1
|
Mahato R, Samanta R, Musib D, Hazra CK. Acid-Catalyzed Solvent-Switchable Chemoselective N-Alkylation and para C-Alkylation of Unprotected Arylamines Utilizing ortho-Quinone Methides. J Org Chem 2025. [PMID: 40396785 DOI: 10.1021/acs.joc.5c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Nitrogen-containing compounds, such as anilines, represent some of the most prevalent and valuable chemical entities within the field of chemistry. However, their high reactivity, which frequently lacks selectivity, has constrained their application in various chemical transformations, including the alkylation of alcohols. In the present study, we successfully accomplished site-selective para and N-H alkylation of anilines by utilizing ortho-quinone methides under mild conditions. The regioselective para-alkylation was conducted with unprotected anilines in a metal-free environment, while N-H alkylations were effectively performed under similarly mild conditions. DFT calculations were carried out to understand the distinctive chemoselectivity of N-alkylation and C-alkylation of unprotected arylamines with different nonpolar (toluene) and polar protic (HFIP) solvents. Furthermore, the different transition state models identified in our calculations shed light on the intricate interplay between solvent effects and reaction selectivity.
Collapse
Affiliation(s)
- Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rima Samanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Imphal, Manipur 795004, India
| | - Chinmoy K Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Tang J, Zhang Y, Zhou L, Song X, Wei Y, Qi J, Wu J, Song Z, Zhan L. Design, synthesis and biological evaluation of indoline-maleimide conjugates as potential antitumor agents for the treatment of colorectal cancer. Bioorg Med Chem 2024; 108:117786. [PMID: 38843656 DOI: 10.1016/j.bmc.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/17/2024]
Abstract
An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3β pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.
Collapse
Affiliation(s)
- Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yusi Wei
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Qi
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Kandhavelu J, Subramanian K, Naidoo V, Sebastianelli G, Doan P, Konda Mani S, Yapislar H, Haciosmanoglu E, Arslan L, Ozer S, Thiyagarajan R, Candeias NR, Penny C, Kandhavelu M, Murugesan A. A novel EGFR inhibitor, HNPMI, regulates apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in colon cancer. Br J Pharmacol 2024; 181:107-124. [PMID: 37183661 PMCID: PMC10952184 DOI: 10.1111/bph.16141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is the second most lethal disease, with high mortality due to its heterogeneity and chemo-resistance. Here, we have focused on the epidermal growth factor receptor (EGFR) as an effective therapeutic target in CRC and studied the effects of polyphenols known to modulate several key signalling mechanisms including EGFR signalling, associated with anti-proliferative and anti-metastatic properties. EXPERIMENTAL APPROACH Using ligand- and structure-based cheminformatics, we developed three potent, selective alkylaminophenols, 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), 2-[(1,2,3,4-tetrahydroquinolin-1-yl)(4-methoxyphenyl)methyl]phenol (THMPP) and N-[2-hydroxy-5-nitrophenyl(4'-methylphenyl)methyl]indoline (HNPMI). These alkylaminophenols were assessed for EGFR interaction, EGFR-pathway modulation, cytotoxic and apoptosis induction, caspase activation and transcriptional and translational regulation. The lead compound HNPMI was evaluated in mice bearing xenografts of CRC cells. KEY RESULTS Of the three alkylaminophenols tested, HNPMI exhibited the lowest IC50 in CRC cells and potential cytotoxic effects on other tumour cells. Modulation of EGFR pathway down-regulated protein levels of osteopontin, survivin and cathepsin S, leading to apoptosis. Cell cycle analysis revealed that HNPMI induced G0/G1 phase arrest in CRC cells. HNPMI altered the mRNA for and protein levels of several apoptosis-related proteins including caspase 3, BCL-2 and p53. HNPMI down-regulated the proteins crucial to oncogenesis in CRC cells. Assays in mice bearing CRC xenografts showed that HNPMI reduced the relative tumour volume. CONCLUSIONS AND IMPLICATIONS HNPMI is a promising EGFR inhibitor for clinical translation. HNPMI regulated apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in CRC cell lines, showing potential as a therapeutic agent in the treatment of CRC.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Kumar Subramanian
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Vivash Naidoo
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Giulia Sebastianelli
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
| | - Phuong Doan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Saravanan Konda Mani
- Research and Publication WingBharath Institute of Higher Education and ResearchChennaiTamil NaduIndia
| | - Hande Yapislar
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ebru Haciosmanoglu
- Department of BiophysicsBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Leman Arslan
- Department of PhysiologyBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Samed Ozer
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjKingdom of Saudi Arabia
| | - Nuno R. Candeias
- LAQV‐REQUIMTE, Department of ChemistryUniversity of AveiroAveiroPortugal
- Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
| | - Clement Penny
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Meenakshisundaram Kandhavelu
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Akshaya Murugesan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- Department of BiotechnologyLady Doak CollegeThallakulam, MaduraiIndia
| |
Collapse
|
4
|
