1
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
2
|
Biso L, Carli M, Scarselli M, Longoni B. Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds. Biomedicines 2025; 13:85. [PMID: 39857669 PMCID: PMC11763187 DOI: 10.3390/biomedicines13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Antipsychotic medications are a vast class of drugs used for the treatment of psychotic disorders such as schizophrenia. Although numerous compounds have been developed since their introduction in the 1950s, several patients do not adequately respond to current treatments, or they develop adverse reactions that cause treatment discontinuation. Moreover, in the past few decades, discoveries in the pathophysiology of psychotic disorders have opened the way for experimenting with novel compounds that have alternative mechanisms of action, with some of them showing promising results in early trials. The scope of this review was to summarize the novel antipsychotics developed, their current experimental status, and their mechanisms of action. In particular, we analyzed the main classes of investigational antipsychotics, such as monoamine, glutamate, acetylcholine, cannabinoid receptor modulators, enzyme inhibitors, ion channel modulators, and mixed receptor modulators. In addition, the safety profiles and adverse effects of these drugs were carefully evaluated, considering the relevance of these aspects for patients' drug adherence and quality of life, especially in the long-term treatment. Lastly, we tried to understand which compounds have greater potential to be approved by the principal drug regulatory agencies in the next years and if they could be used for diseases other than psychotic disorders.
Collapse
Affiliation(s)
| | | | | | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.C.); (M.S.)
| |
Collapse
|
3
|
Ahmad SR, Zeyaullah M, AlShahrani AM, Khan MS, Dawria A, Mohieldin A, Ali H, Altijani AAG, Alam MS, Mehdi M, Akram S, Hussain ER, Kamal MA. Unlocking the potential of lumateperone and novel anti-psychotics for schizophrenia. BIOIMPACTS : BI 2024; 15:30259. [PMID: 40161932 PMCID: PMC11954750 DOI: 10.34172/bi.30259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 04/02/2025]
Abstract
Schizophrenia is a devastating chronic mental health illness which includes a complex set of symptoms like hallucination, illusion and delusion, and to manage, lifelong antipsychotic medications are needed. Schizophrenia affects 1% of the population worldwide, and to date, two different classes of antipsychotics, i.e., typical and atypical antipsychotics, are available in the market, and there is an urgent need for promising antipsychotic drugs. In this review, we focus on recently approved antipsychotics and then focus on different antipsychotic drugs under clinical trials. In this review, we first focus on lumateperone in detail, which was approved in December 2019 by the Food and Drug Administration (FDA) and simultaneously modulates serotonin, glutamate and dopamine neurotransmitters and is used at doses of 10.5-, 21- and 42 mg, which show mild adverse effects like constipation, sedation, somnolence and fatigue. This review also focuses on a few more emerging antipsychotics like brexpiprazole, brilaroxazine, roluperidone, F17464, pimavanserin (ACP-103), xanomeline, BI 409306, BI 425809 and MK-8189 which are under different phase of clinical trials and might get approved soon. Brexpiprazole and brilaroxazine act on dopamine receptors, whereas xanomeline, pimavanserin and roluperidone do not act on D2 receptors and manage the symptoms. All the antipsychotic drugs covered did not show any other severe adverse effects except gastrointestinal issues and cardiometabolic risk factors. However, still rigorous clinical trials and modifications are needed to manage adverse effects, and we can expect a few antipsychotics to be on the market soon.
