1
|
Chen J, Deng L. KLF2 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Regulating Nrf2 Expression. Int Dent J 2025; 75:1554-1563. [PMID: 40121852 PMCID: PMC11979923 DOI: 10.1016/j.identj.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE Periodontal ligament stem cells (PDLSCs) are emerging as a promising source for periodontal regeneration and to manage periodontitis. This study aims to investigate the roles of Krüppel-like factor 2 (KLF2) and nuclear factor erythroid 2-related factor (Nrf2) in mediating osteogenic differentiation of human PDLSCs (hPDLSCs) in the context of lipopolysaccharide (LPS) stimulation. METHODS The osteogenic differentiation potential of hPDLSCs isolated from human premolar root samples were examined by alkaline phosphatase (ALP) staining and ALP activity assay, Alizarin red S staining and quantitative analysis of mineralised matrix. Intracellular reactive oxygen species (ROS) production and glutathione (GSH) concentration were assessed to reflect oxidative stress. RESULTS KLF2 overexpression influenced Nrf2-regulated transcription, leading to significant increases in GSH concentration, ALP activity, mineralised matrix formation, and RUNX2 expression in LPS-stimulated hPDLSCs, as well as significant reductions in ROS production and cell apoptosis. The subsequent Nrf2 knockdown impaired the protective effect of KLF2 on hPDLSCs against LPS stimulation. CONCLUSION The findings of the study demonstrate KLF2 overexpression has the ability to promote the osteogenic differentiation of hPDLSCs by promoting Nrf2 activation, suggesting that KLF2 mediating Nrf2 could be a promising target to facilitate the efficacy of PDLSC-based bone regeneration in periodontitis.
Collapse
Affiliation(s)
- Jiujiu Chen
- Pediatric Dentistry, Wenzhou Dental Hospital, Wenzhou, Zhejiang, China
| | - Lichao Deng
- Endodontic Department, School & Hospital of Stomatology Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liu C, Liu X, Duan J. Artemisinin and Its Derivatives: Promising Therapeutic Agents for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:535. [PMID: 40283970 PMCID: PMC12030120 DOI: 10.3390/ph18040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older adults. Its pathogenesis involves multiple factors, including aging, environmental influences, genetic predisposition, oxidative stress, metabolic dysfunction, and immune dysregulation. Currently, AMD treatment focuses primarily on wet AMD, managed through repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapies. While anti-VEGF agents represent a major breakthrough in wet AMD care, repeated injections may lead to incomplete responses or resistance in some patients, and carry a risk of progressive fibrosis. Artemisinin (ART) and its derivatives, originally developed as antimalarial drugs, exhibit a broad spectrum of pleiotropic activities beyond their established use, including anti-inflammatory, anti-angiogenic, antioxidant, anti-fibrotic, mitochondrial regulatory, lipid metabolic, and immunosuppressive effects. These properties position ART as a promising therapeutic candidate for AMD. A growing interest in ART-based therapies for AMD has emerged in recent years, with numerous studies demonstrating their potential benefits. However, no comprehensive review has systematically summarized the specific roles of ART and its derivatives in AMD pathogenesis and treatment. This paper aims to fill the knowledge gap by synthesizing the therapeutic efficacy and molecular mechanisms of ART and its derivatives in AMD, thereby providing a foundation for future investigations.
