1
|
Rananaware P, Naik S, Mishra L, Keri RS, Mishra M, Brahmkhatri VP. Polymeric Nanodiscs Comprising 5-Fluorouracil for Inhibition of Protein Aggregation and Their Anti-Alzheimer's Activity in the Drosophila Model. ACS Chem Neurosci 2025; 16:342-354. [PMID: 39693601 DOI: 10.1021/acschemneuro.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Nanoconjugates are promising for therapeutic drug delivery and targeted applications due to the numerous opportunities to functionalize their surface. The present study reports the synthesis of 5-fluorouracil (5-FU)-entrapped polyvinylpyrrolidone (PVP) nanoconjugates, precisely 5-FU-PVP and 5-FU-PVP-Au, and the evaluation of protein aggregation inhibition efficiency. The 5-FU-loaded polymer nanoconjugates were functionalized with gold nanoparticles and analyzed using characterization techniques like dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and zeta potential analysis. These conjugates exhibit consistent morphology with a spherical, flat, disc-like structure. The 5-FU-PVP and 5-FU-PVP-Au nanoconjugates exhibited a high drug loading, up to 81% and 90%, respectively. The nanoconjugates exhibited prolonged drug delivery of 5-FU from 5-FU-PVP and 5-FU-PVP-Au, wherein 5-FU-PVP-Au depicted a higher drug release. They were investigated for inhibiting the protein hen egg white lysozyme (HEWL) aggregation by ThT fibril size measurement, binding assay, and electron microscopy, and the results showed that conjugates repressed the fibrillogenesis in HEWL. The prominent activity of amyloid aggregation inhibition for HEWL using 5-FU-PVP and 5-FU-PVP-Au was found to be 29 μg.mL-1 and 27 μg.mL-1, respectively. The dissociation of amyloid aggregates was achieved against 5-FU-PVP and 5-FU-PVP-Au at 27 μg.mL-1 and 25 μg.mL-1, respectively. Furthermore, the nanoconjugates were investigated for anti-Alzheimer's activity in the Drosophila model. A Drosophila model of Alzheimer's disease (AD) was developed that expressed Aβ42 peptides in the neuronal secretory system to comprehend the pathogenic effects of Aβ42 in vivo. All the results demonstrate that polymer nanoconjugates exhibit more effective inhibition of protein aggregation than bare drugs.
Collapse
Affiliation(s)
- Pranita Rananaware
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka India
| | - Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Rangappa S Keri
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Varsha P Brahmkhatri
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka India
- Department of Chemistry, Centre of Excellence in Materials& Sensors, CMR Institute of Technology, Bengaluru 560037, India
| |
Collapse
|
2
|
Malik A, Khan JM, Sen P, Alamri A, Karan R, Emerson I A. Coomassie Brilliant Blue Induces Coiled-Coil Aggregation in Lysozyme at pH 7.4 by Hydrophobic and Electrostatic Forces. ACS OMEGA 2025; 10:1829-1838. [PMID: 39829483 PMCID: PMC11740825 DOI: 10.1021/acsomega.4c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Several neurodegenerative diseases are associated with the deposition of amyloid fibrils. Although these diseases are irreversible, knowing the aggregation mechanism is useful in developing drugs that can arrest or decrease the aggregation rate. In this study, we are interested in investigating the effect of Coomassie brilliant blue (CBB G-250) on the aggregation of hen egg white lysozyme (HEWL) at pH 7.4. Various biophysical techniques have been used, such as turbidity, Rayleigh light scattering (RLS) kinetics, far-UV circular dichroism (CD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) imaging. The turbidity data indicated that CBB (≥0.1 mM) induces aggregation in HEWL at pH 7.4. The aggregation kinetics caused by CBB are quick without a lag phase and are dependent on the CBB concentration. The far-UV CD data revealed that the CBB-induced aggregated samples had lost their CD signals without exhibiting a shift in the spectrum position. Sodium chloride and ammonium sulfate show little effect on the CBB-induced aggregates, but alcohol such as methanol, ethanol, and 2-propanol could reverse the aggregation. Overall, this study aims to better understand the mechanism underlying CBB-induced aggregation and keep in mind that CBB employed in laboratories can alter the protein structure. We report the aggregation of a natural protein due to coiled-coil formation induced by a dye at physiological pH and temperature conditions. This finding has high value because several dyes are used for diagnostic and therapeutic purposes, and coiled-coil formation is closely related to infection mechanisms and nanoparticle-based drug deliveries.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, College of
Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Abdulaziz Alamri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Rohit Karan
- Bioinformatics
Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India
| | - Arnold Emerson I
- Bioinformatics
Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India
| |
Collapse
|
3
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
4
|
Muthu SA, Qureshi A, Sharma R, Bisaria I, Parvez S, Grover S, Ahmad B. Redesigning the kinetics of lysozyme amyloid aggregation by cephalosporin molecules. J Biomol Struct Dyn 2024:1-16. [PMID: 38682862 DOI: 10.1080/07391102.2024.2335304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In lysozyme amyloidosis, fibrillar aggregates of lysozyme are associated with severe renal, hepatic, and gastrointestinal manifestations, with no definite therapy. Current drugs are now being tested in amyloidosis clinical trials as aggregation inhibitors to mitigate disease progression. The tetracycline group among antimicrobials in use is in phase II of clinical trials, whereas some macrolides and cephalosporins have shown neuroprotection. In the present study, two cephalosporins, ceftazidime (CZD) and cefotaxime (CXM), and a glycopeptide, vancomycin (VNC), are evaluated for inhibition of amyloid aggregation of hen egg white lysozyme (HEWL) under two conditions (i) 4 M guanidine hydrochloride (GuHCl) at pH 6.5 and 37° C, (ii) At pH 1.5 and 65 °C. Fluorescence quench titration and molecular docking methods report that CZD, CXM, and VNC interact more strongly with the partially folded intermediates (PFI) in comparison to the protein's natural state (N). However, only CZD and CXM proficiently inhibit the aggregation. Transmission electron microscopy, tinctorial assessments, and aggregation kinetics all support oligomer-level inhibition. Transition structures in CZD-HEWL and CXM-HEWL aggregation are shown by circular dichroism (CD). On the other hand, kinetic variables and soluble fraction assays point to a localized association of monomers. Intrinsic fluorescence (IF),1-Anilino 8-naphthalene sulphonic acid, and CD demonstrate structural and conformational modifications redesigning the PFI. GuHCl-induced unfolding and differential scanning fluorimetry suggested that the PFI monomers bound to CZD and CXM exhibited partial stability. Our results present two mechanisms that function in both solution conditions, creating a novel avenue for the screening of putative inhibitors for drug repurposing. We extend our proposed mechanisms in the designing of physical inhibitors of amyloid aggregation considering shorter time frames and foolproof methods.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ishita Bisaria
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Deng Y, Guo Y, Zhang Y. Aggregation of gold nanoclusters in amyloid fibers: a luminescence assay for amyloid fibrillation detection and inhibitor screening. Analyst 2024; 149:870-875. [PMID: 38170814 DOI: 10.1039/d3an01789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Amyloid fibrillation is associated with a great variety of human diseases, such as Alzheimer's and Huntington's diseases. A fluorescence assay for amyloid fibrillation detection and inhibitor screening was developed based on the fact that the fluorescence emission of gold nanoclusters (Au NCs) is largely enhanced upon adding amyloids, such as lysozyme amyloid fibers. A good linear relationship exists between the enhanced fluorescence intensity of Au NCs and lysozyme fiber within the concentration range of 0-0.05 mg mL-1. This ultra-sensitive method can detect the protein fiber earlier than thioflavin T (THT), allowing more time for disease treatment. Furthermore, Au NCs have many advantages over the classical probe (i.e., THT), such as large Stokes shifts and low toxicity. We selected ascorbic acid as a representative inhibitor and used this method to screen inhibitors. If inhibitors are added when incubating lysozyme, the lysozyme fibrosis process will be crimped, decreasing the amount of lysozyme fibers.
