1
|
Iyengar A, Ramadass B, Venkatesh S, Mak RH. Gut microbiota-targeted therapies in pediatric chronic kidney disease: gaps and opportunities. Pediatr Nephrol 2025:10.1007/s00467-025-06789-z. [PMID: 40307477 DOI: 10.1007/s00467-025-06789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Given the complex relationship between the gut microbiome and chronic kidney disease (CKD), exploring the potential role and scope of microbiota-targeted therapies in pediatric CKD is highly relevant. We aim to provide an overview of gut-targeted therapeutic strategies, including nutritional interventions (fiber, phytochemicals, fermented foods, and traditional Chinese medicines), probiotics, synbiotics, oral absorbents, and fecal microbial transplantation. Enhancing physical activity and preventing constipation are additional strategies that may promote gut microbiome health. In a uremic environment, gut microbiota-targeted therapies could potentially rebalance the gut microbiota, improve gut barrier function, decrease uremic toxin concentrations, enhance the production of short-chain fatty acids (SCFA), and reduce inflammation. While research in adult CKD patients has provided insights into these approaches, there are limited data in children with CKD. This review aims to summarize potential targeted therapies for restoring a balanced gut microbiota, emphasizing the need for studies that evaluate their effects on clinical outcomes in pediatric CKD.
Collapse
Affiliation(s)
- Arpana Iyengar
- Department of Pediatric Nephrology, St. John's National Academy of Health Sciences, Bangalore, India, 560034.
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Shruthi Venkatesh
- Department of Pediatric Nephrology, St. John's National Academy of Health Sciences, Bangalore, India, 560034
| | - Robert H Mak
- Division of Pediatric Nephrology, University of California, San Diego, USA
| |
Collapse
|
2
|
You C, Guo J, Xun Y. Renal organic anion transporter 1: clinical relevance and the underlying mechanisms in chronic kidney disease. BMC Nephrol 2025; 26:93. [PMID: 39994543 PMCID: PMC11849263 DOI: 10.1186/s12882-025-03974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Organic anion transporter 1 (OAT1), primarily found in the renal proximal tubule, is essential for the excretion of various uremic toxins that contribute to the onset and progression of chronic kidney disease (CKD). OAT1 also plays a vital role in the remote sensing and signaling network, facilitating the removal of metabolites through the kidneys. The function of OAT1 is impaired under conditions such as renal ischemia/reperfusion injury, oxidative stress, and fibrosis. Several transcription factors, post-translational modifications, and endocrine hormones control the activity and expression of OAT1. This review explores the unique contribution of OAT1 to the excretion of CKD-related UTs and the mechanisms involved.
Collapse
Affiliation(s)
- Changfang You
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianchun Guo
- Department of Integrated Chinese and Western Medicine, Hangzhou Sixth People's Hospital, Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yunhao Xun
- Department of Integrated Chinese and Western Medicine, Hangzhou Sixth People's Hospital, Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Zununi Vahed S, Hejazian SM, Ardalan M, Anagnostou F, Pavon-Djavid G, Barzegari A. The impacts of dietary antioxidants on cardiovascular events in hemodialysis patients: An update on the cellular and molecular mechanisms. Nutr Rev 2025; 83:e615-e634. [PMID: 38728008 DOI: 10.1093/nutrit/nuae039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular-related complications (CVCs) are the primary cause of death in patients undergoing hemodialysis (HD), accounting for greater than half of all deaths. Beyond traditional risk factors, chronic inflammation, extreme oxidative stress (OS), and endothelial dysfunction emerge as major contributors to accelerated CVCs in HD patients. Ample evidence shows that HD patients are constantly exposed to excessive OS, due to uremic toxins and pro-oxidant molecules that overwhelm the defense antioxidant mechanisms. The present study highlights the efficiency of natural antioxidant supplementation in managing HD-induced inflammation, OS, and consequently CVCs. Moreover, it discusses the underlying molecular mechanisms by which these antioxidants can decrease mitochondrial and endothelial dysfunction and ameliorate CVCs in HD patients. Given the complex nature of OS and its molecular pathways, the utilization of specific antioxidants as a polypharmacotherapy may be necessary for targeting each dysregulated signaling pathway and reducing the burden of CVCs.