Collapse
Affiliation(s)
- Chun Liu
- Eye School, Chengdu University of TCM, Chengdu 610075, China
| | - Xiaoqin Liu
- Clinical Medical School, Chengdu University of TCM, Chengdu 610075, China
| | - Junguo Duan
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu 610075, China
| |
Collapse
|
3
|
Majidiani H, Musavi M, Momtazi-Borojeni AA. New Roles of Artemisinins in Atherosclerosis Progression. Phytother Res 2025; 39:1847-1857. [PMID: 40200587 DOI: 10.1002/ptr.8483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/27/2024] [Accepted: 02/11/2025] [Indexed: 04/10/2025]
Abstract
Artemisinin is a natural compound derived from the Chinese plant Artemisia annua , which was officially approved by the FDA for its antimalarial effects. In recent years, a growing body of studies has shown the novel function of artemisinin in atherosclerosis therapy. In vivo studies have shown that artemisinin can inhibit the progression of atherosclerosis plaque. In the present review, the evidence showing the inhibitory effects of artemisinin on the progression of atherosclerosis plaque and its underlying mechanisms is discussed. Mechanistically, artemisinin and its derivatives act by modulating various atherosclerosis-mediating risk factors, including hyperlipidemia, inflammation, oxidative stress, and malfunctioning vascular smooth muscle cells (VSMCs). Notably, artesunate, but not artemisinin, can attenuate the plasma levels of TG, TC, VLDL-C, and LDL-c, along with a substantial decline in arterial lipid deposition through enhancing the LDPL activity via inducing the KFL2/NRF2/TCF7L2 axis. Artemisinin was found to ameliorate the atherosclerosis plaque inflammation by reducing monocyte adhesion and subsequent transmigration to the intima, via inhibiting the expression of ICAM-1 and VCAM-1, diminishing NLRP3 inflammasome activation, and reducing the expression of inflammatory factors such as IL-1β, IL-18, TNF-α, MCP-1, and TGF-β1 mechanistically and mainly via suppressing the by NF-κB activity. Artemisinin could exert antioxidant effects through activating the PI3K/Akt/eNOS signaling pathway and suppressing the ROS-mediated NF-κB signal pathway. Artemisinin could also improve the VSMC function in the atherosclerosis plaque. These findings can suggest artemisinin as a new therapeutic agent for treating atherosclerosis; however, future clinical trials are warranted to validate its therapeutic efficiency in patients with atherosclerosis.
Collapse
Affiliation(s)
- Hamidreza Majidiani
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Musavi
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Faculty of Medicine,Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Faculty of Medicine,Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Chen L, Wang J, Ren Y, Ma Y, Liu J, Jiang H, Liu C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155382. [PMID: 38382280 DOI: 10.1016/j.phymed.2024.155382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.
Collapse
Affiliation(s)
- Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jialin Wang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanshuang Ren
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
5
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
6
|
Luo Z, Yu X, Wang C, Zhao H, Wang X, Guan X. Trimethylamine N-oxide promotes oxidative stress and lipid accumulation in macrophage foam cells via the Nrf2/ABCA1 pathway. J Physiol Biochem 2024; 80:67-79. [PMID: 37932654 DOI: 10.1007/s13105-023-00984-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Recently, trimethylamine N-oxide (TMAO) has been considered a risk factor for cardiovascular disease and has a proatherogenic effect. Many studies have found that TMAO is involved in plaque oxidative stress and lipid metabolism, but the specific mechanism is still unclear. In our study, meta-analysis and bioinformatic analysis were firstly conducted in the database, and found that the effect of high plasma TMAO levels on promoting atherosclerotic plaque may be related to the expression of key antioxidant genes nuclear factor erytheroid-derived-2-like 2 (NFE2L2/Nrf2) decreased. Next, we assessed the role of Nrf2-mediated signaling pathway in TMAO-treated foam cells. Our results showed that TMAO can inhibit the expression of Nrf2 and its downstream antioxidant response element such as heme oxygenase-1 (HO-1) and glutathione peroxidase4 (GPX4), resulting in increased production of reactive oxygen species and decreased activity of superoxide dismutase, promoting oxidative stress. And TMAO can also promote lipid accumulation in foam cells by inhibiting cholesterol efflux protein expression. In addition, upregulation of Nrf2 expression partially rescues TMAO-induced oxidative stress and reduces ATP-binding cassette A1 (ABCA1)-mediated lipid accumulation. Therefore, TMAO promotes oxidative stress and lipid accumulation in macrophage foam cells through the Nrf2/ABCA1 pathway, which may provide a potential mechanism for the proatherogenic effect of TMAO.