Collapse
Affiliation(s)
- S Rehan Ahmad
- Hiralal Mazumdar Memorial College for Women, West Bengal State University, Kolkata, West Bengal, 700035, India
| | - Md Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Adam Dawria
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Ali Mohieldin
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Haroon Ali
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Abdelrhman AG Altijani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia
| | - Mohammad Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Kingdom of Saudi Arabia, Jizan 45142, Saudi Arabia
| | - Munzila Mehdi
- Department of Botany, Aligarh Muslim University, Uttar Pradesh, Aligarh 202002, India
| | - Sabika Akram
- Department of Botany, Aligarh Muslim University, Uttar Pradesh, Aligarh 202002, India
| | - Ejaz Rizvi Hussain
- Department of Botany, Aligarh Muslim University, Uttar Pradesh, Aligarh 202002, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, Sichuan Province, China
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
4
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Li Z, Fang F, Li Y, Lv X, Zheng R, Jiao P, Wang Y, Zhu G, Jin Z, Xu X, Qiu Y, Zhang G, Li Z, Liu Z, Zhang L. Carbazole and tetrahydro-carboline derivatives as dopamine D 3 receptor antagonists with the multiple antipsychotic-like properties. Acta Pharm Sin B 2023; 13:4553-4577. [PMID: 37969740 PMCID: PMC10638516 DOI: 10.1016/j.apsb.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 11/17/2023] Open
Abstract
Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-β-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuehui Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peili Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Pavăl D. The dopamine hypothesis of autism spectrum disorder: A comprehensive analysis of the evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:1-42. [PMID: 37993174 DOI: 10.1016/bs.irn.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite intensive research into the etiopathogenesis of autism spectrum disorder (ASD), limited progress has been achieved so far. Among the plethora of models seeking to clarify how ASD arises, a coherent dopaminergic model was lacking until recently. In 2017, we provided a theoretical framework that we designated "the dopamine hypothesis of ASD". In the meantime, numerous studies yielded empirical evidence for this model. 4 years later, we provided a second version encompassing a refined and reconceptualized framework that accounted for these novel findings. In this chapter, we will review the evidence backing the previous versions of our model and add the most recent developments to the picture. Along these lines, we intend to lay out a comprehensive analysis of the supporting evidence for the dopamine hypothesis of ASD.
Collapse
Affiliation(s)
- Denis Pavăl
- The Romanian Association for Autoimmune Encephalitis, Cluj-Napoca, Romania; Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Granger KT, Sand M, Caswell S, Lizarraga L, Barnett JH, Moran PM. A new era for schizophrenia drug development - Lessons for the future. Drug Discov Today 2023:103603. [PMID: 37142156 DOI: 10.1016/j.drudis.2023.103603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
For many patients and their treating clinicians, the pharmacological management of psychotic symptoms centres on trying to find a regime that balances efficacy and quality of life, impairing side effects associated with dopamine antagonism. Recent reports of a positive Phase III study from Karuna Therapeutics indicate that the first primarily non-dopamine-based treatment for schizophrenia may come to market soon with the potential for substantially reduced or differentiated side effects. Against a background of repeated failures, Karuna's success promises a desperately needed new treatment option for patients. It also reflects some hard-won lessons about the methodology for schizophrenia drug development. Teaser A positive Phase II study and positive media report from a Phase III study with xanomeline/trospium may herald the first truly new treatment option for schizophrenia patients in decades. This drug's journey to this point reflects some hard-won lessons about the methodology for schizophrenia drug development.
Collapse
Affiliation(s)
- Kiri T Granger
- Monument Therapeutics, Macclesfield, UK; School of Psychology, University of Nottingham, Nottingham, UK.
| | | | | | | | - Jennifer H Barnett
- Monument Therapeutics, Macclesfield, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Recent Advances in Psychopharmacology: From Bench to Bedside Novel Trends in Schizophrenia. J Pers Med 2023; 13:jpm13030411. [PMID: 36983593 PMCID: PMC10058851 DOI: 10.3390/jpm13030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Research in the field of psychopharmacology is ongoing to develop novel compounds which can revolutionize the treatment of psychiatric disorders. The concept of bench-to-bedside is a tedious process, transforming the initial research performed in the laboratories into novel treatment options. Schizophrenia (SCZ) is a chronic psychiatric illness with significant morbidity and mortality. SCZ not only presents with psychotic symptoms including hallucinations and delusions but also with negative and cognitive symptoms. The negative symptoms include the diminished ability to express emotions, loss of pleasure, and motivation with minimal social interactions. Conventional antipsychotics primarily target positive symptoms with minimal therapeutic benefits for negative and cognitive symptoms along with metabolic side effects. Researchers have explored novel targets to develop new compounds to overcome the above limitations. The glutamatergic system has provided new hope in treating schizophrenia by targeting negative and cognitive symptoms. Other receptor modulators, including serotonergic, phosphodiesterase, trans-amine-associated receptors, etc., are novel targets for developing new compounds. Future research is required in this field to explore novel compounds and establish their efficacy and safety for the treatment of schizophrenia. Last but not least, pharmacogenomics has effectively utilized genetic information to develop novel compounds by minimizing the risk of failure of the clinical trials and enhancing efficacy and safety.
