed by isoquercitrin. Moreover, isoquercitrin restrained the tumor growth and enhanced lipid peroxidation and ferroptosis in vivo. Interestingly, both Fer-1 and ALA treatments distinctly offset isoquercitrin-induced effects in vitro and in vivo. These findings indicated that isoquercitrin might enhance oxidative stress and ferroptosis in NPC via AMPK/NF-κB p65 inhibition.
Collapse
Affiliation(s)
- Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qin Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Songtao Li
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
6
|
Yu M, Pan Q, Li W, Du T, Huang F, Wu H, He Y, Wu X, Shi H. Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155045. [PMID: 37742526 DOI: 10.1016/j.phymed.2023.155045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural flavonoid, has anti-tumor activity. But, the understanding of the impact and molecular mechanism of ISL on the growth of gastric cancer (GC) remains limited. PURPOSE The study was to explore the tumor suppressive effect of ISL on GC growth both in vitro and in vivo, meanwhile, clarify its molecular mechanisms. METHODS Cell viability was detected by cell counting kit-8 (CCK-8) assay. Apoptotic cells in vitro were monitored by Hoechst 33,342 solution. Protein expression was assessed by Western blot. Reactive oxygen species (ROS) level was evaluated by utilizing 2',7'- dichlorofluorescin diacetate (DCFH-DA). Lactic acid level was detected with L-lactate assay kit. Glucose uptake was monitored with fluorescently tagged glucose 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Glycolytic proton efflux rate (GlycoPER) was evaluated by glycolytic rate assay kit. Oxygen consumption rate (OCR) was conducted by mito stress test kit. A nude mouse model of gastric cancer cell xenograft was established by subcutaneous injection with MGC803 cells. Pathological changes were evaluated by using H&E staining. Cell apoptosis in vivo was evaluated by terminal deoxy-nucleotide transferase mediated dUTP nick end labeling (TUNEL) assay. RESULTS ISL remarkably suppressed GC growth and increased cell apoptosis. It regulated apoptosis-related and metabolism-related protein expression both in vitro and in vivo. ISL blocked glucose uptake and suppressed production and secretion of lactic acid, which was accompanied with suppressed mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis but increased ROS accumulation. Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), cellular-myelocytomatosis viral oncogene (c-Myc), hypoxia inducible factor-1α (HIF-1α), glucose transporter 4 (GLUT4) or pyruvate dehydrogenase kinase 1 (PDHK1), could abolish ISL-induced inhibition of cell viability in GC cells. CONCLUSION These findings implicated that ISL inhibits GC growth by decreasing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α-mediated energy metabolic collapse through depressing protein expression of c-Myc and HIF-1α in GC, suggesting its potential application for GC treatment.
Collapse
Affiliation(s)
- Mingzhu Yu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiaoling Pan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbiao Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingting Du
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Sajeev A, BharathwajChetty B, Vishwa R, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Crosstalk between Non-Coding RNAs and Wnt/β-Catenin Signaling in Head and Neck Cancer: Identification of Novel Biomarkers and Therapeutic Agents. Noncoding RNA 2023; 9:63. [PMID: 37888209 PMCID: PMC10610319 DOI: 10.3390/ncrna9050063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Head and neck cancers (HNC) encompass a broad spectrum of neoplastic disorders characterized by significant morbidity and mortality. While contemporary therapeutic interventions offer promise, challenges persist due to tumor recurrence and metastasis. Central to HNC pathogenesis is the aberration in numerous signaling cascades. Prominently, the Wnt signaling pathway has been critically implicated in the etiology of HNC, as supported by a plethora of research. Equally important, variations in the expression of non-coding RNAs (ncRNAs) have been identified to modulate key cancer phenotypes such as cellular proliferation, epithelial-mesenchymal transition, metastatic potential, recurrence, and treatment resistance. This review aims to provide an exhaustive insight into the multifaceted influence of ncRNAs on HNC, with specific emphasis on their interactions with the Wnt/β-catenin (WBC) signaling axis. We further delineate the effect of ncRNAs in either exacerbating or attenuating HNC progression via interference with WBC signaling. An overview of the mechanisms underlying the interplay between ncRNAs and WBC signaling is also presented. In addition, we described the potential of various ncRNAs in enhancing the efficacy of chemotherapeutic and radiotherapeutic modalities. In summary, this assessment posits the potential of ncRNAs as therapeutic agents targeting the WBC signaling pathway in HNC management.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| |