Collapse
Affiliation(s)
| | | | | | - Fani Anagnostou
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
- Service of Odontology, Hospital Pitié-Salpêtrière AP-HP, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM UMR-S 1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 93430 Villetaneuse, France
| | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM UMR-S 1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 93430 Villetaneuse, France
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Hu B, Wang Y, Yu L, Cao L, Liu S, Zhong L, Wang G, Qiu X, Hou H. Biomimetic wrinkled prebiotic microspheres with enhanced intestinal retention for hyperphosphatemia and vascular calcification. SCIENCE ADVANCES 2025; 11:eads5286. [PMID: 39823333 PMCID: PMC11740942 DOI: 10.1126/sciadv.ads5286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo. Through increasing the beneficial bacteria and decreasing the harmful bacteria in the intestinal tract, these prebiotic microspheres can modulate intestinal microbiota and then ameliorate vascular calcification notably. This feasible and robust approach may offer a potential and effective strategy for the treatment of hyperphosphatemia of CKD and prevention of its cardiovascular complications.
Collapse
Affiliation(s)
- Bianxiang Hu
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yongqin Wang
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Lei Yu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Lisha Cao
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Shuai Liu
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P. R. China
| | - Linfang Zhong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P. R. China
| | - Guobao Wang
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
5
|
Tong Y, Guo S, Li T, Yang K, Gao W, Peng F, Zou X. Gut microbiota and renal fibrosis. Life Sci 2024; 357:123072. [PMID: 39307181 DOI: 10.1016/j.lfs.2024.123072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Renal fibrosis represents a critical pathological condition in the progression of renal dysfunction, characterized by aberrant accumulation of extracellular matrix (ECM) and structural alterations in renal tissue. Recent research has highlighted the potential significance of gut microbiota and demonstrated their influence on host health and disease mechanisms through the production of bioactive metabolites. This review examines the role of alterations in gut microbial composition and their metabolites in the pathophysiological processes underlying renal fibrosis. It delineates current therapeutic interventions aimed at modulating gut microbiota composition, encompassing dietary modifications, pharmacological approaches, and probiotic supplementation, while evaluating their efficacy in mitigating renal fibrosis. Through a comprehensive analysis of current research findings, this review enhances our understanding of the bidirectional interaction between gut microbiota and renal fibrosis, establishing a theoretical foundation for future research directions and potential clinical applications in this domain.
Collapse
Affiliation(s)
- Yinghao Tong
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Shangze Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Ting Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Kexin Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
6
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
7
|
Georgopoulou GA, Papasotiriou M, Bosgana P, de Lastic AL, Koufou EE, Papachristou E, Goumenos DS, Davlouros P, Kourea E, Zolota V, Thomopoulos K, Mouzaki A, Assimakopoulos SF. Altered Expression of Intestinal Tight Junctions in Patients with Chronic Kidney Disease: A Pathogenetic Mechanism of Intestinal Hyperpermeability. Biomedicines 2024; 12:368. [PMID: 38397970 PMCID: PMC10887073 DOI: 10.3390/biomedicines12020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Systemic inflammation in chronic kidney disease (CKD) is associated (as a cause or effect) with intestinal barrier dysfunction and increased gut permeability, with mechanisms not yet fully understood. This study investigated different parameters of the intestinal barrier in CKD patients, especially tight junction (TJ) proteins and their possible association with systemic endotoxemia and inflammation. METHODS Thirty-three patients with stage I-IV CKD (n = 17) or end-stage kidney disease (ESKD) (n = 16) and 11 healthy controls underwent duodenal biopsy. Samples were examined histologically, the presence of CD3+ T-lymphocytes and the expression of occludin and claudin-1 in the intestinal epithelium was evaluated by means of immunohistochemistry, circulating endotoxin concentrations were determined by means of ELISA and the concentrations of the cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α in serum were measured using flow cytometry. RESULTS Patients with stage I-IV CKD or ESKD had significantly higher serum endotoxin, IL-6, IL-8 and IL-10 levels compared to controls. Intestinal occludin and claudin-1 were significantly decreased, and their expression was inversely correlated with systemic endotoxemia. Regarding occludin, a specific expression pattern was observed, with a gradually increasing loss of its expression from the crypt to the tip of the villi. CONCLUSION The expression of occludin and claudin-1 in enterocytes is significantly reduced in patients with CKD, contributing to systemic endotoxemia and inflammatory responses in these patients.
