1
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2025; 21:113-131. [PMID: 38367178 PMCID: PMC11958884 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Zhai Q, Shang S, Zhang Z, Sun L, Huang Y, Feng S, Wu Q, Cui H, Shi X. Mechanism of salvianolic phenolic acids and hawthorn triterpenic acids combination in intervening atherosclerosis: network pharmacology, molecular docking, and experimental validation. Front Pharmacol 2025; 16:1501846. [PMID: 39950115 PMCID: PMC11821658 DOI: 10.3389/fphar.2025.1501846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Background This study employs network pharmacology and molecular docking methods in conjunction with animal experimentation to elucidate the underlying mechanism by which the combination of salvianolic phenolic acids and hawthorn triterpenic acids (SHC) exerts its therapeutic effect on carotid atherosclerosis (AS) in ApoE-/- mice. Methods A network pharmacology research approach was used to predict potential core targets for SHC intervention in atherosclerosis. The predictions were subsequently validated through the implementation of animal in vivo experiments. ApoE-/- mice were randomly assigned to three experimental groups, namely, a model group, an atorvastatin group, and an SHC group. After the administration period, the plaque area in the carotid artery and aortic arch, blood lipid levels, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and nitric oxide (NO) content were measured. Additionally, the expression of PI3K, Akt, NF-κB, JNK1, ERK1/2, and p38-MAPK in the aortic arteries was analyzed. Based on the protein expression results, molecular docking was used to predict the binding activity between the core compounds and core targets. Results A total of 23 core compounds were identified in SHC, and 55 core targets of SHC were screened as potential targets for intervention in AS. The results of the enrichment analysis indicated that the principal mechanisms through which SHC exerts its effects in AS are associated with lipid metabolism and the PI3K-Akt and MAPK pathways. The results from animal experiments demonstrated that atorvastatin and SHC markedly reduced the area of carotid plaque and downregulated the levels of TC and LDL-C in ApoE-/- mice. The administration of SHC was associated with an increase in SOD activity and a reduction in NO levels in the livers of mice. Furthermore, SHC was observed to downregulate the expression of NF-κB and p38-MAPK in the carotid region. The results of molecular docking demonstrated that the core compounds of SHC, including salvianolic acid A, B, and C, maslinic acid, ursolic acid, and oleic acid, were capable of stably binding to the core targets NF-κB and MAPK14. Conclusion It is hypothesized that SHC may reduce lipid deposition and plaque formation in AS by regulating blood lipids, a process that may be closely linked to the inhibition of inflammatory regulator expression, including NF-κB and p38-MAPK.
Collapse
Affiliation(s)
- Qu Zhai
- Institute of Executive Development, China National Medical Products Administration, Beijing, China
| | - Shixi Shang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Zhang
- Beijing University of Chinese Medical, Beijing, China
| | - Lihua Sun
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuyi Feng
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haifeng Cui
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Shi
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Pan R, Guo M, Chen Y, Lin G, Tian P, Wang L, Zhao J, Chen W, Wang G. Dynamics of the Gut Microbiota and Faecal and Serum Metabolomes during Pregnancy-A Longitudinal Study. Nutrients 2024; 16:483. [PMID: 38398806 PMCID: PMC10892471 DOI: 10.3390/nu16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Normal pregnancy involves numerous physiological changes, including changes in hormone levels, immune responses, and metabolism. Although several studies have shown that the gut microbiota may have an important role in the progression of pregnancy, these findings have been inconsistent, and the relationship between the gut microbiota and metabolites that change dynamically during and after pregnancy remains to be clarified. In this longitudinal study, we comprehensively profiled the temporal dynamics of the gut microbiota, Bifidobacterium communities, and serum and faecal metabolomes of 31 women during their pregnancies and postpartum periods. The microbial composition changed as gestation progressed, with the