Collapse
|
9
|
Serotonin Receptors as Therapeutic Targets for Autism Spectrum Disorder Treatment. Int J Mol Sci 2022; 23:ijms23126515. [PMID: 35742963 PMCID: PMC9223717 DOI: 10.3390/ijms23126515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by repetitive and stereotyped behaviors as well as difficulties with social interaction and communication. According to reports for prevalence rates of ASD, approximately 1~2% of children worldwide have been diagnosed with ASD. Although there are a couple of FDA (Food and Drug Administration)—approved drugs for ASD treatment such as aripiprazole and risperidone, they are efficient for alleviating aggression, hyperactivity, and self-injury but not the core symptoms. Serotonin (5-hydroxytryptamine, 5-HT) as a neurotransmitter plays a crucial role in the early neurodevelopmental stage. In particular, 5-HT has been known to regulate a variety of neurobiological processes including neurite outgrowth, dendritic spine morphology, shaping neuronal circuits, synaptic transmission, and synaptic plasticity. Given the roles of serotonergic systems, the 5-HT receptors (5-HTRs) become emerging as potential therapeutic targets in the ASD. In this review, we will focus on the recent development of small molecule modulators of 5-HTRs as therapeutic targets for the ASD treatment.
Collapse
|
10
|
Extrastriatal dopamine D2/3 receptor binding, functional connectivity, and autism socio-communicational deficits: a PET and fMRI study. Mol Psychiatry 2022; 27:2106-2113. [PMID: 35181754 DOI: 10.1038/s41380-022-01464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
The social motivation hypothesis of autism proposes that social communication symptoms in autism-spectrum disorder (ASD) stem from atypical social attention and reward networks, where dopamine acts as a crucial mediator. However, despite evidence indicating that individuals with ASD show atypical activation in extrastriatal regions while processing reward and social stimuli, no previous studies have measured extrastriatal dopamine D2/3 receptor (D2/3R) availability in ASD. Here, we investigated extrastriatal D2/3R availability in individuals with ASD and its association with ASD social communication symptoms using positron emission tomography (PET). Moreover, we employed a whole-brain multivariate pattern analysis of resting-state functional magnetic resonance imaging (fMRI) to identify regions where functional connectivity atypically correlates with D2/3R availability depending on ASD diagnosis. Twenty-two psychotropic-free males with ASD and 24 age- and intelligence quotient-matched typically developing males underwent [11C]FLB457 PET, fMRI, and clinical symptom assessment. Participants with ASD showed lower D2/3R availability throughout the D2/3R-rich extrastriatal regions of the dopaminergic pathways. Among these, the posterior region of the thalamus, which primarily comprises the pulvinar, displayed the largest effect size for the lower D2/3R availability, which correlated with a higher score on the Social Affect domain of the Autism Diagnostic Observation Schedule-2 in participants with ASD. Moreover, lower D2/3R availability was correlated with lower functional connectivity of the thalamus-superior temporal sulcus and cerebellum-medial occipital cortex, specifically in individuals with ASD. The current findings provide novel molecular evidence for the social motivation theory of autism and offer a novel therapeutic target.