Collapse
Affiliation(s)
- Georgia-Andriana Georgopoulou
- Division of Nephrology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (G.-A.G.); (M.P.); (E.P.); (D.S.G.)
| | - Marios Papasotiriou
- Division of Nephrology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (G.-A.G.); (M.P.); (E.P.); (D.S.G.)
| | - Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece; (P.B.); (E.K.); (V.Z.)
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (A.-L.d.L.); (A.M.)
| | - Eleni-Evangelia Koufou
- Division of Cardiology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (E.-E.K.); (P.D.)
| | - Evangelos Papachristou
- Division of Nephrology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (G.-A.G.); (M.P.); (E.P.); (D.S.G.)
| | - Dimitrios S. Goumenos
- Division of Nephrology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (G.-A.G.); (M.P.); (E.P.); (D.S.G.)
| | - Periklis Davlouros
- Division of Cardiology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (E.-E.K.); (P.D.)
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece; (P.B.); (E.K.); (V.Z.)
| | - Vasiliki Zolota
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece; (P.B.); (E.K.); (V.Z.)
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (A.-L.d.L.); (A.M.)
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Brown RB, Bigelow P. Can a Low-Phosphate Diet for Chronic Kidney Disease Treat Cancer? An Interdisciplinary Literature Review. MEDICINES (BASEL, SWITZERLAND) 2024; 11:5. [PMID: 38392693 PMCID: PMC10890503 DOI: 10.3390/medicines11020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Background: Cancer therapeutics have a low success rate in clinical trials. An interdisciplinary approach is needed to translate basic, clinical, and remote fields of research knowledge into novel cancer treatments. Recent research has identified high dietary phosphate intake as a risk factor associated with cancer incidence. A model of tumor dynamics predicted that reducing phosphate levels sequestered in the tumor microenvironment could substantially reduce tumor size. Coincidently, a low-phosphate diet is already in use to help patients with chronic kidney disease manage high serum phosphate levels. Methods: A grounded-theory literature-review method was used to synthesize interdisciplinary findings from the basic and clinical sciences, including oncology, nephrology, nutritional epidemiology, and dietetic research on cancer. Results: Findings of tumor remission associated with fasting and a ketogenic diet, which lower intake of dietary phosphate, support the hypothesis that a low-phosphate diet will reduce levels of phosphate sequestered in the tumor microenvironment and reduce tumor size. Additionally, long-term effects of a low-phosphate diet may reverse dysregulated phosphate metabolism associated with tumorigenesis and prevent cancer recurrence. Conclusions: Evidence in this article provides the rationale to test a low-phosphate diet as a dietary intervention to reduce tumor size and lower risk of cancer recurrence.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Koshida T, Gohda T, Sugimoto T, Asahara T, Asao R, Ohsawa I, Gotoh H, Murakoshi M, Suzuki Y, Yamashiro Y. Gut Microbiome and Microbiome-Derived Metabolites in Patients with End-Stage Kidney Disease. Int J Mol Sci 2023; 24:11456. [PMID: 37511232 PMCID: PMC10380578 DOI: 10.3390/ijms241411456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The composition of the gut microbiome is altered in patients with chronic kidney disease (CKD). Dysbiosis leads to decreased levels of stool organic acids (OAs) and systemic inflammation, followed by accumulation of uremic toxins (UTs) and the development of end-stage kidney disease (ESKD). We assessed the relationship between the microbiome and UT levels or the development of ESKD by comparing patients undergoing hemodialysis (HD) and those with normal renal function (NRF). This cross-sectional study recruited 41 patients undergoing HD and 38 sex- and age-matched patients with NRF, and gut microbiome, levels of plasma UTs, inflammatory markers, and stool OAs were compared. The indices of beta-diversity differed significantly between patients with NRF and those undergoing HD, and between patients undergoing HD with and without type 2 diabetes. The levels of stool total OA, inflammatory markers, and UTs differed significantly between the patients with NRF and those undergoing HD. The combined main effects of type 2 diabetes and kidney function status were accumulation of indoxyl sulfate and p-cresyl sulfate. The relative abundances of Negativicutes and Megamonas were associated with development of ESKD and with the levels of UTs, even after adjustment for factors associated with the progression of ESKD. The present study indicates that the gut environment differs between patients with NRF and those undergoing HD and between patients undergoing HD with and without type 2 diabetes. Moreover, ESKD patients with diabetes accumulate more UTs derived from the gut microbiome, which might be associated with cardio-renal diseases and poor prognosis.
