1
|
So YH, Mishra D, Gite S, Sonawane R, Waite D, Shaikh R, Vora LK, Thakur RRS. Emerging trends in long-acting sustained drug delivery for glaucoma management. Drug Deliv Transl Res 2025; 15:1907-1934. [PMID: 39786666 DOI: 10.1007/s13346-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress. Topical formulations are often used in glaucoma treatment, whereas surgical measures are used in acute glaucoma cases. For most patients, long-term glaucoma treatments are given. Poor patient compliance and low bioavailability are often associated with topical therapy, which suggests that sustained-release, long-acting drug delivery systems could be beneficial in managing glaucoma. This review summarizes the eye's physiology, the pathogenesis of glaucoma, current treatments, including both pharmacological and nonpharmacological interventions, and recent advances in long-acting drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yin Ho So
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Sandip Gite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahul Sonawane
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - David Waite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahamatullah Shaikh
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
2
|
Aragón-Navas A, Rodrigo MJ, Munuera I, García-Herranz D, Subías M, Villacampa P, García-Feijoo J, Pablo L, Garcia-Martin E, Herrero-Vanrell R, Bravo-Osuna I. Multi-loaded PLGA microspheres as neuroretinal therapy in a chronic glaucoma animal model. Drug Deliv Transl Res 2025; 15:1660-1684. [PMID: 39361228 PMCID: PMC11968513 DOI: 10.1007/s13346-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 04/04/2025]
Abstract
This work focused on the co-encapsulation and simultaneous co-delivery of three different neuroprotective drugs in PLGA (poly(lactic-co-glycolic acid) microspheres for the treatment of glaucoma. For formulation optimization, dexamethasone (anti-inflammatory) and ursodeoxycholic acid (anti-apoptotic) were co-loaded by the solid-in-oil-in-water emulsion solvent extraction-evaporation technique as a first step. The incorporation of a water-soluble co-solvent (ethanol) and different amounts of dexamethasone resulted critical for the encapsulation of the neuroprotective agents and their initial release. The optimized formulation was obtained with 60 mg of dexamethasone and using an 80:20 dichloromethane:ethanol ratio. In the second step in the microencapsulation process, the incorporation of the glial cell line-derived neurotrophic factor (GDNF) was performed. The final prototype showed encapsulation efficiencies for each component above 50% with suitable properties for long-term application for at least 3 months. Physicochemical studies were performed by SEM, TEM, DSC, XRD, and gas chromatography. The evaluation of the kinetic release by the Gallagher-Corrigan analysis with Gorrasi correction helped to understand the influence of the co-microencapsulation on the delivery of the different actives from the optimized formulation. The final prototype was tested in a chronic glaucoma animal model. Rats received two intravitreal injections of the neuroprotective treatment within a 24-week follow-up study. The proposed formulation improved retinal ganglion cell (RGC) functionality examined by electroretinography. Also, it was able to maintain a neuroretinal thickness similar to that of healthy animals scanned by in vivo optical coherence tomography, and a higher RGC count on histology compared to glaucomatous animals at the end of the study.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Maria Jesus Rodrigo
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Inés Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga S/N, 08907, L'Hospitalet de Llobregat, Spain
| | - Julián García-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Luis Pablo
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - Elena Garcia-Martin
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
3
|
Chen TM, Sapienza JS, Nadelstein B, Palmer-Greenberg S, Kim K. Combination phacoemulsification and pars plana vitrectomy for retinal reattachment surgery in the Siberian Husky breed. Vet Ophthalmol 2025; 28:168-174. [PMID: 37688325 DOI: 10.1111/vop.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE To report the success rate and complications of combined phacoemulsification and pars plana vitrectomy (PPV) for treatment of cataracts and retinal detachment in the Siberian Husky breed. ANIMALS STUDIED Client-owned Siberian Husky dogs that underwent combined phacoemulsification and PPV at two veterinary referral centers. PROCEDURE Retrospective study of 16 Siberian Husky dogs that underwent combined phacoemulsification and PPV with a minimum 3-month postoperative follow-up. Signalment and preoperative ophthalmic examination findings, intraoperative findings, and postoperative visual status and complications were recorded. Functional success was defined as the maintenance or restoration of vision. RESULTS Seventeen eyes of 16 dogs were evaluated. Immediate postoperative anatomic success was achieved in all 17 eyes (100%), with functional success through the last known follow-up examination achieved in 88.2% of operated eyes (15/17). The most common postoperative complication was silicone oil migration into the anterior chamber (AC-SiO migration), occurring in 47.1% of eyes (8/17), followed by corneal endothelial decompensation and glaucoma each occurring in 17.6% of eyes (3/17). CONCLUSIONS Combined phacoemulsification and PPV is a viable option in Siberian Husky dogs with cataracts and preoperative retinal detachment. Visual success was achieved in 88.2% of eyes, with the most common postoperative complication being AC-SiO migration.