pregnancy and postpartum periods exhibiting distinct bacterial community characteristics, including significant alterations in the genera of the Lachnospiraceae or Ruminococcaceae families, especially the Lachnospiraceae FCS020 group and Ruminococcaceae UCG-003. Metabolic dynamics, characterised by changes in nutrients important for fetal growth (e.g., docosatrienoic acid), anti-inflammatory metabolites (e.g., trans-3-indoleacrylic acid), and steroid hormones (e.g., progesterone), were observed in both serum and faecal samples during pregnancy. Moreover, a complex correlation was identified between the pregnancy-related microbiota and metabolites, with Ruminococcus1 and Ruminococcaceae UCG-013 making important contributions to changes in faecal and serum metabolites, respectively. Overall, a highly coordinated microbiota-metabolite regulatory network may underlie the pregnancy process. These findings provide a foundation for enhancing our understanding of the molecular processes occurring during the progression of pregnancy, thereby contributing to nutrition and health management during this period.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guopeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
4
|
Wu C, Li W, Li P, Niu X. Identification of a hub gene VCL for atherosclerotic plaques and discovery of potential therapeutic targets by molecular docking. BMC Med Genomics 2024; 17:42. [PMID: 38287421 PMCID: PMC10826019 DOI: 10.1186/s12920-024-01815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a pathology factor for cardiovascular diseases and instability of atherosclerotic plaques contributes to acute coronary events. This study identified a hub gene VCL for atherosclerotic plaques and discovered its potential therapeutic targets for atherosclerotic plaques. METHODS Differential expressed genes (DEGs) were screened between unstable and stable plaques from GSE120521 dataset and then used for construction of a protein-protein interactions (PPI) network. Through topological analysis, hub genes were identified within this PPI network, followed by construction of a diagnostic model. GSE41571 dataset was utilized to validate the diagnostic model. A key hub gene was identified and its association with immune characteristics and pathways were further investigated. Molecular docking and molecular dynamics (MD) simulation were employed to discover potential therapeutic targets. RESULTS According to the PPI network, 3 tightly connected protein clusters were found. Topological analysis identified the top 5 hub genes, Vinculin (VCL), Dystrophin (DMD), Actin alpha 2 (ACTA2), Filamin A (FLNA), and transgelin (TAGLN). Among these hub genes, VCL had the highest diagnostic value. VCL was selected for further analysis and we found that VCL was negatively correlated with immune score and AS-related inflammatory pathways. Next, we identified 408 genes that were highly correlated with VCL and determined potential drug candidates. The results from molecular docking and MD simulation showed compound DB07117 combined with VCL protein stably, the binding energy is -7.7 kcal/mol, indicating that compound DB07117 was a potential inhibitor of VCL protein. CONCLUSION This study identified VCL as a key gene for atherosclerotic plaques and provides a potential therapeutic target of VCL for the treatment of atherosclerotic plaques.
Collapse
Affiliation(s)
- Chong Wu
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450046, China.
| | - Wei Li
- Clinical Laboratory, Qingdao Women and Children's Hospital Affiliated, Qingdao University, Qingdao, 266034, China
| | - Panfeng Li
- Department of Vascular Surgery, Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Xiaoyang Niu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
5
|
Ibrahim Z, Khan NA, Qaisar R, Saleh MA, Siddiqui R, Al-Hroub HM, Giddey AD, Semreen MH, Soares NC, Elmoselhi AB. Serum multi-omics analysis in hindlimb unloading mice model: Insights into systemic molecular changes and potential diagnostic and therapeutic biomarkers. Heliyon 2024; 10:e23592. [PMID: 38187258 PMCID: PMC10770503 DOI: 10.1016/j.heliyon.2023.e23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Microgravity, in space travel and prolonged bed rest conditions, induces cardiovascular deconditioning along with skeletal muscle mass loss and weakness. The findings of microgravity research may also aid in the understanding and treatment of human health conditions on Earth such as muscle atrophy, and