1
|
Zhao L, Guo R, Zhao Z, Wang J, Lou Z, Bao J, Zheng W, Wang Q, Qiao L, Ye Y, Kwan HY, Zhou H, Wu Q, Xu K. Linking Hyperuricemia to Cancer: Emerging Evidence on Risk and Progression. Curr Oncol Rep 2025:10.1007/s11912-025-01677-z. [PMID: 40285993 DOI: 10.1007/s11912-025-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE OF REVIEW Metabolic disorders significantly contribute to cancer burden globally. Uric acid (UA), a recognized metabolic risk factor linked to gout, also promotes insulin resistance, fatty liver, inflammation, and carcinogenesis. This systematic review evaluates UA's dual role in cancer, synthesizing epidemiological, mechanistic, and clinical evidence to clarify its potential as a therapeutic target. RECENT FINDINGS The research of UA on cancer development mainly focuses on a clinical observational study, with limited molecular mechanism exploration. The associations between UA and cancer risk remain controversial, as sometimes the antioxidant, anti-inflammatory and immune-enhancing properties of UA are presented. There is lacking a systematic and updated review for summarizing the role of hyperuricemia on cancer risk and progression. The precise mechanism of UA in either enhancing or inhibiting cancer progression remains uncertain. Serum uric acid (SUA) exhibits paradoxical roles in cancer, with its effects varying by tumor type, concentration, gender, and disease stage. While UA predominantly drives tumorigenesis in most cancers, it shows protective effects in specific malignancies such as soft-tissue sarcoma and laryngeal squamous cell carcinoma, potentially through antioxidant activity at lower concentrations. Mechanistically, UA highly participate in the cancer risk and progression through reactive oxygen species (ROS) generation, disrupting T cell activation and dendritic cell maturation, exacerbating insulin resistance, and driving xanthine oxidoreductase (XOR) expression during the process of wound healing. Emerging clinical and mechanistic evidence highlights its oncogenic potential, underscoring the need for large-scale randomized controlled trials and cohort studies to clarify the relationship between hyperuricemia and cancer progression. Future research should prioritize exploring anti-UA therapies for cancer treatment, developing advanced animal models to dissect UA's mechanisms, and integrating diverse genomic datasets to unravel its context-dependent roles. Addressing these gaps will advance targeted strategies to leverage UA biology in cancer management.
Collapse
Affiliation(s)
- Lingyun Zhao
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, 519000, China
| | - Ruihong Guo
- Infectious Diseases Department, Fuyang First Hospital, Hangzhou, 311400, Zhejiang, China
| | - Ziming Zhao
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jue Wang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhonghan Lou
- Department of Hepatology, Hangzhou Xixi Hospital, Affiliated to the Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Jianfeng Bao
- Department of Hepatology, Hangzhou Xixi Hospital, Affiliated to the Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Wei Zheng
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qiang Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Yun Ye
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hua Zhou
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, 519000, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Keyang Xu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
2
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
3
|
Li H, Li X, Wang Y, Han W, Li H, Zhang Q. Hypoxia-Mediated Upregulation of Xanthine Oxidoreductase Causes DNA Damage of Colonic Epithelial Cells in Colitis. Inflammation 2024; 47:1142-1155. [PMID: 38206514 DOI: 10.1007/s10753-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Xanthine oxidoreductase (XOR) serves as the primary source of hydrogen peroxide and superoxide anions in the intestinal mucosa. However, its specific contribution to the progression of colonic disease remains unclear. In this study, we investigated the role of XOR in ulcerative colitis (UC) and attempted to identify the underlying mechanisms. We used the dextran sulfate sodium (DSS)-induced mouse model to mimic UC and observed that XOR inhibitors, allopurinol and diphenyleneiodonium sulfate (DPI), significantly alleviated UC in mice. In addition, treatment with cobalt chloride (CoCl2) and 1% O2 increased the expression of XOR and induced DNA oxidative damage in colonic epithelial cells. Furthermore, we identified that XOR accumulation in the nucleus may directly cause DNA oxidative damage and regulates HIF1α protein levels. In addition, allopurinol effectively protected colon epithelial cells from CoCl2-induced DNA damage. Altogether, our data provided evidence that XOR could induce DNA damage under hypoxic conditions, indicating a significant role of XOR in the initiation and early development of colitis-associated colorectal cancer (CAC).