Collapse
Affiliation(s)
- Tiffany M Chen
- Long Island Veterinary Specialists, Plainview, New York, USA
| | - John S Sapienza
- Long Island Veterinary Specialists, Plainview, New York, USA
| | | | | | - Kay Kim
- Long Island Veterinary Specialists, Plainview, New York, USA
| |
Collapse
|
4
|
Benitez‐Vera V, Bras D, Montiani‐Ferreira F. Micropulse transscleral cyclophotocoagulation in canine glaucoma: A retrospective study evaluating sweep velocity. Vet Ophthalmol 2025; 28:293-305. [PMID: 38448774 PMCID: PMC11911986 DOI: 10.1111/vop.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To report preliminary results of MP-TSCP in canine patients with glaucoma while evaluating sweep velocity, treatment efficacy, and safety utilizing standardized surgical parameters. ANIMAL STUDIED Client-owned dogs that underwent MP-TSCP at a veterinary referral hospital. PROCEDURE Medical records of 19 eyes (14 dogs) treated with MP-TSCP were reviewed. Eleven eyes were treated with a 10 s/sweep (s) velocity and 8 eyes with a 20 s/s. Laser duty cycle was set at 31.3%, mean laser energy was 2766 mW, and mean duration was 120 s per hemisphere. Minimum post-operative follow-up was 6 months. Outcomes of intraocular pressure (IOP), vision status, degree of antiglaucoma medications, and complications were evaluated. RESULTS There was a significantly lower median (IQR) IOP (<25 mmHg) at each timepoint postoperatively compared to IOP pre-operatively (p < 0.05). The overall success rate for IOP control at 6 months was 84%, 100% for the 10 s/s and 62.5% for the 20 s/s. Vision was preserved in 10/11 (90%) eyes from the 10 s/s group and 4/8 (50%) eyes from the 20 s/s group at 6 months. Average number of glaucoma medications in the 10 s/s group decreased from 4.4 to 1.5 and from 3.3 to 2.5 in the 20 s/s group. Post-operative complications were mild and resolved within 1 week. CONCLUSIONS MP-TSCP is a non-invasive treatment alternative for canine glaucoma. Employing higher energy levels rendered long-term IOP control while retaining a high safety profile with minimal postoperative complications. There was no statistical difference between a 10 s/s and 20 s/s surgical velocity, both leading to successful surgical outcomes up to 6 months post-operatively.