cardiovascular diseases. Due to the paucity of biomarkers and the unknown underlying mechanisms of cardiovascular and skeletal muscle deconditioning in these environments, there are insufficient diagnostic and preventative measures. In this study, we employed hindlimb unloading (HU) mouse model, which mimics astronauts in space and bedridden patients, to first evaluate cardiovascular and skeletal muscle function, followed by proteomics and metabolomics LC-MS/MS-based analysis using serum samples. Three weeks of unloading caused changes in the function of the cardiovascular system in c57/Bl6 mice, as seen by a decrease in mean arterial pressure and heart weight. Unloading for three weeks also changed skeletal muscle function, causing a loss in grip strength in HU mice and atrophy of skeletal muscle indicated by a reduction in muscle mass. These modifications were partially reversed by a two-week recovery period of reloading condition, emphasizing the significance of the recovery process. Proteomics analysis revealed 12 dysregulated proteins among the groups, such as phospholipid transfer protein, Carbonic anhydrase 3, Parvalbumin alpha, Major urinary protein 20 (Mup20), Thrombospondin-1, and Apolipoprotein C-IV. On the other hand, metabolomics analysis showed altered metabolites among the groups such as inosine, hypoxanthine, xanthosine, sphinganine, l-valine, 3,4-Dihydroxyphenylglycol, and l-Glutamic acid. The joint data analysis revealed that HU conditions mainly impacted pathways such as ABC transporters, complement and coagulation cascades, nitrogen metabolism, and purine metabolism. Overall, our results indicate that microgravity environment induces significant alterations in the function, proteins, and metabolites of these mice. These observations suggest the potential utilization of these proteins and metabolites as novel biomarkers for assessing and mitigating cardiovascular and skeletal muscle deconditioning associated with such conditions.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed A. Khan
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, EH14 4AS UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Hamza M. Al-Hroub
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alexander D. Giddey
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammad Harb Semreen
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, Lisbon, 1649-016, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA School/ Faculdade de Lisboa, Lisbon, Portugal
| | - Adel B. Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Fei X, Pan L, Yuan W, Zhao Y, Jiang L, Huang Q, Wu Y, Ru G. Papain Exerts an Anti-atherosclerosis Effect with Suppressed MPA-mediated Foam Cell Formation by Regulating the MAPK and PI3K/Akt-NF-κB Pathways. Expert Opin Ther Targets 2023; 27:239-250. [PMID: 36947095 DOI: 10.1080/14728222.2023.2194531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Papain possesses a potential anti-atherosclerosis (AS) effect. This study aimed to explore the inhibitory effects of papain on the monocyte-platelet aggregates (MPAs)-mediated production of foam cells in vitro and AS in vivo. RESEARCH DESIGN AND METHODS THP-1 cells were induced or treated by platelet, papain, nuclear factor-κB (NF-κB, p65) inhibitor, or NF-κB activator. An AS rat model was established and treated with papain. The THP-1 cells, macrophages, and foam cells were detected, and CD36, CD11b and CCR2 (macrophages) and CD14 and CD41 (MPAs) were measured. The levels of inflammatory factors, lipoprotein, and mitogen-activated protein kinase (MAPK, p38) and phosphoInositide-3 Kinase (PI3K)/Akt(protein kinase B, PKB)-NF-κB pathways proteins were determined. Finally, injury of the thoracic aorta of AS rats was observed. RESULTS Papain reduced macrophage production, lipid accumulation, and foam cell formation in vitro and downregulated the expression of monocyte chemoattractant protein 1 (MCP-1), prostaglandin E2 (PGE2), and cyclooxygenase 2 (COX2), and that of p38, c-Jun N-terminal protein kinase (JNK), Akt, and p65. Moreover, the inhibitory effects of papain were reversed by the NF-κB activator. Similarly, papain alleviated aortic smooth muscle hyperplasia, lipid droplet accumulation, and collagen diffusion and inhibited the secretion of inflammatory factors and the expression of p38, JNK, Akt, and p65 in vivo. CONCLUSIONS Papain inhibited MPA-induced foam cell formation by inactivating the MAPK and PI3K/Akt-NF-κB pathways, thereby exerting an anti-AS effect.