Collapse
Affiliation(s)
- Takeo Koshida
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku 113-8421, Tokyo, Japan
| | - Tomohito Gohda
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku 113-8421, Tokyo, Japan
| | - Takuya Sugimoto
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi-shi 186-0012, Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi-shi 186-0012, Tokyo, Japan
| | - Rin Asao
- Department of Internal Medicine, Saiyu Soka Hospital, Soka-shi 340-0041, Saitama, Japan
| | - Isao Ohsawa
- Department of Internal Medicine, Saiyu Soka Hospital, Soka-shi 340-0041, Saitama, Japan
| | - Hiromichi Gotoh
- Department of Internal Medicine, Saiyu Soka Hospital, Soka-shi 340-0041, Saitama, Japan
| | - Maki Murakoshi
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku 113-8421, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku 113-8421, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Bunkyo-ku 113-8421, Tokyo, Japan
| |
Collapse
|
10
|
Traditional Chinese Medicine: An Exogenous Regulator of Crosstalk between the Gut Microbial Ecosystem and CKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7940684. [DOI: 10.1155/2022/7940684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is often accompanied by an imbalance in the gut microbial ecosystem. Notably, the imbalanced gut microbiota and impaired intestinal barrier are the keys to the crosstalk between the gut microbial ecosystem and CKD, which was the central point of previous studies. Traditional Chinese medicine (TCM) has shown considerable efficacy in the treatment of CKD. However, the therapeutic mechanisms have not been fully elucidated. In this review, we explored therapeutic mechanisms by which TCM improved CKD via the gut microbial ecosystem. In particular, we focused on the restored gut microbiota (i.e., short-chain fatty acid- and uremic toxin-producing bacteria), improved gut-derived metabolites (i.e., short-chain fatty acid, indoxyl sulfate, p-Cresyl sulfate, and trimethylamine-N-oxide), and intestinal barrier (i.e., permeability and microbial translocation) as therapeutic mechanisms. The results found that the metabolic pattern of gut microbiota and the intestinal barrier were improved through TCM treatment. Moreover, the microbiota-transfer study confirmed that part of the protective effect of TCM was dependent on gut microbiota, especially SCFA-producing bacteria. In conclusion, TCM may be an important exogenous regulator of crosstalk between the gut microbial ecosystem and CKD, which was partly attributable to the mediation of microbiota-targeted intervention.