Collapse
Affiliation(s)
- ZhiSheng Luo
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiaoChen Yu
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Chao Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - HaiYan Zhao
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xinming Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiuRu Guan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
7
|
Cen Y, Xiong Y, Qin R, Tao H, Yang Q, Pan X. Anti-malarial artesunate ameliorates atherosclerosis by modulating arterial inflammatory responses via inhibiting the NF-κB-NLRP3 inflammasome pathway. Front Pharmacol 2023; 14:1123700. [PMID: 36817159 PMCID: PMC9931906 DOI: 10.3389/fphar.2023.1123700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Chronic inflammation plays a critical role in the pathogenesis of atherosclerosis (AS), and involves a complex interplay between blood components, macrophages, and arterial wall. Therefore, it is valuable in the development of targeted therapies to treat AS. Methods: AS rat model was induced by atherogenic diet plus with lipopolysaccharide (LPS) and then treated by anti-malarial artesunate (Art), a succinate derivative of artemisinin. The arterial morphology was observed after Oil red O, hematoxylin-eosin, and Masson's staining. The arterial protein level was detected by immunohistochemistry or immunofluorescence. The expression level of mRNA was determined by PCR array or real-time PCR. Results: Herein, we showed that Art possessed a dose-dependently protective effect on AS rats. In detail, Art showed a comparable inhibitory effect on arterial plaque and serum lipids compared to those of rosuvastatin (RS), and further showed a better inhibition on arterial lipid deposition and arterial remodeling comprised of arterial wall thicken and vascular collagen deposition, than those of RS. The improvement of Art on AS rats was related to inhibit arterial macrophage recruitment, and inhibit nuclear factor κB (NF-κB)-related excessive arterial inflammatory responses. Critically, Art showed significant inhibition on the NLRP3 inflammasome activation in both arterial wall and arterial macrophages, by down-regulating the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and apoptosis associated speckle-like protein containing CARD (ASC), leading to less production of the NLRP3 inflammasome-derived caspase-1, interleukin-1β (IL-1β), IL-18, and subsequent transforming growth factor β1 (TGF-β1) in AS rats. Conclusion: We propose that Art is an anti-AS agent acts through modulating the arterial inflammatory responses via inhibiting the NF-κB - NLRP3 inflammasome pathway.
Collapse
|
8
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
9
|
Jia L, Jing Y, Wang D, Cheng S, Fu C, Chu X, Yang C, Jiang B, Xin S. Through network pharmacology and molecular docking to explore the underlying mechanism of Artemisia annua L. treating in abdominal aortic aneurysm. Front Physiol 2022; 13:1034014. [PMID: 36338468 PMCID: PMC9634740 DOI: 10.3389/fphys.2022.1034014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Abdominal aortic aneurysm (AAA) is a degenerative disease that causes health problems in humans. However, there are no effective drugs for the treatment of AAA. Artemisia annua L. (A. annua) is a traditional herbal that has been widely used in cardiovascular disease. Based on network pharmacology and molecular docking technology, this study predicted the practical components and potential mechanisms of A. annua inhibiting the occurrence and development of AAA. Methods: The main active ingredients and targets of A. annua were screened through the TCMSP database; the GeneCards, OMIM, PharmGkb, and TTD databases were used to search for the targeted genes of AAA and map them to the targets of the active ingredients to obtain the active ingredient therapy of A. annua. The targets of AAA were to construct a protein interaction network through the STRING platform. R software was used to carry out the enrichment analysis of GO and KEGG for relevant targets, and Cytoscape was used to construct the active ingredient-target network prediction model of A. annua. Finally, AutoDock Vina was used to verify the results of the active ingredients and critical targets. Results: The main active ingredients obtained from A. annua for the treatment of AAA include quercetin, luteolin, kaempferol, isorhamnetin, and artemetin, as well as 117 effective targets, including RELA, MAPK14, CCND1, MAPK1, AKT1, MYC, MAPK8, TP53, ESR1, FOS, and JUN. The 11 targeted genes might play a key role in disease treatment. Enriched in 2115 GO biological processes, 159 molecular functions, 56 cellular components, and 156 KEGG pathways, inferred that its mechanism of action might be related to PI3K-Akt signaling pathway, fluid shear stress, atherosclerosis, and AGE-RAGE signaling pathway. Molecular docking results showed that the top five active components of A. annua had a good affinity for core disease targets and played a central role in treating AAA. The low binding energy molecular docking results provided valuable information for the development of drugs to treat AAA. Conclusion: Therefore, A. annua may have multiple components, multiple targets, and multiple signaling pathways to play a role in treating AAA. A. annua may have the potential to treat AAA.