Collapse
Affiliation(s)
- Xianming Fei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Lianlian Pan
- Department of Laboratory Medicine, Sanmen People's Hospital of Taizhou, Zhejiang, China 317100
| | - Wufen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Yan Zhao
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Lei Jiang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Qinghua Huang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Yan Wu
- Department of Laboratory Medicine, Lin'an First People's Hospital of Hangzhou, Hangzhou, Zhejiang, China 311300
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| |
Collapse
|
7
|
Wu J, He S, Song Z, Chen S, Lin X, Sun H, Zhou P, Peng Q, Du S, Zheng S, Liu X. Macrophage polarization states in atherosclerosis. Front Immunol 2023; 14:1185587. [PMID: 37207214 PMCID: PMC10189114 DOI: 10.3389/fimmu.2023.1185587] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng,
| |
Collapse
|
8
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
9
|
Mao B, Guo W, Tang X, Zhang Q, Yang B, Zhao J, Cui S, Zhang H. Inosine Pretreatment Attenuates LPS-Induced Lung Injury through Regulating the TLR4/MyD88/NF-κB Signaling Pathway In Vivo. Nutrients 2022; 14:2830. [PMID: 35889786 PMCID: PMC9318366 DOI: 10.3390/nu14142830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Inosine is a type of purine nucleoside, which is considered to a physiological energy source, and exerts a widely range of anti-inflammatory efficacy. The TLR4/MyD88/NF-κB signaling pathway is essential for preventing host oxidative stresses and inflammation, and represents a promising target for host-directed strategies to improve some forms of disease-related inflammation. In the present study, the results showed that inosine pre-intervention significantly suppressed the pulmonary elevation of pro-inflammatory cytokines (including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), malondialdehyde (MDA), nitric oxide (NO), and reactive oxygen species (ROS) levels, and restored the pulmonary catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities (p < 0.05) in lipopolysaccharide (LPS)-treated mice. Simultaneously, inosine pre-intervention shifted the composition of the intestinal microbiota by decreasing the ratio of Firmicutes/Bacteroidetes, elevating the relative abundance of Tenericutes and Deferribacteres. Moreover, inosine pretreatment affected the TLR4/MyD88/NF-κB signaling pathway in the pulmonary inflammatory response, and then regulated the expression of pulmonary iNOS, COX2, Nrf2, HO-1, TNF-α, IL-1β, and IL-6 levels. These findings suggest that oral administration of inosine pretreatment attenuates LPS-induced pulmonary inflammatory response by regulating the TLR4/MyD88/NF-κB signaling pathway, and ameliorates intestinal microbiota disorder.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Reutersberg B, Düppers P, Menges AL, Schrimpf C, Zimmermann A, Pelisek J. Alterungsbedingte Gefäßveränderungen am Beispiel der Arteria carotis. GEFÄSSCHIRURGIE 2022; 27:231-238. [PMID: 35789693 PMCID: PMC9243795 DOI: 10.1007/s00772-022-00901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
Einer der Hauptrisikofaktoren für das Vorliegen einer Karotisstenose und des karotisbedingten Schlaganfalls ist das Lebensalter. Ziel dieses Übersichtsartikels ist die Darstellung des aktuellen Wissensstands über altersbedingte Veränderungen der Gefäße am Beispiel der Karotisstenose. Die Gefäßalterung (vaskuläre Seneszenz) als Abnahme struktureller und funktioneller Eigenschaften der Gefäßwand spielt sich auf verschiedenen Ebenen ab. Auf multizellulärer Ebene kommt es mit zunehmendem Alter hauptsächlich aufgrund von atherosklerotischen Veränderungen der Gefäßwand zu einer Zunahme von Gefäßvolumen und -durchmesser sowie der Intima-Media-Dicke. Auf zellulärer und extrazellulärer Ebene kommt es zur Abnahme von Elastinfasern, glatten Muskelzellen und der Gesamtzellularität sowie zur Zunahme der Lipid‑, Cholesterin- und Kalziumphosphatablagerungen und der Neovaskularisierung. Ursachen der Gefäßalterung auf molekularer Ebene sind insbesondere oxidativer Stress, chronische Entzündungsreaktion, mitochondriale Dysfunktion, epigenetische Veränderungen, Dysregulation der Expression nicht kodierender RNAs (ncRNAs) und die Zunahme der Seneszenz. Der altersbedingte Verlust der Heilungs- und Reparaturfähigkeit des Gewebes macht die Plaques vulnerabler und im Falle der A. carotis anfälliger für ischämische Schlaganfälle. Zunehmende Erkenntnisse über den Einfluss des Alterns auf die Epigenetik und der ncRNAs in atherosklerotischen Plaques kann zukünftig das individuelle Risiko von Patienten genauer quantifizieren und zur Entwicklung zielgerichteter Therapiestrategien beitragen. Weitere Studien sind auf diesem Gebiet jedoch notwendig, um das gesamte Ausmaß der Gefäßalterung und den damit einhergehenden Erkrankungen zu verstehen, damit diesen dann gezielt entgegenwirkt werden kann.