Collapse
Affiliation(s)
- Yilin Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Ying Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| |
Collapse
|
6
|
Chen X, Xing L, Li X, Chen N, Liu L, Wang J, Zhou X, Liu S. Manganese Ion-Induced Amyloid Fibrillation Kinetics of Hen Egg White-Lysozyme in Thermal and Acidic Conditions. ACS OMEGA 2023; 8:16439-16449. [PMID: 37179629 PMCID: PMC10173442 DOI: 10.1021/acsomega.3c01531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
As manganese ions (Mn2+) are identified as an environmental risk factor for neurodegenerative diseases, uncovering their action mechanism on protein amyloid fibril formation is crucial for related disease treatments. Herein, we performed a combined study of Raman spectroscopy, atomic force microscopy (AFM), thioflavin T (ThT) fluorescence, and UV-vis absorption spectroscopy assays, in which the distinctive effect of Mn2+ on the amyloid fibrillation kinetics of hen egg white-lysozyme (HEWL) was clarified at the molecular level. With thermal and acid treatments, the unfolding of protein tertiary structures is efficiently accelerated by Mn2+ to form oligomers, as indicated by two Raman markers for the Trp residues on protein side chains: the FWHM at 759 cm-1 and the I1340/I1360 ratio. Meanwhile, the inconsistent evolutionary kinetics of the two indicators, as well as AFM images and UV-vis absorption spectroscopy assays, validate the tendency of Mn2+ toward the formation of amorphous aggregates instead of amyloid fibrils. Moreover, Mn2+ plays an accelerator role in the secondary structure transition from α-helix to organized β-sheet structures, as indicated by the N-Cα-C intensity at 933 cm-1 and the amide I position of Raman spectroscopy and ThT fluorescence assays. Notably, the more significant promotion effect of Mn2+ on the formation of amorphous aggregates provides credible clues to understand the fact that excess exposure to manganese is associated with neurological diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Lei Xing
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Xinfei Li
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Liming Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Jionghan Wang
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Shilin Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Insights into the remarkable attenuation of hen egg white lysozyme amyloid fibril formation mediated by biogenic gold nanoparticles stabilized by quercetin-functionalized tara gum. Int J Biol Macromol 2023; 232:123044. [PMID: 36586653 DOI: 10.1016/j.ijbiomac.2022.12.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Aberrant protein misfolding and/or aggregation and fibrillation has been linked to the pathogenesis of several debilitating chronic diseases including Alzheimer's and Parkinson's disease. Inhibiting protein amyloidogenesis has been proposed as a viable strategy to prevent or ameliorate associated disorders. Herein, we investigated the anti-amyloidogenic properties of biogenic gold nanoparticles (QTG-GNP) prepared via a simple green chemistry route and stabilized by quercetin-functionalized tara gum (QTG). The synthesized QTG-GNP was extensively characterized for its physicochemical attributes via UV-visible spectroscopy, TEM, FESEM, EDX, DLS/Zeta potential, FTIR, RAMAN, XRD, XPS, and TGA analyses, as well as for its biological properties. The results revealed that small-sized (5.01 ± 1.17 nm), well-dispersed, highly stable and round-shaped biogenic gold nanoparticles were successfully synthesized at room temperature with QTG as the sole reductant /stabilizer. Importantly, QTG-GNP demonstrated potent anti-aggregation and fibrillation inhibitory effects against amyloidogenic hen egg white lysozyme (HEWL). Also, QTG-GNP was able to dissociate pre-formed HEWL amyloid fibrils. Furthermore, the constructed nanoparticles exhibited potent anti-radical activities against DPPH and ABTS+ and were cytocompatible with mouse L929 fibroblast cells. On the basis of these findings, it was established that QTG-GNP holds strong prospects for further development as an agent for countering protein aggregation and associated disease conditions.