Collapse
|
11
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
12
|
Torrisi SA, Geraci F, Contarini G, Salomone S, Drago F, Leggio GM. Dopamine D3 Receptor, Cognition and Cognitive Dysfunctions in Neuropsychiatric Disorders: From the Bench to the Bedside. Curr Top Behav Neurosci 2022; 60:133-156. [PMID: 35435642 DOI: 10.1007/7854_2022_326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dopamine D3 receptor (D3R) plays a prominent role in the modulation of cognition in healthy individuals, as well as in the pathophysiological mechanism underlying the cognitive deficits affecting patients suffering from neuropsychiatric disorders. At a therapeutic level, a growing body of evidence suggests that the D3R blockade enhances cognitive and thus it may be an optimal therapeutic strategy against cognitive dysfunctions. However, this is not always the case because other ligands targeting the D3R, and behaving as partial agonists or biased agonists, may exert their pro-cognitive effect by maintaining adequate level of dopamine in key brain areas tuning cognitive performances. In this chapter, we review and discuss preclinical and clinical findings with the aim to remark the crucial role of the D3R in cognition and to strengthen the message that drugs targeting D3R may be excellent cognitive enhancers for the treatment of several neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gabriella Contarini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salomone Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Kiss B, Krámos B, Laszlovszky I. Potential Mechanisms for Why Not All Antipsychotics Are Able to Occupy Dopamine D 3 Receptors in the Brain in vivo. Front Psychiatry 2022; 13:785592. [PMID: 35401257 PMCID: PMC8987915 DOI: 10.3389/fpsyt.2022.785592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Dysfunctions of the dopaminergic system are believed to play a major role in the core symptoms of schizophrenia such as positive, negative, and cognitive symptoms. The first line of treatment of schizophrenia are antipsychotics, a class of medications that targets several neurotransmitter receptors in the brain, including dopaminergic, serotonergic, adrenergic and/or muscarinic receptors, depending on the given agent. Although the currently used antipsychotics display in vitro activity at several receptors, majority of them share the common property of having high/moderate in vitro affinity for dopamine D2 receptors (D2Rs) and D3 receptors (D3Rs). In terms of mode of action, these antipsychotics are either antagonist or partial agonist at the above-mentioned receptors. Although D2Rs and D3Rs possess high degree of homology in their molecular structure, have common signaling pathways and similar in vitro pharmacology, they have different in vivo pharmacology and therefore behavioral roles. The aim of this review, with summarizing preclinical and clinical evidence is to demonstrate that while currently used antipsychotics display substantial in vitro affinity for both D3Rs and D2Rs, only very few can significantly occupy D3Rs in vivo. The relative importance of the level of endogenous extracellular dopamine in the brain and the degree of in vitro D3Rs receptor affinity and selectivity as determinant factors for in vivo D3Rs occupancy by antipsychotics, are also discussed.
Collapse
Affiliation(s)
- Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | | |
Collapse
|
14
|
Lobo MC, Whitehurst TS, Kaar SJ, Howes OD. New and emerging treatments for schizophrenia: a narrative review of their pharmacology, efficacy and side effect profile relative to established antipsychotics. Neurosci Biobehav Rev 2022; 132:324-361. [PMID: 34838528 PMCID: PMC7616977 DOI: 10.1016/j.neubiorev.2021.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
Schizophrenia is associated with substantial unmet needs, highlighting the necessity for new treatments. This narrative review compares the pharmacology, clinical trial data and tolerability of novel medications to representative antipsychotics. Cariprazine, brexpiprazole and brilaroxazine are partial dopamine agonists effective in acute relapse. Lumateperone (serotonin and dopamine receptor antagonist) additionally benefits asocial and depressive symptoms. F17464 (D3 antagonist and 5-HT1A partial agonist) has one positive phase II study. Lu AF35700 (dopamine and serotonin receptor antagonist) was tested in treatment-resistance with no positive results. Pimavanserin, roluperidone, ulotaront and xanomeline do not act directly on the D2 receptor at clinical doses. Initial studies indicate pimavanserin and roluperidone improve negative symptoms. Ulotaront and xanomeline showed efficacy for positive and negative symptoms of schizophrenia in phase II trials. BI 409306, BI 425809 and MK-8189 target glutamatergic dysfunction in schizophrenia, though of these only BI 425809 showed efficacy. These medications largely have favourable cardiometabolic side-effect profiles. Overall, the novel pharmacology, clinical trial and tolerability data indicate these compounds are promising new additions to the therapeutic arsenal.
Collapse
Affiliation(s)
- Maria C Lobo
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, UK.
| | - Thomas S Whitehurst
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, UK.