Collapse
Affiliation(s)
- Benedikt Reutersberg
- Klinik für Gefäßchirurgie, Universitätsspital Zürich, Rämistr. 100, 8091 Zürich, Schweiz
| | - Philip Düppers
- Klinik für Gefäßchirurgie, Universitätsspital Zürich, Rämistr. 100, 8091 Zürich, Schweiz
| | - Anna-Leonie Menges
- Klinik für Gefäßchirurgie, Universitätsspital Zürich, Rämistr. 100, 8091 Zürich, Schweiz
| | - Claudia Schrimpf
- Klinik für Gefäßchirurgie, Universitätsspital Zürich, Rämistr. 100, 8091 Zürich, Schweiz
| | - Alexander Zimmermann
- Klinik für Gefäßchirurgie, Universitätsspital Zürich, Rämistr. 100, 8091 Zürich, Schweiz
| | - Jaroslav Pelisek
- Klinik für Gefäßchirurgie, Universitätsspital Zürich, Rämistr. 100, 8091 Zürich, Schweiz
| |
Collapse
|
11
|
Qi J, Ding T, Liu T, Xia X, Wu S, Liu J, Chen Q, Zhang D, Zhao H. Inosine‐Based Supramolecular Hydrogel for Highly Efficient PD‐L1 Blockade Therapy via Mediating CD8
+
T Cells. ADVANCED FUNCTIONAL MATERIALS 2022. [DOI: 10.1002/adfm.202204273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiajia Qi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Tiannan Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xin Xia
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Shihong Wu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Dunfang Zhang
- Department of Biotherapy State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
12
|
Gut Microbiota and Metabolites in Atrial Fibrillation Patients and Their Changes after Catheter Ablation. Microbiol Spectr 2022; 10:e0107721. [PMID: 35384710 PMCID: PMC9045169 DOI: 10.1128/spectrum.01077-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The gut microbiota has been shown to be associated with multiple cardiovascular diseases, but there is little research on the gut microbiota and atrial fibrillation (AF); thus, how the gut microbiota and metabolites change in AF patients after catheter ablation is unclear. In this study, we used 16S rRNA high-throughput sequencing and nontargeted metabolomic detection to conduct horizontal and longitudinal analyses of the gut microbiota and metabolites of AF patients. Compared with a control group, species richness and diversity increased significantly in AF patients. Among them, opportunistic pathogenic bacteria, such as Klebsiella, Haemophilus, Streptococcus, and Enterococcus, were significantly increased, and symbiotic bacteria, such as Agathobacter and Butyrivibrio, were significantly reduced. After catheter ablation, intestinal symbiotic bacteria (Lactobacillus, Agathobacter, Lachnospira, etc.) were increased in most AF patients, while pathogenic bacteria (Ruminococcus, etc.) were reduced. Moreover, in AF patients, caffeine, which was negatively correlated with Klebsiella, was downregulated, and estradiol and ascorbic acid, which were positively correlated with Agathobacter, were also downregulated. After catheter ablation, citrulline, which was positively correlated with Ralstonia and Lactobacillus, was increased. Oleanolic acid, which was negatively correlated with Ralstonia was downregulated. In conclusion, our results not only show overall changes in the gut microbiota and metabolites in AF patients but also indicate their changes in the short term after catheter ablation. These data will provide novel possibilities for the future clinical diagnosis and treatment of AF. IMPORTANCE Gut microbiota and metabolites play a very important role in human health and can not only assess human health but also treat and prevent diseases. We analyzed the characteristics of the microbiota and metabolites in the human gut and found the effect of disease on gut microbiota and metabolites, which may be of important value in the pathogenesis of atrial fibrillation. At the same time, we also observed dynamic changes in gut microbiota and metabolites with the intervention of catheter ablation, which was not available in previous studies.
Collapse
|
13
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci 2021; 23:ijms23010077. [PMID: 35008500 PMCID: PMC8744732 DOI: 10.3390/ijms23010077] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.