Collapse
|
8
|
Bardineshin F, Bahramikia S, Khodarahmi R, Hadi F. Mesalazine Inhibits Amyloid Formation and Destabilizes Pre-formed Amyloid Fibrils in the Human Insulin. J Fluoresc 2023:10.1007/s10895-022-03142-7. [PMID: 36640210 DOI: 10.1007/s10895-022-03142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Amyloid formation due to protein aggregation is associated with several amyloid diseases (amyloidosis). The use of small organic ligands as inhibitors of protein aggregation is an attractive strategy for the treatment of these diseases. In the present study, we evaluated the in vitro inhibitory and destabilizing effects of Mesalazine on human insulin fibrillation. To induce fibrillation, human insulin was incubated in 50 mM glycine buffer (pH 2.0) at 50 °C. The effect of Mesalazine on insulin amyloid aggregation was studied using spectroscopic, imaging, and computational approaches. Based on the results, the Mesalazine in a concentration-dependent manner (different ratios (1:0.1, 1:0.5, 1:1, and 1:5) of the insulin to Mesalazine) prevented the formation of amyloid fibrils and destabilized pre-formed fibrils. In addition, our molecular docking study confirmed the binding of Mesalazine to insulin through hydrogen bonds and hydrophobic interactions. Our findings suggest that Mesalazine may have therapeutic potential in the prevention of insulin amyloidosis and localized amyloidosis.
Collapse
Affiliation(s)
- Fatemeh Bardineshin
- Department of Biology, MSc of Biology, Lorestan University, Khorramabad, Iran
| | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Hadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
9
|
Rananaware P, Pandit P, Naik S, Mishra M, Keri RS, Brahmkhatri VP. Anti-amyloidogenic property of gold nanoparticle decorated quercetin polymer nanorods in pH and temperature induced aggregation of lysozyme. RSC Adv 2022; 12:23661-23674. [PMID: 36090438 PMCID: PMC9389553 DOI: 10.1039/d2ra03121c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin is an abundant plant polyphenol effective against several diseases due to its antioxidant and anti-inflammatory activity. Herein, we report novel polymeric quercetin nanorods and the former decorated with gold nanoparticles for the first time. The prepared conjugates quercetin-polyvinylpyrrolidone (Q-PVP) and quercetin-polyvinylpyrrolidone-gold nanoparticles (Q-PVP-Au) were characterized by UV-visible spectroscopy, Fourier transform infrared, dynamic light scattering, and zeta potential measurements. The surface morphology of conjugates was analyzed by field emission scanning electron microscopy. These conjugates exhibit harmonized rod-like morphology with a narrow size distribution. Furthermore, the quercetin conjugates with nanorod morphology exhibited enhanced and prolonged drug release over a long period. The synthesized conjugates were investigated for lysozyme aggregation kinetics. ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates could suppress fibrillogenesis in lysozyme. The highest amyloid aggregation inhibition activity (IC50) was obtained against Q-PVP and Q-PVP-Au at 32 μg mL-1 and 30 μg mL-1 respectively. The amyloid aggregate disintegration activity (DC50) obtained against Q-PVP and Q-PVP-Au was 27 μg mL-1 and 29 μg mL-1 respectively. The present quercetin conjugates exhibit enhanced bioavailability and stability. They were potent inhibitors of lysozyme aggregation that may find applications as a therapeutic agent in neurological diseases like Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Parimal Pandit
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science NIT Rourkela Rourkela Odisha 769008 India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science NIT Rourkela Rourkela Odisha 769008 India
| | - Rangappa S Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Varsha P Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| |
Collapse
|
10
|
Jamali M, Mohajer S, Sheikhlary S, Ara MHM. Z-scan optical method complements the Thioflavin T assay for investigation of anti-Alzheimer's impact of polyphenols. Photodiagnosis Photodyn Ther 2022; 39:102914. [PMID: 35595186 DOI: 10.1016/j.pdpdt.2022.102914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