Collapse
Affiliation(s)
- Hongling Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaojing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Weiyu Han
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
4
|
Li X, Yao Z, Qian J, Li H, Li H. Lactate Protects Intestinal Epithelial Barrier Function from Dextran Sulfate Sodium-Induced Damage by GPR81 Signaling. Nutrients 2024; 16:582. [PMID: 38474712 DOI: 10.3390/nu16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
The dysregulation of the intestinal epithelial barrier significantly contributes to the inflammatory progression of ulcerative colitis. Recent studies have indicated that lactate, produced by gut bacteria or derived from fermented foods, plays a key role in modulating inflammation via G-protein-coupled receptor 81 (GPR81). In this study, we aimed to investigate the potential role of GPR81 in the progression of colitis and to assess the impact of lactate/GPR81 signaling on intestinal epithelial barrier function. Our findings demonstrated a downregulation of GPR81 protein expression in patients with colitis. Functional verification experiments showed that Gpr81-deficient mice exhibited more severe damage to the intestinal epithelial barrier and increased susceptibility to DSS-induced colitis, characterized by exacerbated oxidative stress, elevated inflammatory cytokine secretion, and impaired expression of tight-junction proteins. Mechanistically, we found that lactate could suppress TNF-α-induced MMP-9 expression and prevent the disruption of tight-junction proteins by inhibiting NF-κB activation through GPR81 in vitro. Furthermore, our study showed that dietary lactate could preserve intestinal epithelial barrier function against DSS-induced damage in a GPR81-dependent manner in vivo. Collectively, these results underscore the crucial involvement of the lactate/GPR81 signaling pathway in maintaining intestinal epithelial barrier function, providing a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongling Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Tan Y, Fu Y, Yao H, Li H, Wu X, Guo Z, Liang X, Kuang M, Tan L, Jing C. The relationship of organophosphate flame retardants with hyperuricemia and gout via the inflammatory response: An integrated approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168169. [PMID: 37918745 DOI: 10.1016/j.scitotenv.2023.168169] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Evidence regarding the relationships between organophosphate flame retardants (OPFRs) and hyperuricemia and gout as well as the underlying mechanisms remains scarce, but some evidence indicates that inflammation might play a key role. OBJECTIVES Using an integrated approach, we aim to elucidate the associations of urinary metabolite OPFRs (m-OPFRs) with hyperuricemia and gout. METHODS Cross-sectional analyses using data from the National Health and Nutrition Examination Survey were performed to reveal the associations. Adults with complete data on five m-OPFRs with high detection frequencies and outcomes were enrolled. We used multivariate logistic regression, restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR) methods to account for single, nonlinear, and joint effects. The mediating effect of the inflammatory response was also estimated. Moreover, adverse outcome pathways (AOPs) based on network analysis were further constructed to reveal the underlying mechanism. RESULTS Multivariate logistic models revealed that bis(2-chloroethyl) phosphate (BCEP) significantly increased risk of hyperuricemia (OR [95 % CI]: 1.165 [1.047, 1.296]) in the fully adjusted model. Elevated levels of bis(1-chloro-2-propyl) phosphate were associated with gout (OR [95 % CI]: 1.293 [1.015, 1.647]). No nonlinear relationship was observed in RCS. There was a positive association between mixed m-OPFRs and hyperuricemia risk in BMKR, with bis(1,3-dichloro-2-propyl) phosphate and BCEP being the main contributors (PIP > 0.5). We found that the inflammatory response significantly mediated the association between BCEP and hyperuricemia (P < 0.05). Network topology analysis identified seven genes and six phenotypes related to OPFR exposure and hyperuricemia. The AOP framework suggested that the inflammatory response, especially the activation of the TNF pathway, played a core role in the above relationships. CONCLUSION Our results first revealed that individual and mixed OPFRs were associated with hyperuricemia, in which the inflammatory response plays an important role. Further longitudinal studies are warranted to consolidate or refute our main findings.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Yingyin Fu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Huojie Yao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Xiaomei Wu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Xiao Liang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Mincong Kuang
- Center for Disease Control and Prevention of Doumen District, Zhuhai 519125, Guangdong, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
7
|
González‐Olmedo C, García‐Verdejo FJ, Reguera‐Teba A, Rosa‐Garrido C, López‐López JA, Díaz‐Beltrán L, García PM, Luque‐Caro N, Gálvez‐Montosa F, Ortega‐Granados AL, Ruiz‐Sanjuan M, Cózar‐Ibáñez A, Sainz J, Marchal JA, Camacho J, del Palacio JP, Fernández‐Godino R, Díaz C, Sánchez‐Rovira P. Metabolomics signature as a survival predictor in patients with resectable colorectal liver metastasis. Clin Transl Med 2024; 14:e1541. [PMID: 38239072 PMCID: PMC10797245 DOI: 10.1002/ctm2.1541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Affiliation(s)
- Carmen González‐Olmedo
- Medical Oncology UnitUniversity Hospital of JaénJaénSpain
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