Collapse
|
11
|
Yamada S, Tsuruya K, Kitazono T, Nakano T. Emerging cross-talks between chronic kidney disease-mineral and bone disorder (CKD-MBD) and malnutrition-inflammation complex syndrome (MICS) in patients receiving dialysis. Clin Exp Nephrol 2022; 26:613-629. [PMID: 35353283 PMCID: PMC9203392 DOI: 10.1007/s10157-022-02216-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease–mineral and bone disorder (CKD–MBD) is a systemic disorder that affects multiple organs and systems and increases the risk of morbidity and mortality in patients with CKD, especially those receiving dialysis therapy. CKD–MBD is highly prevalent in CKD patients, and its treatment is gaining attention from healthcare providers who manage these patients. Additional important pathologies often observed in CKD patients are chronic inflammation and malnutrition/protein-energy wasting (PEW). These two pathologies coexist to form a vicious cycle that accelerates the progression of various other pathologies in CKD patients. This concept is integrated into the term “malnutrition–inflammation–atherosclerosis syndrome” or “malnutrition–inflammation complex syndrome (MICS)”. Recent basic and clinical studies have shown that CKD–MBD directly induces inflammation as well as malnutrition/PEW. Indeed, higher circulating levels of inorganic phosphate, fibroblast growth factor 23, parathyroid hormone, and calciprotein particles, as markers for critical components and effectors of CKD–MBD, were shown to directly induce inflammatory responses, thereby leading to malnutrition/PEW, cardiovascular diseases, and clinically relevant complications. In this short review, we discuss the close interplay between CKD–MBD and MICS and emphasize the significance of simultaneous control of these two seemingly distinct pathologies in patients with CKD, especially those receiving dialysis therapy, for better management of the CKD/hemodialysis population.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| |
Collapse
|
12
|
Merino-Ribas A, Araujo R, Bancu I, Graterol F, Vergara A, Noguera-Julian M, Paredes R, Bonal J, Sampaio-Maia B. Gut microbiome in hemodialysis patients treated with calcium acetate or treated with sucroferric oxyhydroxide: a pilot study. Int Urol Nephrol 2021; 54:2015-2023. [PMID: 34923600 PMCID: PMC9262763 DOI: 10.1007/s11255-021-03091-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/08/2021] [Indexed: 01/30/2023]
Abstract
PURPOSE It has been proved that the gut microbiome is altered in patients with chronic kidney disease. This contributes to chronic inflammation and increases cardiovascular risk and mortality, especially in those undergoing hemodialysis. Phosphate binders may potentially induce changes in their microbiome. This trial aimed to compare the changes in the gut microbiome of hemodialysis patients treated with calcium acetate to those treated with sucroferric oxyhydroxide. METHODS Twelve hemodialysis patients were distributed to receive calcium acetate or sucroferric oxyhydroxide for 5 months. Blood samples (for biochemical analysis) and stool samples (for microbiome analysis) were collected at baseline, 4, 12, and 20 weeks after treatment initiation. Fecal DNA was extracted and a 16S rRNA sequencing library was constructed targeting the V3 and V4 hypervariable regions. RESULTS Regarding clinical variables and laboratory parameters, no statistically significant differences were observed between calcium acetate or sucroferric oxyhydroxide groups. When analyzing stool samples, we found that all patients were different (p = 0.001) among themselves and these differences were kept along the 20 weeks of treatment. The clustering analysis in microbial profiles grouped the samples of the same patient independently of the treatment followed and the stage of the treatment. CONCLUSION These results suggest that a 5-month treatment with either calcium acetate or sucroferric oxyhydroxide did not modify baseline diversity or baseline bacterial composition in hemodialysis patients, also about the high-variability profiles of the gut microbiome found among these patients.
Collapse
Affiliation(s)
- Ana Merino-Ribas
- Universitat Autònoma de Barcelona, Barcelona, Spain. .,Nephrology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. .,Nephrology Department, Hospital Universitari de Girona Doctor Josep Trueta, Avinguda de França S/N, 17007, Girona, Spain. .,i3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.
| | - Ricardo Araujo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
| | - Ioana Bancu
- Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Fredzzia Graterol
- Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Andrea Vergara
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Jordi Bonal
- Nephrology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Benedita Sampaio-Maia
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.,Faculty of Dental Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Rodrigues FG, Ormanji MS, Heilberg IP, Bakker SJL, de Borst MH. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur J Clin Invest 2021; 51:e13588. [PMID: 33948936 PMCID: PMC8459296 DOI: 10.1111/eci.13588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Deregulations in gut microbiota may play a role in vascular and bone disease in chronic kidney disease (CKD). As glomerular filtration rate declines, the colon becomes more important as a site of excretion of urea and uric acid, and an increased bacterial proteolytic fermentation alters the gut microbial balance. A diet with limited amounts of fibre, as well as certain medications (eg phosphate binders, iron supplementation, antibiotics) further contribute to changes in gut microbiota composition among CKD patients. At the same time, both vascular calcification and bone disease are common in patients with advanced kidney disease. This narrative review describes emerging evidence on gut dysbiosis, vascular calcification, bone demineralization and their interrelationship termed the 'gut-bone-vascular axis' in progressive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p-cresyl sulphate, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA)), vitamin K deficiency, inflammatory cytokines and their impact on both bone health and vascular calcification are discussed. This framework may open up novel preventive and therapeutic approaches targeting the microbiome in an attempt to improve cardiovascular and bone health in CKD.