Polyphenols are tremendously effective in eliminating the amyloid-beta aggregations, the main hallmark of Alzheimer's disease. In recent years various nano drugs and biomaterials based on polyphenolic compounds have been synthetized to treat or prevent Alzheimer's disease, and the main in-vitro approach to investigate the anti-Alzheimer's properties of materials, is Thioflavin T assay. In spite of being very helpful, it has some drawbacks and cannot guarantee the accuracy of data, specifically in case of polyphenolic compounds; thus, rendering accurate results requires utilizing other assays along with Thioflavin T. In this experiment, we introduced Z-scan technique as a complementary test for Thioflavin T assay. In this study, the anti-Alzheimer's properties of two polyphenols quercetin and fulvic acid were assessed in the presence and absences of silver nanoparticles at various concentrations, both via Z-scan technique and Thioflavin T assay, after which the two tests were aligned with each other. The polyphenols' non-linear refractive indices obtained by the Z-scan technique correlated well with their related fluorescence intensities from the Thioflavin T assay in such a way that, the smaller the magnitude of the non-linear refractive indices, the stronger the anti-amyloidogenic impact. Our work shows that Z-scan could be used along with Thioflavin T for better investigation of polyphenols' anti-Alzheimer's properties.
Collapse
Affiliation(s)
- Mohammad Jamali
- Biophotonics Lab, Faculty of Physics, Kharazmi University, Karaj 31979-37551, Iran
| | - Salman Mohajer
- Biophotonics Lab, Faculty of Physics, Kharazmi University, Karaj 31979-37551, Iran; Applied Science Research Center, Kharazmi University, Karaj 31979-37551, Iran
| | - Sara Sheikhlary
- Faculty of Biological Sciences, Kharazmi University, Karaj 31979-37551, Iran
| | - Mohammad Hossien Majles Ara
- Biophotonics Lab, Faculty of Physics, Kharazmi University, Karaj 31979-37551, Iran; Applied Science Research Center, Kharazmi University, Karaj 31979-37551, Iran
| |
Collapse
|
11
|
Beiranvand M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): an anti-ulcer and anti-oxidant drug. Inflammopharmacology 2021; 29:1279-1290. [PMID: 34410540 DOI: 10.1007/s10787-021-00856-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Mesalazine, also known as 5-aminosalicylic acid (5-ASA), is a synthetic drug from the family of nonsteroidal anti-inflammatory drugs (NSAIDs) used for inflammatory diseases of the gastrointestinal tract. However, 5-ASA has also been used for various other diseases due to its pharmacological effects, but they are usually scattered across various publications, which may limit further research and clinical use of this drug. This review is a summary of published information on the biological and pharmacological effects of 5-ASA with the aim of identifying its anti-oxidant role and medicinal use. 5-ASA data have been collected from 1987 to February 2021 using major databases such as Web of Science, PubMed, Elsevier, Wiley Online Library, Springer, Google Scholar, etc. According to research, the pharmacological and biological effects of 5-ASA include treatment of inflammatory bowel disease, and anti-oxidant, anti-inflammatory, antibacterial, antifungal, anticancer, anti-amyloid, gastric protection (gastroprotective), and antidiverticulosis properties. Numerous pharmacological studies have shown that 5-ASA is an anti-oxidant and anti-ulcer compound with high therapeutic potential that, if the appropriate dose is discovered, its chemical structure changes and its effectiveness is optimized, 5-ASA has been used experimentally for other diseases.
Collapse
Affiliation(s)
- Mohammad Beiranvand
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
12
|
Beiranvand M, Bahramikia S. Ameliorating and protective effects mesalazine on ethanol-induced gastric ulcers in experimental rats. Eur J Pharmacol 2020; 888:173573. [PMID: 32956646 DOI: 10.1016/j.ejphar.2020.173573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
|