Singh N, Yadav SS. Ethnomedicinal uses of Indian spices used for cancer treatment: A treatise on structure-activity relationship and signaling pathways. Curr Res Food Sci 2022; 5:1845-1872. [PMID: 36276240 PMCID: PMC9579211 DOI: 10.1016/j.crfs.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/β-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
5
|
Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 2022; 27:482-508. [PMID: 35713779 PMCID: PMC9308588 DOI: 10.1007/s10495-022-01735-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/15/2023]
Abstract
Programmed cell death is considered a key player in a variety of cellular processes that helps to regulate tissue growth, embryogenesis, cell turnover, immune response, and other biological processes. Among different types of cell death, apoptosis has been studied widely, especially in the field of cancer research to understand and analyse cellular mechanisms, and signaling pathways that control cell cycle arrest. Hallmarks of different types of cell death have been identified by following the patterns and events through microscopy. Identified biomarkers have also supported drug development to induce cell death in cancerous cells. There are various serological and microscopic techniques with advantages and limitations, that are available and are being utilized to detect and study the mechanism of cell death. The complexity of the mechanism and difficulties in distinguishing among different types of programmed cell death make it challenging to carry out the interventions and delay its progression. In this review, mechanisms of different forms of programmed cell death along with their conventional and unconventional methods of detection of have been critically reviewed systematically and categorized on the basis of morphological hallmarks and biomarkers to understand the principle, mechanism, application, advantages and disadvantages of each method. Furthermore, a very comprehensive comparative analysis has been drawn to highlight the most efficient and effective methods of detection of programmed cell death, helping researchers to make a reliable and prudent selection among the available methods of cell death assay. Conclusively, how programmed cell death detection methods can be improved and can provide information about distinctive stages of cell death detection have been discussed.
Collapse
Affiliation(s)
- Sana Kari
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Kumar Subramanian
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Ilenia Agata Altomonte
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India
| | - Olli Yli-Harja
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA, USA.,Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland. .,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India.
| |
Collapse
|
6
|
Roman G. Anticancer activity of Mannich bases: a review of recent literature. ChemMedChem 2022; 17:e202200258. [PMID: 35678192 DOI: 10.1002/cmdc.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Indexed: 11/05/2022]
Abstract
This report summarizes the latest published data on the antiproliferative action and cytotoxic activity of Mannich bases, a structurally heterogeneous category of chemical entities that includes compounds which are synthesized via the grafting of an aminomethyl function onto diverse substrates by means of the Mannich reaction. The present overview of the topic is an update to the information assembled in a previously published review that covered the literature up to 2014.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic polymers, 41A Aleea Gr. Ghica Voda, 700487, Iasi, ROMANIA
| |
Collapse
|
7
|
Palanivel S, Yli-Harja O, Kandhavelu M. Molecular interaction study of novel indoline derivatives with EGFR-kinase domain using multiple computational analysis. J Biomol Struct Dyn 2021; 40:7545-7554. [PMID: 33749517 DOI: 10.1080/07391102.2021.1900917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidermal growth factor receptors are constitutively overexpressed in breast cancer cells, which in turn stimulate many downstream signaling pathways that are involved in many carcinogenic processes. This makes EGFR a striking target for cancer therapy. This study focuses on the EGFR kinase domain inactivation by novel synthesized indoline derivatives. The compounds used are N-(2-hydroxy-5-nitrophenyl (4'-methyl phenyl) methyl) indoline (HNPMI), alkylaminophenols - 2-((3,4-Dihydroquinolin-1(2H)-yl) (p-tolyl) methyl) phenol (THTMP) and 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP). To get a clear insight into the molecular interaction of EGFR and the three compounds, we have used ADME/Tox prediction, Flexible docking analysis followed by MM/GB-SA, QM/MM analysis, E-pharmacophore mapping of the ligands and Molecular dynamic simulation of protein-ligand complexes. All three compounds showed good ADME/Tox properties obeying the rules of drug-likeliness and showed high human oral absorption. Molecular docking was performed with the compounds and EGFR using Glide Flexible docking mode. This showed that the HNPMI was best among the three compounds and had interactions with key residue Lys 721. The protein-ligand complexes were stable when simulated for 100 ns using Desmond software. The interactions were further substantiated using QM/MM analysis and MM-GB/SA analysis in which HNPMI was scored as the best molecule. All the analyses were carried out with a reference molecule-Gefitinib which is a known standard inhibitor of EGFR. Thus, the study elucidates the potential role of the indoline derivatives as an anti-cancer agent against breast cancer by effectively inhibiting EGFR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suresh Palanivel
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Olli Yli-Harja
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| |
Collapse
|