Collapse
Affiliation(s)
- Fernanda G Rodrigues
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milene S Ormanji
- Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ita P Heilberg
- Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil.,Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Favero C, Carriazo S, Cuarental L, Fernandez-Prado R, Gomá-Garcés E, Perez-Gomez MV, Ortiz A, Fernandez-Fernandez B, Sanchez-Niño MD. Phosphate, Microbiota and CKD. Nutrients 2021; 13:1273. [PMID: 33924419 PMCID: PMC8070653 DOI: 10.3390/nu13041273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventually, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Elena Gomá-Garcés
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
- School of Medicine, Department of Pharmacology and Therapeutics, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
15
|
Filipska I, Winiarska A, Knysak M, Stompór T. Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins (Basel) 2021; 13:toxins13040274. [PMID: 33920096 PMCID: PMC8070663 DOI: 10.3390/toxins13040274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the world population and leads to excess morbidity and mortality (with cardiovascular disease as a leading cause of death). Vascular calcification (VC) is a phenomenon of disseminated deposition of mineral content within the media layer of arteries preceded by phenotypic changes in vascular smooth muscle cells (VSMC) and/or accumulation of mineral content within the atherosclerotic lesions. Medial VC results in vascular stiffness and significantly contributes to increased cardio-vascular (CV) morbidity, whereas VC of plaques may rather increase their stability. Mineral and bone disorders of CKD (CKD-MBD) contribute to VC, which is further aggravated by accumulation of uremic toxins. Both CKD-MBD and uremic toxin accumulation affect not only patients with advanced CKD (glomerular filtration rate (GFR) less than 15 mL/min/1.72 m2, end-stage kidney disease) but also those on earlier stages of a disease. The key uremic toxins that contribute to VC, i.e., p-cresyl sulphate (PCS), indoxyl sulphate (IS) and trimethylamine-N-oxide (TMAO) originate from bacterial metabolism of gut microbiota. All mentioned toxins promote VC by several mechanisms, including: Transdifferentiation and apoptosis of VSMC, dysfunction of endothelial cells, oxidative stress, interaction with local renin–angiotensin–aldosterone system or miRNA profile modification. Several attractive methods of gut microbiota manipulations have been proposed in order to modify their metabolism and to limit vascular damage (and VC) triggered by uremic toxins. Unfortunately, to date no such method was demonstrated to be effective at the level of “hard” patient-oriented or even clinically relevant surrogate endpoints.
Collapse
|
16
|
Intestinal Chelators, Sorbants, and Gut-Derived Uremic Toxins. Toxins (Basel) 2021; 13:toxins13020091. [PMID: 33530404 PMCID: PMC7911578 DOI: 10.3390/toxins13020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a highly prevalent condition and is associated with a high comorbidity burden, polymedication, and a high mortality rate. A number of conventional and nonconventional risk factors for comorbidities and mortality in CKD have been identified. Among the nonconventional risk factors, uremic toxins are valuable therapeutic targets. The fact that some uremic toxins are gut-derived suggests that intestinal chelators might have a therapeutic effect. The phosphate binders used to prevent hyperphosphatemia in hemodialysis patients act by complexing inorganic phosphate in the gastrointestinal tract but might conceivably have a nonspecific action on gut-derived uremic toxins. Since phosphorous is a major nutrient for the survival and reproduction of bacteria, changes in its intestinal concentration may impact the gut microbiota’s activity and composition. Furthermore, AST-120 is an orally administered activated charcoal adsorbent that is widely used in Asian countries to specifically decrease uremic toxin levels. In this narrative review, we examine the latest data on the use of oral nonspecific and specific intestinal chelators to reduce levels of gut-derived uremic toxins.