Collapse
Affiliation(s)
- Valeria Benitez‐Vera
- Department of OphthalmologyUniversity of Georgia Veterinary Teaching HospitalAthensGeorgiaUSA
| | - Dineli Bras
- Department of OphthalmologyCentro de Especialistas Veterinarios de Puerto RicoSan JuanPuerto RicoUSA
| | - Fabiano Montiani‐Ferreira
- Veterinary Medicine Department, Comparative Ophthalmology Laboratory (LABOCO)Federal University of Paraná (UFPR)CuritibaPRBrazil
| |
Collapse
|
5
|
Wang R, Wei H, Shi Y, Wang C, Yu Z, Zhang Y, Lai Y, Chen J, Wang G, Tian W. Self-generating electricity system driven by aqueous humor flow and trabecular meshwork contraction motion activated BCKa for glaucoma intraocular pressure treatment. MATERIALS HORIZONS 2025; 12:434-450. [PMID: 39449290 DOI: 10.1039/d4mh01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes. TM cells' function is reduced, and membrane ion channels are impaired in POAG. The dysfunction of Large conductance Ca2+-activated K+ (BKCa) plays a central role in the pathogenesis of POAG. In this work, we targeted MXene nanoparticles (MXene-RGD) with piezoelectric response to TM cells in a 3D model of glaucoma in vitro as well as in the rabbit Transient Ocular Hypertension (OHT) Model in vivo. MXene-RGD gives the TM electromechanical transfer properties, while the self-enhancing and self-generated electricity properties of the TM are determined by the aqueous humor flow rate and the size of the deformation of the TM. MXene-RGD is nontoxic, as illustrated by a cell toxicity study and histological examination. In a 3D in vitro model of high-pressure glaucoma, whole-cell patch-clamp confirmed that piezoelectric stimulation turns on BKCa, which reduces the volume of the cell. MXene-RGD was injected into the anterior chamber with minimal trauma, i.e., anterior chamber injection, and specifically targeted to TM cells. The OHT model in vivo confirmed the potential IOP-lowering ability of MXene-RGD. We evaluated the ion channels involved in the reduction of IOP by MXene-RGD by pre-treatment with a BKCa channel blocker (iberiotoxin, IbTX) and a voltage-gated Ca2+channel blocker (nifedipine). Quantitative qPCR analysis showed that MXene-RGD inhibited the upregulation of mRNA expression levels of the myofibroblast marker α-smooth muscle actin (α-SMA) and the inflammatory response marker interleukin-6 (IL-6) induced by IOP. Histology confirmed that MXene-RGD attenuated IOP-induced proliferation and collagen production in the TM. Taken together, we present for the first time a minimally invasive surgical approach for targeting TM cells for POAG by utilizing piezoresponse nanomaterials to target BKCa to repair or awaken the ability of TM cells to regulate IOP homeostasis on their own.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Haiying Wei
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yuying Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Guangfu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| |
Collapse
|
6
|
Paleel F, Qin M, Tagalakis AD, Yu-Wai-Man C, Lamprou DA. Manufacturing and characterisation of 3D-printed sustained-release Timolol implants for glaucoma treatment. Drug Deliv Transl Res 2025; 15:242-252. [PMID: 38578377 PMCID: PMC11614933 DOI: 10.1007/s13346-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma.
Collapse
Affiliation(s)
- Fathima Paleel
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, UK
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK
| | - Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK
| | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK.