- Department of Biomedicine, Translational Research and Personalised MedicineUniversity of GranadaGranadaSpain
| | | | - Antonio Reguera‐Teba
- Department of General SurgeryUniversity Hospital of JaénJaénAndaluciaSpain
- Department of MedicineFaculty of Health SciencesUniversity of JaénJaénSpain
| | - Carmen Rosa‐Garrido
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
| | | | - Leticia Díaz‐Beltrán
- Medical Oncology UnitUniversity Hospital of JaénJaénSpain
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
| | - Patricia Mena García
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | | | | | | | - María Ruiz‐Sanjuan
- Medical Oncology UnitUniversity Hospital of JaénJaénSpain
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
| | | | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTSGranadaSpain
- Instituto de Investigación Biosanataria IBs.GranadaGranadaSpain
- Consortium for Biomedical Research in Epidemiology and Public HealthBarcelonaSpain
- Department of Biochemistry and Molecular Biology IUniversity of GranadaGranadaSpain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanataria IBs.GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical ResearchUniversity of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - José Camacho
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | - Rosario Fernández‐Godino
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | | |
Collapse
|
8
|
Li X, Yan Y, Du X, Zhang H, Li H, Chen W. Yogurt Prevents Colitis-Associated Colorectal Cancer in Mice. Mol Nutr Food Res 2023; 67:e2300444. [PMID: 37897323 DOI: 10.1002/mnfr.202300444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Indexed: 10/30/2023]
Abstract
SCOPE Epidemiological studies indicate an inverse correlation between yogurt consumption and colorectal cancer (CRC), but whether there is a cause-and-effect relationship has not yet been validated. This study aims to investigate the effects and possible mechanisms of yogurt on colitis-associated colorectal cancer (CAC) in mice. METHODS AND RESULTS Experimental CAC is induced by azoxymethane (AOM, 10 mg kg-1 , ip) followed by three cycles of dextran sulfate sodium (DSS, 3%) treatment. Colitis is induced by adding DSS (3%) in drinking water for 5 days. Primary mouse macrophages are isolated for mechanistic studies. Data clearly show that yogurt (15 g kg-1 body weight) significantly reduces the multiplicity of colonic neoplasms by 38.83% in mice. Yogurt protects mice from colitis dependent on lactate receptor GPR81. The deficiency of Gpr81 exacerbates colitis and CAC in mice. Further investigation reveals that GPR81 may be dispensable for gut barrier function but essential for colonic mucosal repair. d-lactate in yogurt can activate GPR81 to suppress proinflammatory macrophage polarization, thereby facilitating inflammatory resolution after colonic injury and consequently suppressing CAC progression. CONCLUSION Yogurt effectively protects against colitis-associated colorectal tumorigenesis in mice, and this study provides a rationale for introducing yogurt supplementation to patients with chronic inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yongheng Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xinru Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Miao YD, Quan WX, Dong X, Gan J, Ji CF, Wang JT, Zhang F. Prognosis-related metabolic genes in the development of colorectal cancer progress and perspective. Gene 2023; 862:147263. [PMID: 36758843 DOI: 10.1016/j.gene.2023.147263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonplace malignant tumors in the world. The occurrence and development of CRC are involved in numerous events. Metabolic reprogramming is one of the hallmarks of cancer and is convoluted and associated with carcinogenesis. Lots of metabolic genes are involved in the occurrence and progression of CRC. Study methods combining tumor genomics and metabolomics are more likely to explore this field in depth. In this mini-review, we make the latest progress and future prospects into the different molecular mechanisms of seven prognosis-related metabolic genes, we screened out in previous research, involved in the occurrence and development of CRC.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Wu-Xia Quan
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Xin Dong
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Cui-Feng Ji
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jiang-Tao Wang
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Fang Zhang
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China.
| |
Collapse
|
10
|
Zhang M, Li X, Zhang Q, Yang J, Liu G. Roles of macrophages on ulcerative colitis and colitis-associated colorectal cancer. Front Immunol 2023; 14:1103617. [PMID: 37006260 PMCID: PMC10062481 DOI: 10.3389/fimmu.2023.1103617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Colitis-associated colorectal cancer is the most serious complication of ulcerative colitis. Long-term chronic inflammation increases the incidence of CAC in UC patients. Compared with sporadic colorectal cancer, CAC means multiple lesions, worse pathological type and worse prognosis. Macrophage is a kind of innate immune cell, which play an important role both in inflammatory response and tumor immunity. Macrophages are polarized into two phenotypes under different conditions: M1 and M2. In UC, enhanced macrophage infiltration produces a large number of inflammatory cytokines, which promote tumorigenesis of UC. M1 polarization has an anti-tumor effect after CAC formation, whereas M2 polarization promotes tumor growth. M2 polarization plays a tumor-promoting role. Some drugs have been shown to that prevent and treat CAC effectively by targeting macrophages.