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, UK; H. Lundbeck UK, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
15
|
Sokoloff P, Le Foll B. A Historical Perspective on the Dopamine D3 Receptor. Curr Top Behav Neurosci 2022; 60:1-28. [PMID: 35467293 DOI: 10.1007/7854_2022_315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Before 1990, the multiplicity of dopamine receptors beyond D1 and D2 had remained a controversial concept, despite its substantial clinical implications, at a time when it was widely accepted that dopamine interacted with only two receptor subtypes, termed D1 and D2, differing one from the other by their pharmacological specificity and opposite effects on adenylyl cyclase. It was also generally admitted that the therapeutic efficacy of antipsychotics resulted from blockade of D2 receptors. Thanks to molecular biology techniques, the D3 receptor could be characterized as a distinct molecular entity having a restricted anatomical gene expression and different signaling, which could imply peculiar functions in controlling cognitive and emotional behaviors. Due to the structural similarities of D2 and D3 receptors, the search for D3-selective compounds proved to be difficult, but nevertheless led to the identification of fairly potent and in vitro and in vivo selective compounds. The latter permitted to confirm a role of D3 receptors in motor functions, addiction, cognition, and schizophrenia, which paved the way for the development of new drugs for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada. .,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Departments of Family and Community Medicine, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada. .,Waypoint Research Institute, Waypoint Centre for Mental Health Care, 5, Penetanguishene, ON, Canada.
| |
Collapse
|
16
|
Wu Q, Wang X, Wang Y, Long YJ, Zhao JP, Wu RR. Developments in Biological Mechanisms and Treatments for Negative Symptoms and Cognitive Dysfunction of Schizophrenia. Neurosci Bull 2021; 37:1609-1624. [PMID: 34227057 PMCID: PMC8566616 DOI: 10.1007/s12264-021-00740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
The causal mechanisms and treatment for the negative symptoms and cognitive dysfunction in schizophrenia are the main issues attracting the attention of psychiatrists over the last decade. The first part of this review summarizes the pathogenesis of schizophrenia, especially the negative symptoms and cognitive dysfunction from the perspectives of genetics and epigenetics. The second part describes the novel medications and several advanced physical therapies (e.g., transcranial magnetic stimulation and transcranial direct current stimulation) for the negative symptoms and cognitive dysfunction that will optimize the therapeutic strategy for patients with schizophrenia in future.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ying Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yu-Jun Long
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jing-Ping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
Quantitative analysis of RNAscope staining for c-fos expression in mouse brain tissue as a measure of Neuronal Activation. MethodsX 2021; 8:101348. [PMID: 34430251 PMCID: PMC8374392 DOI: 10.1016/j.mex.2021.101348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
The expression of c-fos mRNA is an indirect marker of neuronal activity. RNAscope ACD Bio RNAscope (now Biotechne) is a proprietary in-situ mRNA detection technology using branched DNA amplification and z paired probes to deliver a robust and specific assay designed primarily for use on formalin fixed paraffin sections [1]. In the present study we adapted this technology to be used in frozen sections to allow quantitative analysis of c-fos gene expression in different mouse brain regions during neuropharmacology studies. The method was applied by Cosi et al. 2021 [2] and the image analysis is described here in details. The patented RNAscope (ACD Bio) flourescent in-situ hybridisation technology designed primarily for use on formalin fixed paraffin sections was adapted to be used on frozen section from mouse brain. We carefully controlled sample preparation and handling to maximise mRNA preservation and used the fluorescent properties of the fast Red substrate combined with fluorescent whole slide scanning and image analysis. A customized algorithm was set up for image analysis The method developed permitted the quantitative analysis of c-fos expression in specific brain regions from whole sections.
Collapse
|
18
|
Pavăl D, Micluția IV. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev Neurosci 2021; 43:73-83. [PMID: 34010842 DOI: 10.1159/000515751] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a "dopamine hypothesis of ASD" which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.
Collapse
Affiliation(s)
- Denis Pavăl
- Psychiatry Clinic, Emergency County Hospital, Cluj-Napoca, Romania
| | - Ioana Valentina Micluția
- Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021; 11:biom11010104. [PMID: 33466844 PMCID: PMC7830622 DOI: 10.3390/biom11010104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy.