| | | |
Collapse
|
7
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
8
|
Lee JY, Choi JA, Park SP, Jee D. Association Between High Blood Folate Levels and Glaucoma in a Representative Korean Population. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38170538 PMCID: PMC10768708 DOI: 10.1167/iovs.65.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose This study aimed to investigate the association between folate levels and the prevalence of glaucoma. Methods This nationwide population-based cross-sectional study included 1790 participants aged ≥40 years. We analyzed data regarding the participants obtained in the 2016-2018 Korean National Health and Nutrition Examination Survey. The diagnosis of glaucoma was defined according to the International Society of Geographical and Epidemiological Ophthalmology criteria. Logistic regression analyses were used to investigate the relationship between blood folate levels and glaucoma. Results There was a significantly lower prevalence of glaucoma in the highest quartile of blood folate levels than in the lowest quartile, after adjusting for confounding factors such as age, sex, systemic hypertension, diabetes, hypercholesterolemia, and smoking (odds ratio [OR] = 0.470; 95% confidence interval [CI], 0.291-0.759; P for trend = 0.017). There was a significantly lower risk of glaucoma in the highest quartile of blood folate levels than in the lowest quartile among women (OR = 0.188; 95% CI, 0.099-0.357; P for trend <0.001) and younger participants (OR =0.443; 95% CI, 0.229-0.856; P for trend = 0.045). Conclusions Our findings indicate a strong inverse correlation between blood folate levels and glaucoma.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Ophthalmology and Visual Science, College of Medicine, Daejeon St. Marys’ Hospital, Catholic University of Korea, Seoul, Korea
| | - Jin A. Choi
- Department of Ophthalmology and Visual Science, College of Medicine, St. Vincent's Hospital, Catholic University of Korea, Seoul, Korea
| | - Sung Pyo Park
- Department of Ophthalmology, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Donghyun Jee
- Department of Ophthalmology and Visual Science, College of Medicine, St. Vincent's Hospital, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Wang L, Yu T, Dong F, Xu J, Fu J, Sun H. Tongqiao Mingmu formula alleviates retinal ganglion cell autophagy through PI3K/AKT/mTOR pathway. Anat Rec (Hoboken) 2023; 306:3120-3130. [PMID: 36098527 DOI: 10.1002/ar.25060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Glaucoma is a severe blindness-causing optic nerve disease characterized by a loss of retinal ganglion cells (RGCs). Previous studies have shown that the Tongqiao Mingmu (TQMM) formula can reduce retinal and optic nerve damage, but its mechanism of action requires further elucidation. In this study, an RGC injury model was prepared using glutamate and then treated with serum-containing drug from the TQMM formula (hereafter called "TQMM formula serum"). In the glutamate-induced RGC injury model, cell viability decreased with an increase in glutamate concentration, whereas the expression of autophagy-related biomarkers LC3 and Belicin-1 increased. An adenovirus transfection experiment revealed that glutamate markedly promoted autophagic flux in RGCs. Notably, TQMM formula serum inhibited the expression of autophagy-related biomarkers, reduced autophagy flux, and reversed the damage caused by glutamate to RGCs. Furthermore, the PI3K inhibitor LY294002 was used to intervene in the RGC autophagy model and was found to suppress the PI3K/AKT/mTOR pathway and enhance RGC autophagy. However, TQMM formula serum could generate an opposite effect and upregulate the expressions of the PI3K/AKT/mTOR pathway genes and proteins. In conclusion, the TQMM formula can prevent glutamate-induced autophagy in RGCs, possibly by activating the PI3K/AKT/mTOR pathway and reducing the expression of autophagy-related biomarkers LC3 and Belicin-1 to attenuate autophagy and maintain RGC viability.
Collapse
Affiliation(s)
- Liyuan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang Academy of Sciences of Traditional Chinese Medicine, Harbin, China
| | - Tianyang Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feixue Dong
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiayu Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jin Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers (Basel) 2023; 15:polym15061373. [PMID: 36987154 PMCID: PMC10054733 DOI: 10.3390/polym15061373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The eye has anatomical structures that function as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of medications administered topically. The development of polymeric nano-based drug-delivery systems (DDS) could be the solution to these challenges: it can pass through ocular barriers, offering higher bioavailability of administered drugs to targeted tissues that are otherwise inaccessible; it can stay in ocular tissues for longer periods of time, requiring fewer drug administrations; and it can be made up of polymers that are biodegradable and nano-sized, minimizing the undesirable effects of the administered molecules. Therefore, therapeutic innovations in polymeric nano-based DDS have been widely explored for ophthalmic drug-delivery applications. In this review, we will give a comprehensive overview of polymeric nano-based drug-delivery systems (DDS) used in the treatment of ocular diseases. We will then examine the current therapeutic challenges of various ocular diseases and analyze how different types of biopolymers can potentially enhance our therapeutic options. A literature review of the preclinical and clinical studies published between 2017 and 2022 was conducted. Thanks to the advances in polymer science, the ocular DDS has rapidly evolved, showing great promise to help clinicians better manage patients.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Said Ashkar