Collapse
|
15
|
Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother 2021; 145:112395. [PMID: 34775239 DOI: 10.1016/j.biopha.2021.112395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-β. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-β/PKC/TRPV1/SP pathways.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt.
| | - Sherehan M Ibrahim
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt
| | - Passant E Moustafa
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| | - Marawan A Elbaset
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| |
Collapse
|
16
|
Liu S, Xu DS, Ma JL, Huang P, Wu D, Ren LQ. LncRNA H19 Mitigates Oxidized Low-Density Lipoprotein Induced Pyroptosis via Caspase-1 in Raw 264.7 Cells. Inflammation 2021; 44:2407-2418. [PMID: 34341910 DOI: 10.1007/s10753-021-01511-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Atherosclerosis (AS) is mainly characterized by the activation of inflammatory cells and chronic inflammatory responses after cell injury. Pyroptosis is a form of programmed cell death (PCD) accompanied by the release of inflammatory factors. Many studies have shown that pyroptosis plays an important role in AS. Increasing evidence also indicates that long non-coding RNA H19 (lncRNA H19) involved in AS. However, whether the role of lncRNA H19 in AS is related to pyroptosis and the underlying mechanisms are largely unknown. In this study, we found that oxidized low-density lipoprotein (ox-LDL) induced pyroptosis and decreased the expression of lncRNA H19 in Raw 264.7 cells. Besides, silencing endogenous lncRNA H19 increased inflammatory responses and pyroptosis while exogenous overexpression of lncRNA H19 reversed this effect. Notably, we identified that the inhibitor of caspase-1 (XV-765) completely abrogated the silencing endogenous lncRNA H19 mediated pyroptosis. In addition, we found that lncRNA H19 inhibited ox-LDL-induced activation of nuclear factor-kappa B (NF-κB), mitochondrial dysfunction, and reduced the production of reactive oxygen species (ROS). Moreover, VX-765 impaired the silencing endogenous lncRNA H19 mediated pyroptosis. Overall, these findings indicated that lncRNA H19 may play an important role in pyroptosis and may serve as a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Dong-Sheng Xu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jiu-Long Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Di Wu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
17
|
Euterpe oleracea Mart. (Açaí) attenuates experimental colitis in rats: involvement of TLR4/COX-2/NF-ĸB. Inflammopharmacology 2020; 29:193-204. [PMID: 32996043 DOI: 10.1007/s10787-020-00763-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Euterpe oleracea Mart., commonly known as açaí, has been demonstrated to exhibit significantly antioxidant and inflammatory activities in experimental models. These effects of the hydroalcoholic extract from the açaí seed (ASE) were investigated in TNBS-induced (2,4,6-trinitrobenzenesulfonic acid) acute colitis model in rats. Wistar rats (180-220 g) were orally pretreated with saline (0.3 mL), ASE (10, 30 and 100 mg/kg) and dexamethasone (control group, 1 mg/kg) once daily for 3 days starting before TNBS instillation. On day 3 after TNBS, the animals were euthanized, the portion of distal colon was collected and washed with 0.9% saline for macroscopy and histological evaluation, glutathione (GSH) and malonyldialdehyde (MDA) levels, myeloperoxidase (MPO) and catalase (CAT) activity, nitrate and nitrite (NO3/NO2) concentration, pro-inflammatory cytokines levels and intestinal barrier integrity. We also evaluated Toll-like Receptor 4/cyclooxygenase-2/nuclear factor kappa B expression as a possible mechanism related to the ASE effects. Treatment with ASE 100 mg/kg decreased significantly macroscopic and microscopic damage induced by TNBS. In addition, MPO activity, TNF-α (tumor necrosis factor-alpha) and IL-1β (interleukin 1) levels were reduced in rats with colitis. ASE 100 mg/kg restored GSH and MDA levels, CAT activity, NO3/NO2 concentration and improved the intestinal barrier integrity in the TNBS group. ASE 100 mg/kg significantly reduced TNBS-induced expression of the TLR4, COX-2 and NF-κB p65. ASE 100 mg/kg improved macroscopy and histological parameters, inflammation, intestinal barrier integrity and nitric and oxidative stress through the TLR-4/COX-2/NF-κB pathway.
Collapse
|