Collapse
|
8
|
Sun C, Chang X, MacIsaac HJ, Wen J, Zhao L, Dai Z, Li J. Phytosphingosine inhibits cell proliferation by damaging DNA in human cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114840. [PMID: 37001191 DOI: 10.1016/j.ecoenv.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Harmful cyanobacterial blooms have caused numerous biosecurity incidents owing to the production of hazardous secondary metabolites such as microcystin. Additionally, cyanobacteria also release many other components that have not been explored. We identified compounds of a toxic mixture exudated from a dominant, blooming species, Microcystis aeruginosa, and found that phytosphingosine (PHS) was one of the bioactive components. Since PHS exhibited toxicity and is deemed a hazardous substance by the European Chemicals Agency, we hypothesized that PHS is a potentially toxic compound in M. aeruginosa exudates. However, the mechanisms of PHS ecotoxicity remain unclear. We assessed the cytotoxicity of PHS using an in vitro cell model in eight human cell lines and observed that the nasopharyngeal carcinoma cell line CNE2 was the most sensitive. We exposed CNE2 cells to 0-25 µmol/L PHS for 24 hr to explore its toxicity and mechanism. PHS exposure resulted in abnormal nuclear morphology, micronuclei, and DNA damage. Moreover, PHS significantly inhibited cell proliferation and arrested cell cycle at S phase. The results of Western blot suggested that PHS increased the expression of DNA damage-related proteins (ATM, p-P53 and P21) and decreased the expression of S phase-related proteins (CDK2, CyclinA2 and CyclinE1), indicating the toxicological mechanism of PHS on CNE2 cells. These data provide evidence that PHS has genetic toxicity and inhibits cell proliferation by damaging DNA. Our study provides evidence that PHS inhibits cell proliferation by damaging DNA. While additional work is required, we propose that PHS been considered as a potentially toxic component in MaE in addition to other well-characterized secondary compounds.
Collapse
Affiliation(s)
- Chunxiao Sun
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jiayao Wen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Lixing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
A pH/Time/Pectinase-Dependent Oral Colon-Targeted System Containing Isoliquiritigenin: Pharmacokinetics and Colon Targeting Evaluation in Mice. Eur J Drug Metab Pharmacokinet 2022; 47:677-686. [PMID: 35790663 DOI: 10.1007/s13318-022-00783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Oral colon-targeted gel beads containing isoliquiritigenin (ISL) were successfully designed in our study. In order to further explore the targeting of the colon by the gel beads, a systematic study of their in vivo pharmacokinetics and colon targeting was performed in mice. METHODS Eighteen male mice were included in this study. The mice were separated into six groups at random. We collected blood, stomach, duodenum, jejunum, ileum, and colon tissues at 2, 4, 6, 8, 12, and 24 h after oral administration of gel beads containing isoliquiritigenin at a dose of 20 mg/kg. Gel beads in tissues were recorded and taken out to observe their swelling and erosion. The total ISL concentrations in different tissues and gel beads were analyzed by high-performance liquid chromatography. RESULTS All gel beads reached the upper part of the stomach at 2 h with no obvious swelling. Most of the gel beads were still in the lower part of stomach, while a small amount had reached the small intestine at 4 h. A few gel beads reached the colon and swelled at 6 h. Furthermore, the gel beads in the colon were swollen and erosive at 8 h. Meanwhile, the plasma ISL concentration could be detected, which indicated that the ISL in the gel beads was absorbed. At 12 h, the gel beads were almost dissolved and the plasma concentration was 8.33 times that at 8 h. At 24 h, the gel beads had completely disappeared, and the plasma concentration was 2.55 times that at 12 h. CONCLUSION The gel beads containing ISL are a sustained, controlled, and colon-targeting delivery system that can alter the ISL distribution in the gastrointestinal tract.