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrieda Jain
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
11
|
Basavarajappa D, Gupta V, Wall RV, Gupta V, Chitranshi N, Mirshahvaladi SSO, Palanivel V, You Y, Mirzaei M, Klistorner A, Graham SL. S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma. FASEB J 2023; 37:e22710. [PMID: 36520045 DOI: 10.1096/fj.202201346r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Aragón-Navas A, Rodrigo MJ, Garcia-Herranz D, Martinez T, Subias M, Mendez S, Ruberte J, Pampalona J, Bravo-Osuna I, Garcia-Feijoo J, Pablo LE, Garcia-Martin E, Herrero-Vanrell R. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres. Drug Deliv 2022; 29:2357-2374. [PMID: 35904152 PMCID: PMC9341346 DOI: 10.1080/10717544.2022.2096712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To create a chronic glaucoma animal model by a single intracameral injection of biodegradable poly lactic-co-glycolic acid (PLGA) microspheres (Ms) co-loaded with dexamethasone and fibronectin (MsDexaFibro). MsDexaFibro were prepared by a water-in-oil-in-water emulsion method including dexamethasone in the organic phase and fibronectin in the inner aqueous phase. To create the chronic glaucoma model, an interventionist and longitudinal animal study was performed using forty-five Long Evans rats (4-week-old). Rats received a single intracameral injection of MsDexafibro suspension (10%w/v) in the right eye. Ophthalmological parameters such as clinical signs, intraocular pressure (IOP), neuro-retinal functionality by electroretinography (ERG), retinal structural analysis by optical coherence tomography (OCT), and histology were evaluated up to six months. According to the results obtained, the model proposed was able to induce IOP increasing in both eyes over the study, higher in the injected eyes up to 6 weeks (p < 0.05), while preserving the ocular surface. OCT quantified progressive neuro-retinal degeneration (mainly in the retinal nerve fiber layer) in both eyes but higher in the injected eye. Ganglion cell functionality decreased in injected eyes, thus smaller amplitudes in PhNR were detected by ERG. In conclusion, a new chronic glaucoma animal model was created by a single injection of MsDexaFibro very similar to open-angle glaucoma occurring in humans. This model would impact in different fields such as ophthalmology, allowing long period of study of this pathology; pharmacology, evaluating the neuroprotective activity of active compounds; and pharmaceutical technology, allowing the correct evaluation of the efficacy of long-term sustained ocular drug delivery systems.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - María J Rodrigo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - David Garcia-Herranz
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - Teresa Martinez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Manuel Subias
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Mendez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Irene Bravo-Osuna
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Julian Garcia-Feijoo
- National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis E Pablo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Elena Garcia-Martin
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
13
|
Wang C, An Y, Xia Z, Zhou X, Li H, Song S, Ding L, Xia X. The neuroprotective effect of melatonin in glutamate excitotoxicity of R28 cells and mouse retinal ganglion cells. Front Endocrinol (Lausanne) 2022; 13:986131. [PMID: 36313740 PMCID: PMC9596792 DOI: 10.3389/fendo.2022.986131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness. The progressive degeneration of retinal ganglion cells (RGCs) is the major characteristic of glaucoma. Even though the control of intraocular pressure could delay the loss of RGCs, current clinical treatments cannot protect them directly. The overactivation of N-methyl-D-aspartic acid (NMDA) receptors by excess glutamate (Glu) is among the important mechanisms of RGC death in glaucoma progression. Melatonin (MT) is an indole neuroendocrine hormone mainly secreted by the pineal gland. This study aimed to investigate the therapeutic effect of MT on glutamate excitotoxicity of mouse RGCs and R28 cells. The Glu-induced R28 cell excitotoxicity model and NMDA-induced retinal injury model were established. MT was applied to R28 cells and the vitreous cavity of mice by intravitreal injection. Cell counting kit-8 assay and propidium iodide/Hoechst were performed to evaluate cell viability. Reactive oxygen species and glutathione synthesis assays were used to detect the oxidative stress state of R28 cells. Retina immunofluorescence and hematoxylin and eosin staining were applied to assess RGC counts and retinal structure. Flash visual-evoked potential was performed to evaluate visual function in mice. RNA sequencing of the retina was performed to explore the underlying mechanisms of MT protection. Our results found that MT treatment could successfully protect R28 cells from Glu excitotoxicity and decrease reactive oxygen species. Also, MT rescued RGCs from NMDA-induced injury and protected visual function in mice. This study enriches the indications of MT in the treatment of glaucoma, providing practical research ideas for its comprehensive prevention and treatment.