Collapse
|
20
|
Román V, Adham N, Foley AG, Hanratty L, Farkas B, Lendvai B, Kiss B. Cariprazine alleviates core behavioral deficits in the prenatal valproic acid exposure model of autism spectrum disorder. Psychopharmacology (Berl) 2021; 238:2381-2392. [PMID: 34264367 PMCID: PMC8373751 DOI: 10.1007/s00213-021-05851-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and interaction and restricted, repetitive behaviors. The unmet medical need in ASD is considerable since there is no approved pharmacotherapy for the treatment of these deficits in social communication, interaction, and behavior. Cariprazine, a dopamine D3-preferring D3/D2 receptor partial agonist, is already approved for the treatment of schizophrenia and bipolar I disorder in adults; investigation in patients with ASD is warranted. OBJECTIVES The aim of this study was to investigate the effects of cariprazine, compared with risperidone and aripiprazole, in the rat prenatal valporic acid (VPA) exposure model on behavioral endpoints representing the core and associated symptoms of ASD. METHODS To induce the ASD model, time-mated Wistar rat dams were treated with VPA during pregnancy. Male offspring were assigned to groups and studied in a behavioral test battery at different ages, employing social play, open field, social approach-avoidance, and social recognition memory tests. Animals were dosed orally, once a day for 8 days, with test compounds (cariprazine, risperidone, aripiprazole) or vehicle before behavioral assessment. RESULTS Cariprazine showed dose-dependent efficacy on all behavioral endpoints. In the social play paradigm, only cariprazine was effective. On the remaining behavioral endpoints, including the reversal of hyperactivity, risperidone and aripiprazole displayed similar efficacy to cariprazine. CONCLUSIONS In the present study, cariprazine effectively reversed core behavioral deficits and hyperactivity present in juvenile and young adult autistic-like rats. These findings indicate that cariprazine may be useful in the treatment of ASD symptoms.
Collapse
Affiliation(s)
| | - Nika Adham
- grid.431072.30000 0004 0572 4227AbbVie, Madison, NJ USA
| | - Andrew G. Foley
- grid.7886.10000 0001 0768 2743Berand Neuropharmacology Limited, NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Lynsey Hanratty
- grid.7886.10000 0001 0768 2743Berand Neuropharmacology Limited, NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Bence Farkas
- grid.418137.80000 0004 0621 5862Gedeon Richter Plc, Budapest, Hungary
| | - Balázs Lendvai
- grid.418137.80000 0004 0621 5862Gedeon Richter Plc, Budapest, Hungary
| | - Béla Kiss
- grid.418137.80000 0004 0621 5862Gedeon Richter Plc, Budapest, Hungary
| |
Collapse
|
21
|
Mandic-Maravic V, Grujicic R, Milutinovic L, Munjiza-Jovanovic A, Pejovic-Milovancevic M. Dopamine in Autism Spectrum Disorders-Focus on D2/D3 Partial Agonists and Their Possible Use in Treatment. Front Psychiatry 2021; 12:787097. [PMID: 35185637 PMCID: PMC8850940 DOI: 10.3389/fpsyt.2021.787097] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of disorders characterized by impairment in social communication and repetitive and stereotyped behaviors. ASD etiology is very complex, including the effect of both genetic and environmental factors. So far, no specific treatment for the core symptoms of ASD has been developed, although attempts have been made for the treatment of repetitive behavior. The pharmacological treatment is aimed at treating non-specific symptoms such as irritability and aggression. Recent studies pointed out to the possible role of altered dopamine signaling in mesocorticolimbic and nigrostriatal circuits in ASD. In addition, several research pointed out to the association of dopamine receptors polymorphism and ASD, specifically repetitive and stereotyped behavior. In this paper, we will provide a review of the studies regarding dopamine signaling in ASD, existing data on the effects of D2/D3 partial agonists in ASD, possible implications regarding their individual receptor profiles, and future perspectives of their possible use in ASD treatment.
Collapse
Affiliation(s)
- Vanja Mandic-Maravic
- Institute of Mental Health, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Ana Munjiza-Jovanovic
- Institute of Mental Health, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|