Collapse
|
10
|
Lyu M, Yi X, Huang Z, Chen Y, Ai Z, Liang Y, Feng Q, Xiang Z. A transcriptomic analysis based on aberrant methylation levels revealed potential novel therapeutic targets for nasopharyngeal carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:47. [PMID: 35282089 PMCID: PMC8848444 DOI: 10.21037/atm-21-6628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Background This study aimed to identify potential novel therapeutic targets for nasopharyngeal carcinoma (NPC) by identifying aberrantly methylated-differentially expressed genes (DEGs) and pathways based on a comprehensive bioinformatics analysis. Methods Eight gene expression data sets and 2 methylation microarray data sets that included NPC and control groups from the Gene Expression Omnibus were identified. Meta-analyses of the DEGs were performed using the online analysis database “NetworkAnalyst”. Aberrantly methylated gene loci were obtained from the GEO2R. Aberrantly methylated DEGs were obtained from Venn diagrams. The enrichment analysis was carried out on the “Metascape” website, and the protein-protein interaction (PPI) network construction, network analysis, and visualization of the analysis results were carried out on the “String” website using “Cytoscape” software. Results In total, 544 hypomethylation high-expression genes and 164 hypermethylation low-expression genes were obtained. The enrichment and PPI network analyses suggested that several pathways and hub genes with abnormal gene expression accompanied by methylation change, including inositol-trisphosphate 3-kinase B (ITPKB), G protein subunit beta 5 (GNB5), FYN proto-oncogene, Src family tyrosine kinase (FYN), LCK proto-oncogene, Src family tyrosine kinase (LCK), nuclear factor of activated T cells 1 (NFATC1), GNAS complex locus (GNAS), protein kinase C beta (PRKCB), zeta chain of T cell receptor associated protein kinase 70 (ZAP70), lysophosphatidic acid receptor 1 (LPAR1), protein kinase C epsilon (PRKCE), tumor protein p53 (TP53), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fibronectin 1 (FN1), cyclin D1 (CCND1), vascular endothelial growth factor A (VEGFA), HRas proto-oncogene, GTPase (HRAS), signal transducer and activator of transcription 3 (STAT3), fibroblast growth factor 2 (FGF2), amyloid beta precursor protein (APP), and matrix metallopeptidase 2 (MMP2), may be related to the occurrence of nasopharyngeal carcinoma . Conclusions The identification of novel and important pathways and hub genes and their roles in the occurrence and development of NPC will guide clinical research and the development of pharmaceutical targets.
Collapse
Affiliation(s)
- Mo Lyu
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinzhu Yi
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhiwei Huang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yirong Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhu Ai
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuying Liang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Qili Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhiming Xiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
11
|
Zhao QQ, Zhang XY, Tang XF, Qiao H. A novel and oral colon targeted isoliquiritigenin delivery system: Development, optimization, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
13
|
Chen W, Chen Y, Zhang K, Yang W, Li X, Zhao J, Liu K, Dong Z, Lu J. AGT serves as a potential biomarker and drives tumor progression in colorectal carcinoma. Int Immunopharmacol 2021; 101:108225. [PMID: 34655849 DOI: 10.1016/j.intimp.2021.108225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is one of the most common aggressive tumors worldwide, and it is necessary to identify candidate biomarkers and therapeutic targets in CRC to improve patient outcomes. METHODS The differentially expressed genes (DEGs) were obtained from CRC microarray. Functional enrichment was performed to explore the function of DEGs, and core genes were identified by Cytoscape. Then, the diagnosis and prognosis markers were identified by ROC curve and survival analyses. More importantly, a series of in vitro studies were conducted in CRC cells to explore the function of the selected biomarker. Further, the drug response was performed by Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapy Response Portal (CTRP). In addition, the effect of drug on CRC cells was evaluated by functional experiments. RESULTS The identified DEGs were mainly associated with the processes relating to tumorigenesis. 