Collapse
Affiliation(s)
- Chao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqiong An
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohua Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuezhi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Song
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaobo Xia, ; Lexi Ding,
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaobo Xia, ; Lexi Ding,
| |
Collapse
|
14
|
Wu X, Yang X, Liang Q, Xue X, Huang J, Wang J, Xu Y, Tong R, Liu M, Zhou Q, Shi J. Drugs for the treatment of glaucoma: Targets, structure-activity relationships and clinical research. Eur J Med Chem 2021; 226:113842. [PMID: 34536672 DOI: 10.1016/j.ejmech.2021.113842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023]
Abstract
Glaucoma is the third leading cause of blindness and impairment of vision worldwide, after refractive errors and cataracts. According to the survey, the number of people with glaucoma is more than 76 million, with projections increasing to 112 million by 2040. With the coming of an aging society, the number of people suffering from glaucoma will increase day by day. Glaucoma is a heterogeneous disease characterized by damage to the head of the optic nerve and visual field. High intraocular pressure is a major risk and cause of glaucoma optic neuropathy. Therefore, drug lowering intraocular pressure therapy is still the first-line therapy in clinical practice. Here, the targets, structure-activity relationship, and clinical progress of drugs for the treatment of glaucoma are reviewed.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu Sichuan, 610041, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu Sichuan, 610041, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiali Xue
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu Sichuan, 610041, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, 550002, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, 550002, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu Sichuan, 610072, China
| | - Maoyu Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China.
| | - Qiaodan Zhou
- Ultrasonography Lab, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu Sichuan, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu Sichuan, 610072, China.
| |
Collapse
|
15
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
16
|
Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021; 22:7994. [PMID: 34360760 PMCID: PMC8346985 DOI: 10.3390/ijms22157994] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
17
|
Tribble JR, Otmani A, Sun S, Ellis SA, Cimaglia G, Vohra R, Jöe M, Lardner E, Venkataraman AP, Domínguez-Vicent A, Kokkali E, Rho S, Jóhannesson G, Burgess RW, Fuerst PG, Brautaset R, Kolko M, Morgan JE, Crowston JG, Votruba M, Williams PA. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol 2021; 43:101988. [PMID: 33932867 PMCID: PMC8103000 DOI: 10.1016/j.redox.2021.101988] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma. Nicotinamide is neuroprotective in cell and animal models that recapitulate isolated features of glaucoma. Systemic nicotinamide administration has limited molecular side-effects on visual system tissue under basal conditions. Nicotinamide provides a robust reversal in the disease metabolic profile of glaucomatous animals. Nicotinamide increases oxidative phosphorylation, buffers and prevents metabolic stress, and increases mitochondrial size.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Shanshan Sun
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Sevannah A Ellis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Abinaya P Venkataraman
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto Domínguez-Vicent
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Seungsoo Rho
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden; Wallenberg Centre of Molecular Medicine, Umeå University, Umeå, Sweden.
| | | | - Peter G Fuerst
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA.