Collapse
|
17
|
Jia L, Dong X, Li X, Jia R, Zhang HL. Benefits of resistant starch type 2 for patients with end-stage renal disease under maintenance hemodialysis: a systematic review and meta-analysis. Int J Med Sci 2021; 18:811-820. [PMID: 33437217 PMCID: PMC7797550 DOI: 10.7150/ijms.51484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Resistant starch type 2 (RS2) has been documented to regulate gut microbiota and to improve the clinical outcomes of several diseases. However, whether RS2 may benefit patients with end-stage renal disease under maintenance hemodialysis (MHD) remains unknown. Methods: We conducted a systemic review and meta-analysis of randomized controlled trials (RCTs). Adult patients receiving MHD were treated with RS2 (CRD42020160332). The primary outcomes were changes of uremic toxins, and the secondary outcomes were changes of inflammatory indicators, albumin and phosphorus. Results: After screening 65 records, five RCTs (n = 179) were included. A significant decrease of blood urea nitrogen (weighted mean difference (WMD) = -6.91, 95% CI: -11.87 to -1.95, I2 = 0%, P = 0.006), serum creatinine (WMD = -1.11, 95% CI: -2.18 to -0.05, I2 = 44%, P = 0.04) and interleukin (IL)-6 in blood (standard mean difference (SMD) = -1.08, 95% CI: -1.64 to -0.53, I2 = 35%, P = 0.0001) was revealed in the RS2 group. Analyses of blood levels of uric acid, p-cresyl sulfate, indoxyl sulfate, high sensitive C-reaction protein, albumin and phosphorus yielded no significant difference. Conclusions: Our results suggest that RS2 may improve the residual renal function of patients under MHD and mitigate a proinflammatory response.
Collapse
Affiliation(s)
- Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street 45#, 100053, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street 45#, 100053, Beijing, China
| | - Xiaoxia Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street 45#, 100053, Beijing, China
| | - Rufu Jia
- Central Hospital of Cangzhou, Xinhua Middle Street 201#, 061001, Cangzhou, Hebei Province, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83#, 100085, Beijing, China
| |
Collapse
|
18
|
Comparative Gut Microbiome Differences between Ferric Citrate and Calcium Carbonate Phosphate Binders in Patients with End-Stage Kidney Disease. Microorganisms 2020; 8:microorganisms8122040. [PMID: 33419265 PMCID: PMC7767080 DOI: 10.3390/microorganisms8122040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
Gut dysbiosis in patients with chronic kidney disease (CKD) may induce chronic inflammation and increase morbidity. Phosphate-binding agents, generally used in patients with CKD, may potentially change the composition of the gut microbiota. This study aimed to compare the microbiota composition in hemodialysis patients treated with ferric citrate or calcium carbonate. The stool microbiota was investigated in hemodialysis patients treated with ferric citrate (n = 8) and calcium carbonate (n = 46) using 16S rRNA gene amplicon sequencing profiling using linear discriminant analysis of effect size. Further predictive functional profiling of microbial communities was obtained with Tax4Fun in R. Hemodialysis patients treated with calcium carbonate had a significantly reduced microbial species diversity (Shannon index and Simpson index) and an increased microbial alteration ratio compared with patients treated with ferric citrate. A distinct microbial community structure was found in patients treated with ferric citrate, with an increased abundance of the Bacteroidetes phylum and a decreased abundance of the phylum Firmicutes. Members of the order Lactobacillales were enriched in patients treated with calcium carbonate, whereas taxa of the genera Ruminococcaceae UCG-004, Flavonifractor, and Cronobacter were enriched in patients treated with ferric citrate phosphate binder. In conclusion, Ferric citrate therapy results in a more diverse microbiome community compared to calcium carbonate therapy in hemodialysis patients with phosphate binder treatment. The gut microbiome reflects the phosphate binder choice in hemodialysis patients, further affecting the physiological environment in the gastrointestinal tract.
Collapse
|
19
|
The absorbing life of bile acids. Kidney Int 2020; 97:1099-1102. [DOI: 10.1016/j.kint.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/18/2022]
|