25 core genes were selected and angiotensinogen (AGT) was filtered out as a diagnosis and prognosis biomarker. Comprehensive in vitro experiments showed that AGT attributed to the proliferation, migration, and invasion of CRC cells, as well as angiogenesis of HUVECs induced by CRC conditional medium. Furthermore, drug response analysis implied that AGT expression was associated with isoliquiritigenins (ISL). Additionally, ISL could suppress the progression of CRC cells. CONCLUSIONS AGT is identified as diagnosis and prognosis prediction of CRC. Moreover, AGT attributes to the progression of CRC. Additionally, AGT exhibits fine drug response to ISL, and ISL is also evaluated as potential therapy drug in CRC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital, Changzhi, Shanxi 046000, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
14
|
Zeng ZL, Zhu Q, Zhao Z, Zu X, Liu J. Magic and mystery of microRNA-32. J Cell Mol Med 2021; 25:8588-8601. [PMID: 34405957 PMCID: PMC8435424 DOI: 10.1111/jcmm.16861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous, small (∼22 nts in length) noncoding RNA molecules that function specifically by base pairing with the mRNA of genes and regulate gene expression at the post-transcriptional level. Alterations in miR-32 expression have been found in numerous diseases and shown to play a vital role in cell proliferation, apoptosis, oncogenesis, invasion, metastasis and drug resistance. MiR-32 has been documented as an oncomiR in the majority of related studies but has been also verified as a tumour suppressor miRNA in conflicting reports. Moreover, it has a crucial role in metabolic and cardiovascular disorders. This review provides an in-depth look into the most recent finding regarding miR-32, which is involved in the expression, regulation and functions in different diseases, especially tumours. Additionally, this review outlines novel findings suggesting that miR-32 may be useful as a noninvasive biomarker and as a targeted therapeutic in several diseases.
Collapse
Affiliation(s)
- ZL Zeng
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Key Laboratory for Arteriosclerology of Hunan ProvinceDepartment of Cardiovascular DiseaseHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qingyun Zhu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zhibo Zhao
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Xuyu Zu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Jianghua Liu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
15
|
Zhao J, Li B, Ren Y, Liang T, Wang J, Zhai S, Zhang X, Zhou P, Zhang X, Pan Y, Gao F, Zhang S, Li L, Yang Y, Deng X, Li X, Chen L, Yang D, Zheng Y. Histone demethylase KDM4A plays an oncogenic role in nasopharyngeal carcinoma by promoting cell migration and invasion. Exp Mol Med 2021; 53:1207-1217. [PMID: 34385569 PMCID: PMC8417295 DOI: 10.1038/s12276-021-00657-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence has indicated the vital role of lysine-specific demethylase 4 A (KDM4A), hypoxia-inducible factor-1α (HIF1α) and the mechanistic target of rapamycin (mTOR) signaling pathway in nasopharyngeal carcinoma (NPC). Therefore, we aimed to investigate whether KDM4A affects NPC progression by regulating the HIF1α/DDIT4/mTOR signaling pathway. First, NPC and adjacent tissue samples were collected, and KDM4A protein expression was examined by immunohistochemistry. Then, the interactions among KDM4A, HIF1α and DDIT4 were assessed. Gain- and loss-of-function approaches were used to alter KDM4A, HIF1α and DDIT4 expression in NPC cells. The mechanism of KDM4A in NPC was evaluated both in vivo and in vitro via RT-qPCR, Western blot analysis, MTT assay, Transwell assay, flow cytometry and tumor formation experiments. KDM4A, HIF1α, and DDIT4 were highly expressed in NPC tissues and cells. Mechanistically, KDM4A inhibited the enrichment of histone H3 lysine 9 trimethylation (H3K9me3) in the HIF1α promoter region and thus inhibited the methylation of HIF1α to promote HIF1α expression, thus upregulating DDIT4 and activating the mTOR signaling pathway. Overexpression of KDM4A, HIF1α, or DDIT4 or activation of the mTOR signaling pathway promoted SUNE1 cell proliferation, migration, and invasion but inhibited apoptosis. KDM4A silencing blocked the mTOR signaling pathway by inhibiting the HIF1α/DDIT4 axis to inhibit the growth of SUNE1 cells in vivo. Collectively, KDM4A silencing could inhibit NPC progression by blocking the activation of the HIF1α/DDIT4/mTOR signaling pathway by increasing H3K9me3, highlighting a promising therapeutic target for NPC.