Collapse
Affiliation(s)
- Longyuan Jia
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Ding Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Chu
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Chenye Yang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
10
|
Limardi PC, Oktavianthi S, Priliani L, Lestari R, Saraswati MR, Suastika K, Malik SG. Transcription factor 7-like 2 single nucleotide polymorphisms rs290487 and rs290481 are associated with dyslipidemia in the Balinese population. PeerJ 2022; 10:e13149. [PMID: 35341056 PMCID: PMC8953500 DOI: 10.7717/peerj.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Background Dyslipidemia is one of the major risks for the development of cardiovascular diseases which has been the leading cause of death in developing countries. Previously, common polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene have been associated with altered lipid profiles. In this study, we investigated the associations of TCF7L2 SNPs, rs290487 and rs290481, with dyslipidemia and altered lipid profile in the Balinese. Methods A total of 565 subjects from four locations in the Bali Province, Indonesia, were recruited. Serum lipid concentrations (triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC)) were measured using standard protocol. SNP genotyping was done using the amplification refractory system mutation polymerase chain reaction (ARMS-PCR) method. Results We found the shifted major/minor allele frequencies of both SNPs (0.56 for rs290487 T allele, 0.53 for rs290481 T allele) in the Balinese, as compared to dbSNP. The rs290487 and rs290481 C alleles were significantly associated with dyslipidemia, particularly high TC and high LDL-C. These associations were independent of age, sex, population, obesity, diabetes mellitus, and high TyG index as a proxy for insulin resistance. The haplotype CC also showed similar association with these traits. Our findings indicate that TCF7L2 polymorphisms are associated with dyslipidemia and altered lipid profile in the Balinese.
Collapse
Affiliation(s)
- Prisca C. Limardi
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, DKI Jakarta, Indonesia,Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, Indonesia
| | - Sukma Oktavianthi
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, DKI Jakarta, Indonesia
| | - Lidwina Priliani
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, DKI Jakarta, Indonesia
| | - Retno Lestari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, Indonesia
| | - Made Ratna Saraswati
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Ketut Suastika
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Safarina G. Malik
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, DKI Jakarta, Indonesia
| |
Collapse
|
11
|
Recent Advances in the Therapeutic Efficacy of Artesunate. Pharmaceutics 2022; 14:pharmaceutics14030504. [PMID: 35335880 PMCID: PMC8951414 DOI: 10.3390/pharmaceutics14030504] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Artesunate, a semisynthetic artemisinin derivative, is well-known and used as the first-line drug for treating malaria. Apart from treating malaria, artesunate has also been found to have biological activity against a variety of cancers and viruses. It also exhibits antidiabetic, anti-inflammatory, anti-atherosclerosis, immunosuppressive activities, etc. During its administration, artesunate can be loaded in liposomes, alone or in combination with other therapeutic agents. Administration routes include intragastrical, intravenous, oral, and parenteral. The biological activity of artesunate is based on its ability to regulate some biological pathways. This manuscript reports a critical review of the recent advances in the therapeutic efficacy of artesunate.