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Centre for Vision Research, Neuroscience and Behavioural Disorders, Duke-NUS, Singapore, Singapore.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Melatonin Prevents Non-image-Forming Visual System Alterations Induced by Experimental Glaucoma in Rats. Mol Neurobiol 2021; 58:3653-3664. [PMID: 33786741 DOI: 10.1007/s12035-021-02374-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Glaucoma is a blindness-causing disease that involves selective damage to retinal ganglion cells (RGCs) and their axons. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system functions, such as pupillary light reflex and circadian rhythms. We analyzed the effect of melatonin on the non-image-forming visual system alterations induced by experimental glaucoma. For this purpose, male Wistar rats were weekly injected with vehicle or chondroitin sulfate into the eye anterior chamber. The non-image-forming visual system was analyzed in terms of (1) melanopsin-expressing RGC number, (2) anterograde transport from the retina to the olivary pretectal nucleus and the suprachiasmatic nuclei, (3) blue- and white light-induced pupillary light reflex, (4) light-induced c-Fos expression in the suprachiasmatic nuclei, (5) daily rhythm of locomotor activity, and (6) mitochondria in melanopsin-expressing RGC cells. Melatonin prevented the effect of experimental glaucoma on melanopsin-expressing RGC number, blue- and white light-induced pupil constriction, retina-olivary pretectal nucleus, and retina- suprachiasmatic nuclei communication, light-induced c-Fos expression in the suprachiasmatic nuclei, and alterations in the locomotor activity daily rhythm. In addition, melatonin prevented the effect of glaucoma on melanopsin-expressing RGC mitochondrial alterations. These results support that melatonin protected the non-image-forming visual system against glaucoma, probably through a mitochondrial protective mechanism.
Collapse
|
19
|
Hopper RG, Montiani-Ferreira F, da Silva Pereira J, Fritz MC, Ruggiero VJ, Sapienza JS, Kato K, Komáromy AM. Presumed neuroprotective therapies prescribed by veterinary ophthalmologists for canine degenerative retinal and optic nerve diseases. Vet Ophthalmol 2021; 24:229-239. [PMID: 33682296 DOI: 10.1111/vop.12878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate veterinary ophthalmologists' use of presumed neuroprotective therapies for degenerative retinal and optic nerve diseases in dogs. PROCEDURES An online survey was sent to 663 board-certified veterinary ophthalmologists who were Diplomates of the American College of Veterinary Ophthalmologists (ACVO), Asian College of Veterinary Ophthalmologists (AiCVO), Latin American College of Veterinary Ophthalmologists (Colegio Latinoamericano de Oftalmólogos Veterinarios, CLOVE), or European College of Veterinary Ophthalmologists (ECVO). The survey was created using Qualtrics® software and focused on the prescription of presumed neuroprotective treatments for canine glaucoma, sudden acquired retinal degeneration syndrome (SARDS), progressive retinal atrophy (PRA), and retinal detachment (RD). RESULTS A total of 165 completed surveys were received, representing an overall response rate of 25%, which was comparable across the four specialty colleges. Of all respondents, 140/165 (85%) prescribed some form of presumed neuroprotective therapies at least once in the last five years: 114/165 (69%) for glaucoma, 51/165 (31%) for SARDS, 116/165 (70%) for PRA, and 50/165 (30%) for RD. The three most recommended neuroprotective reagents were the commercial Ocu-GLO™ Vision Supplement for animals, amlodipine, and human eye supplements. CONCLUSIONS Despite lack of published clinical efficacy data, the majority of surveyed board-certified veterinary ophthalmologists previously prescribed a presumed neuroprotective therapy at least once in the last five years in dogs with degenerative retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Ryan G Hopper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | - Jorge da Silva Pereira
- Center of Studies, Research, and Veterinary Ophthalmology (CEPOV), Rio de Janeiro, Brazil
| | - Michele C Fritz
- Office of Academic Programs, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Vickie J Ruggiero
- Office of Academic Programs, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | | | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
21
|
Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD + Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020; 12:nu12092871. [PMID: 32961812 PMCID: PMC7551676 DOI: 10.3390/nu12092871] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.
Collapse
Affiliation(s)
- Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, Wales, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- School of Medicine, Cardiff University, Cardiff CF14 4YS, Wales, UK
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| |
Collapse
|