Collapse
Affiliation(s)
- Jingyi Zhao
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Bingyan Li
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yongxia Ren
- Radiotherapy Department, Huaihe Hospital of Henan University, Kaifeng, PR China
| | - Tiansong Liang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Juan Wang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Suna Zhai
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiqian Zhang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Pengcheng Zhou
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiangxian Zhang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yuanyuan Pan
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Fangfang Gao
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Sulan Zhang
- Institute of Radiation Therapy and Tumor Critical Care of Zhengzhou University, Zhengzhou, PR China
| | - Liming Li
- Henan Key Laboratory of Molecular Radiotherapy, Zhengzhou, PR China
| | - Yongqiang Yang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiaoyu Deng
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiaole Li
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Linhui Chen
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Daoke Yang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Yingjuan Zheng
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
16
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
17
|
Zhang Z, Li H, You J, Xue H, Tan X, Chao C. MicroRNA-223-5p suppresses the progression of nasopharyngeal carcinoma by targeting DCLK1. Oncol Lett 2021; 21:396. [PMID: 33777219 PMCID: PMC7988698 DOI: 10.3892/ol.2021.12657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to investigate the function of microRNA (miR)-223-5p in the malignant biological behavior of nasopharyngeal carcinoma (NPC) and elucidate the underlying molecular mechanism. The expression levels of miR-223-5p and doublecortin-like kinase 1 (DCLK1) were detected via reverse transcription-quantitative PCR analysis. Cell viability was evaluated using Cell Counting Kit-8 assay. Cell migration and invasion were measured via Transwell assays, while a luciferase reporter assay was conducted to identify the interaction between miR-223-5p and DCLK1. The results demonstrated that miR-223-5p expression was significantly downregulated, whereas DCLK1 expression was significantly upregulated in NPC tissues and cells. Moreover, both miR-223-5p overexpression and DCLK1 silencing markedly suppressed the progression of NPC. It was also observed that miR-223-5p directly targeted DCLK1 and decreased its expression. Furthermore, it was suggested that DCLK1 overexpression may partially reverse the suppressive effects of miR-223-5p on the progression of NPC. Collectively, the results of the present study indicated that miR-223-5p may suppress NPC progression by targeting DCLK1, thereby indicating a novel potential approach to the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Zhixuan Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haifeng Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jianqiang You
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haixiang Xue
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaoye Tan
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Changjiang Chao
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
18
|
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been commonly used in traditional Chinese medicine for treatment of gastric, liver, and respiratory disease conditions for more than two thousand years. It is a major component of several Chinese patent medicines certificated by National Medical Products Administration that possess great anticancer activities. AIM OF THE STUDY To comprehensively summarize the anticancer activities of licorice flavonoids, explain the underlying molecular mechanisms, and assess their therapeutic potentials and side-effects. METHODS PubMed, Research Gate, Web of Science, Google Scholar, academic journals, and Science Direct were used as information sources, with the key words of "anticancer", "licorice", "flavonoids", and their combinations, mainly from 2000 to 2019. RESULTS Sixteen licorice flavonoids are found to possess anticancer activities. These flavonoids inhibit cancer cells through blocking cell cycle and regulating multiple signaling pathways. The major pathways targeted by licorice flavonoids include: the MAPK pathway, PI3K/AKT pathway, NF-κB pathway, death receptor - dependent extrinsic signaling pathway, and mitochondrial apoptotic pathway. CONCLUSION Licorice flavonoids are a group of versatile molecules that have pleiotropic effects on cell growth, survival and cell signaling. Many of the flavonoids possess inhibitory activities toward cancer cell growth and hence have a great therapeutic potential in cancer treatment. However, additional preclinical studies are still needed to assess their in vivo efficacy and possible toxicities. It is also imperative to evaluate the effects of licorice flavonoids on the metabolism of other drugs and explore the potential synergistic mechanism.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