Collapse
|
12
|
The Role of KLF2 in the Regulation of Atherosclerosis Development and Potential Use of KLF2-Targeted Therapy. Biomedicines 2022; 10:biomedicines10020254. [PMID: 35203463 PMCID: PMC8869605 DOI: 10.3390/biomedicines10020254] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Kruppel like factor 2 (KLF2) is a mechanosensitive transcription factor participating in the regulation of vascular endothelial cells metabolism. Activating KLF2 in endothelial cells induces eNOS (endothelial nitric oxide synthase) expression, subsequent NO (nitric oxide) release, and vasodilatory effect. In addition, many KLF2-regulated genes participate in the anti-thrombotic, antioxidant, and anti-inflammatory activities, thereby preventing atherosclerosis development and progression. In this review, we summarise recent evidence suggesting that KLF2 plays a major role in regulating atheroprotective effects in endothelial cells. We also discuss several recently identified repurposed drugs and natural plant-based bioactive compounds with KLF2-mediated atheroprotective activities. Herein, we present a comprehensive overview of the role of KLF2 in atherosclerosis and as a pharmacological target for different drugs and natural compounds and highlight the potential application of these phytochemicals for the treatment of atherosclerosis.
Collapse
|
13
|
Lu Y, Qin H, Jiang B, Lu W, Hao J, Cao W, Du L, Chen W, Zhao X, Guo H. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett 2021; 522:1-13. [PMID: 34520818 DOI: 10.1016/j.canlet.2021.09.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023]
Abstract
The metastatic dissemination and underlying mechanisms of clear cell renal cell carcinoma (ccRCC) remain insufficiently understood. In this study, we identified the essential role of KLF2 in suppressing the metastasis of ccRCC. Downregulation of KLF2 detected by immunohistochemistry in primary metastatic ccRCC was remarkably related to poor clinical outcomes. Overexpression of KLF2 in vitro inhibited growth, migration and invasion of RCC cells. Analysis of clinical specimens revealed that there is a close correlation between KLF2 and GPX4 in ccRCC. Mechanistically, KLF2 deficiency is sufficient to inhibit ferroptosis on account of the impairment of transcriptional repression of GPX4 and thus promotes the migration and invasion of RCC cells. Reverting KLF2 expression in vivo decreased pulmonary metastatic lesions and prolonged life span of mice, whereas GPX4 overexpression reversed these properties. Overall, our results established a novel critical pathway that drives human ccRCC invasion and metastasis, which could be a promising target regarding to the therapies of advanced ccRCC in the clinic.
Collapse
Affiliation(s)
- Yingqiang Lu
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, PR China
| | - Haixiang Qin
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wenfeng Lu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Jiange Hao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Lin Du
- Department of Urology, Nanjing Drum Tower Hospital, Medical School of Southeast University, Nanjing, 210008, PR China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, PR China; Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| |
Collapse
|
14
|
Qian Y, Xia L, Wei L, Jiang W. Artesunate attenuates foam cell formation by enhancing cholesterol efflux. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1379. [PMID: 34733931 PMCID: PMC8506543 DOI: 10.21037/atm-21-3551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022]
Abstract
Background Atherosclerosis is the main cause of many cardiovascular diseases and the second leading cause of death in elderly people. The formation of intimal macrophage-derived foam cells is a major feature of early atherosclerotic lesions. Little is known about the effects of artesunate (ART) on macrophage-derived foam cell formation. Methods Oil red O staining was employed to detect foam cell formation; colorimetric analysis was employed for cholesterol measurement; quantitative real time polymerase chain reaction (qRT-PCR) and western blot analysis were employed to assess messenger RNA (mRNA) and protein expression, respectively; enzyme-linked immunosorbent assay (ELISA) analyses were used to observe interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) release; and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were used to examine cell viability. Results It was revealed that ART attenuated oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation from THP-1-derived macrophages by decreasing cholesterol accumulation, and the effect might have occurred via enhanced cholesterol efflux. Additionally, ART decreased toll-like receptor 4 (TLR4) expression, increased adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) expression, and reduced the secretion of IL-6 and TNF-α. Conclusions This study showed that ART attenuated the ox-LDL-induced formation of foam cells from THP-1-derived macrophages by increasing ABCA1 and ABCG1 expression via inhibiting TLR4 expression and reducing TNF-α and IL-6 secretion from macrophages induced by ox-LDL, which ultimately decreased the accumulation of cholesterol. It is worthwhile further investigate ART as a potential drug for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Xia