Collapse
|
11
|
Nejabati HR, Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep 2022; 10:e15488. [PMID: 36259115 PMCID: PMC9579739 DOI: 10.14814/phy2.15488] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 04/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in relation to incidence and mortality rate and its incidence is considerably increasing annually due to the change in the dietary habit and lifestyle of the world population. Although conventional therapeutic options, such as surgery, chemo- and radiotherapy have profound impacts on the treatment of CRC, dietary therapeutic agents, particularly natural products have been regarded as the safest alternatives for the treatment of CRC. Kaempferol (KMP), a naturally derived flavonol, has been shown to reduce the production of reactive oxygen species (ROS), such as superoxide ions, hydroxyl radicals, and reactive nitrogen species (RNS), especially peroxynitrite. Furthermore, this flavonol inhibits xanthine oxidase (XO) activity and increases the activities of catalase, heme oxygenase-1 (HO), and superoxide dismutase (SOD) in a wide range of cancer and non-cancer cells. Based on several studies, KMP is also a hopeful anticancer which carries out its anticancer action via suppression of angiogenesis, stimulation of apoptosis, and cell cycle arrest. Due to various applications of KMP as an anticancer flavonol, this review article aims to highlight the current knowledge regarding the role of KMP in CRC.
Collapse
Affiliation(s)
| | - Leila Roshangar
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
12
|
Liu Q, Li X, Zhang H, Li H. Mannose Attenuates Colitis-Associated Colorectal Tumorigenesis by Targeting Tumor-Associated Macrophages. J Cancer Prev 2022; 27:31-41. [PMID: 35419307 PMCID: PMC8984649 DOI: 10.15430/jcp.2022.27.1.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Mannose has recently drawn extensive attention for its substantial anti-cancer activities, but the underlying mechanism remains largely unclear. The aim of this study was to investigate the effects of mannose on experimental colitis-associated colorectal tumorigenesis and underlying mechanisms. Data clearly showed that at plasma concentrations achieved after oral administration, mannose slightly affected malignancy of tumor cells or tumor promoter-induced transformation of pre-neoplastic cells, but substantially suppressed manifestation of the M2-like phenotype of tumor-associated macrophages (TAMs) in a cancer cell and macrophage co-culture model. Mechanistically, mannose might greatly impair the production of tumor cell-derived lactate which has a critical role in the functional polarization of TAMs. Importantly, oral administration of mannose protected mice against colitis-associated colorectal tumorigenesis by normalizing TAM polarization. Collectively, these findings highlight the importance of TAMs in colorectal tumorigenesis, and provide a rationale for introducing mannose supplementation to patients suffering from inflammatory bowel diseases.
Collapse
Affiliation(s)
- Qinglong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Hua Y, Gao L, Li X. Comprehensive Analysis of Metabolic Genes in Breast Cancer Based on Multi-Omics Data. Pathol Oncol Res 2021; 27:1609789. [PMID: 34408553 PMCID: PMC8366497 DOI: 10.3389/pore.2021.1609789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
Background: Reprogramming of cell metabolism is one of the most important hallmarks of breast cancer. This study aimed to comprehensively analyze metabolic genes in the initiation, progression, and prognosis of breast cancer. Materials and Methods: Data from The Cancer Genome Atlas (TCGA) in breast cancer were downloaded including RNA-seq, copy number variation, mutation, and DNA methylation. A gene co-expression network was constructed by the weighted correlation network analysis (WGCNA) package in R. Association of metabolic genes with tumor-related immune cells and clinical parameters were also investigated. Results: We summarized 3,620 metabolic genes and observed mutations in 2,964 genes, of which the most frequently mutated were PIK3CA (51%), TNN (26%), and KMT2C (15%). Four genes (AKT1, ERBB2, KMT2C, and USP34) were associated with survival of breast cancer. Significant association was detected in the tumor mutation burden (TMB) of metabolic genes with T stage (p = 0.045) and N stage (p = 0.004). Copy number variations were significantly associated with recurrence and prognosis of breast cancer. The co-expression network for differentially expressed metabolic genes by WGCNA suggested that the modules were associated with glycerophospholipid, arachidonic acid, carbon, glycolysis/gluconeogenesis, and pyrimidine/purine metabolism. Glycerophospholipid metabolism correlated with most of the immune cells, while arachidonic acid metabolism demonstrated a significant correlation with endothelial cells. Methylation and miRNA jointly regulated 14 metabolic genes while mutation and methylation jointly regulated PIK3R1. Conclusion: Based on multi-omics data of somatic mutation, copy number variation, mRNA expression, miRNA expression, and DNA methylation, we identified a series of differentially expressed metabolic genes. Metabolic genes are associated with tumor-related immune cells and clinical parameters, which might be therapy targets in future clinical application.
Collapse
Affiliation(s)
- Yu Hua
- Department of Nursing, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lihong Gao
- Department of Nursing, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaobo Li
- Department of Nursing, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|