19
|
MicroRNA-384 inhibits nasopharyngeal carcinoma growth and metastasis via binding to Smad5 and suppressing the Wnt/β-catenin axis. Cytotechnology 2021; 73:203-215. [PMID: 33911345 PMCID: PMC8035371 DOI: 10.1007/s10616-021-00458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/05/2021] [Indexed: 01/10/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a major otorhinolaryngological disease with limited effective therapeutic options. This work focused on the function of microRNA-384 (miR-384) on the NPC pathogenesis and the molecules involved. miR-384 expression in cancer tissues and cells was detected. Gain- and loss-of-functions of miR-384 were performed to identify its role in NPC progression. The target mRNA of miR-384 was predicted on an online system and validated through a luciferase reporter assay. The activity of Wnt/β-catenin signaling was detected. Consequently, miR-384 was found to be poorly expressed in NPC tissues and cell lines and was linked to unfavorable survival rates in patients. Overexpression of miR-384 in 6-10B cells suppressed growth, migration, invasion and resistance to apoptosis of cells, but inverse trends were presented in C6661 cells where miR-384 was downregulated. miR-384 targeted Smad5 mRNA. Upregulation of Smad5 counteracted the roles of miR-384 mimic in cells. The NPC-inhibiting effects of miR-384 mimic were also blocked by Wnt/β-catenin activation. To conclude, miR-384 targets Smad5 and inactivates the Wnt/β-catenin pathway, which exerts a suppressing role in NPC cell behaviors as well as tumor growth in vivo. The findings may offer novel thoughts into NPC therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00458-3.
Collapse
|
20
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
21
|
Mansouri S, Khansarinejad B, Mosayebi G, Eghbali A, Mondanizadeh M. Alteration in Expression of miR-32 and FBXW7 Tumor Suppressor in Plasma Samples of Patients with T-cell Acute Lymphoblastic Leukemia. Cancer Manag Res 2020; 12:1253-1259. [PMID: 32110099 PMCID: PMC7035948 DOI: 10.2147/cmar.s238470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and malignant neoplasm that arises from the hematopoietic T-cell precursors. Inactivation of FBXW7 gene is frequently observed in T-cell acute lymphoblastic leukemia, suggesting a significant tumor-suppressive role for FBXW7 in the pathobiology of this leukemia. Considering the role of microRNAs in cell proliferation and regulation of apoptosis, the aim of this study was to identify novel oncogenic microRNAs that suppress FBXW7 in patients with T-ALL. Patients and Methods The expression levels of two bioinformatically predicted microRNAs – miR-32 and miR-107 were compared in patients with T-ALL and a control group. A total of 80 plasma samples were subjected to RNA extraction, and the microRNA expression profiles were assessed by the RT-qPCR. The expression level of miR-103 was used as the endogenous reference for normalization of quantitative data. Results The plasma levels of miR-32 and miR-107 in patients with T-ALL were significantly higher (5.65, P < 0.001) and lower (0.432, P = 0.002), respectively. On the other hand, the expression levels of FBXW7 gene were significantly downregulated by –76.9 fold in T-ALL patients (P < 0.001). The results of the ROC curve analysis indicated that overexpression of miR-32 might be used to distinguish T-ALL patients with reasonable sensitivity and specificity. Conclusion miR-32 is considered as a novel oncomir that targets FBXW7 and might have a role in the etiology or progression of T-ALL. Furthermore, miR-32 can potentially serve as a non-invasive biomarker for detection of T-ALL.
Collapse
Affiliation(s)
- Sanaz Mansouri
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Aziz Eghbali
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
22
|
Chen Z, Chu S, Liang Y, Xu T, Sun Y, Li M, Zhang H, Wang X, Mao Y, Loor JJ, Wu Y, Yang Z. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food Funct 2020; 11:8625-8636. [DOI: 10.1039/d0fo00952k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both mRNA and miRNA play an important role in the regulation of mammary fatty acid metabolism and milk fat synthesis.
Collapse
|