- Department of Liver Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Lai Wei
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Li J, Zhou L, Ouyang X, He P. Transcription Factor-7-Like-2 (TCF7L2) in Atherosclerosis: A Potential Biomarker and Therapeutic Target. Front Cardiovasc Med 2021; 8:701279. [PMID: 34568447 PMCID: PMC8459927 DOI: 10.3389/fcvm.2021.701279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Transcription factor-7-like-2 (TCF7L2), a vital member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) family, plays an important role in normal human physiological and pathological processes. TCF7L2 exhibits multiple anti-atherosclerotic effects through the activation of specific molecular mechanisms, including regulation of metabolic homeostasis, macrophage polarization, and neointimal hyperplasia. A single-nucleotide substitution of TCF7L2, rs7903146, is a genetic high-risk factor for type 2 diabetes and indicates susceptibility to cardiovascular disease as a link between metabolic disorders and atherosclerosis. In this review, we summarize the anti-atherosclerosis effect and novel mechanisms underlying the function of TCF7L2 to elucidate its potential as an anti-atherosclerosis biomarker and provide a novel therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Junyi Li
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Xinping Ouyang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China
| | - Pingping He
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
16
|
LncRNA BANCR induced vascular smooth muscle cell proliferation by downregulating miR-34c methylation in atherosclerosis. J Thromb Thrombolysis 2020; 51:924-932. [PMID: 33151462 DOI: 10.1007/s11239-020-02314-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Aberrant vascular smooth muscle cell (VSMCs) proliferation involves in the development of atherosclerosis. It reported that Long noncoding BRAF-activated noncoding RNA (BANCR) and miR-34c played opposite roles in the regulation of the proliferation of VSMCs, indicating that there might be a potential interaction between them. This study was to investigate the relationship between BANCR and miR-34c in atherosclerosis. Blood (5 ml) was obtained from 56 patients with atherosclerosis and 56 healthy volunteers after they were fasted overnight, and plasma was extracted from the blood. Human Aortic Smooth Muscle Cells (HASMCs) were used to perform in vitro cell experiments. RT-qPCR was performed to measure the expression of BANCR and miR-34c in plasma and HASMCs. Dual luciferase reporter assay detected the interaction between BANCR and miR-34c. CCK-8 assay was used to assess the effects of BANCR and miR-34c overexpression on the proliferation of HASMCs. Western blotting was used to assess the effects of BANCR and miR-34c overexpression on the protein expression of HMGB1, TNF-ɑ and Bcl-2. In this study, we found that BANCR was upregulated, while miR-34c was downregulated in atherosclerosis. Bioinformatics analysis showed that BANCR and miR-34c could directly interact with each other. Moreover, overexpression of BANCR could decrease the expression of miR-34c in HASMCs, but overexpression of miR-34c could not affect the expression of BANCR. Furthermore, overexpression of BACNR increased miR-34c methylation, and knockdown of endogenous BANCR decreased miR-34c methylation. In addition, overexpression of BANCR reduced the effects of miR-34c on HASMCs proliferation and reversed the effects of miR-34c on HMGB1, TNF-ɑ and Bcl-2 expression. BANCR overexpression could induce HASMCs proliferation by downregulating the miR-34c methylation. Therefore given BANCR upregulation in atherosclerosis, its expression may be considered as a novel and useful biomarker for atherosclerosis prevention and prognosis. However considering the possible effects of other underlying diseases on both BANCR expression and miR-34c in atherosclerosis, further investigation is suggested for future research.
Collapse
|