1
|
Arichi S, Eto K, Ogata M, Sasaki-Hamada S, Ishibashi H. Potentiation of Nicotine-Induced Currents by QO58, a Kv7 Channel Opener, in Intracardiac Ganglion Neurons of Rats. Biol Pharm Bull 2025; 48:101-107. [PMID: 39909436 DOI: 10.1248/bpb.b24-00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
QO58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-[1,5-a] pyrimidin-7-one) is currently used as a specific activator of the Kv7 (KCNQ) family of K+ channels. Here, we report an unexpected potentiating effect of this drug on nicotinic acetylcholine receptors. We recorded the whole-cell responses to the rapid application of nicotine with the Cs+-based pipette solution in intracardiac ganglion neurons freshly dissociated from the rat heart. Nicotine-induced inward currents were concentration-dependently blocked by mecamylamine, but not by 1 μM atropine at a holding potential of -60 mV. While the application of QO58 per se evoked a persistent inward current at this holding potential, 10 μM QO58 potentiated the peak amplitude of the nicotine-induced current. The QO58-induced inward currents were inhibited by the Kv7 channel blockers XE991 and Ba2+, but not by mecamylamine. On the other hand, the nicotine-induced current potentiated by QO58 was fully inhibited by mecamylamine. The facilitatory action of QO58 on the nicotinic response was unaffected by Ba2+. QO58 did not affect the reversal potential of the nicotine-induced current. QO58 apparently shifted the concentration-response curve of nicotine to the left. The half-maximal effective concentrations for nicotine in the absence and presence of 10 μM QO58 were 10.2 and 4.3 μM, respectively. These results suggest that QO58 acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Given the prevalence of nicotinic receptor signaling, the present observations should be considered in future studies on the roles of Kv7 channels in the function of neural circuits and diseases.
Collapse
Affiliation(s)
- Shiho Arichi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| | - Kei Eto
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| |
Collapse
|
2
|
Koh WH, Lin LW, Lin TI, Liu CW, Chang LC, Lin IC, Wu MS, Tsai CC. Exploring the relaxation effects of Coptis chinensis and berberine on the lower esophageal sphincter: potential strategies for LES motility disorders. BMC Complement Med Ther 2024; 24:417. [PMID: 39696287 DOI: 10.1186/s12906-024-04720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Esophageal achalasia, a primary disorder impacting the lower esophageal sphincter (LES), presents symptoms such as dysphagia, regurgitation, chest pain, and weight loss. Traditional treatments, including calcium channel blockers and nitrates, offer limited relief, prompting exploration into alternative therapies. This study examines the efficacy of Traditional Chinese Medicine (TCM), focusing on Coptis chinensis (C. chinensis) and its principal component, berberine, for modulating LES relaxation, offering a new perspective on treatment possibilities. METHODS This research evaluated the impact of C. chinensis extract and berberine on the relaxation of LES contraction pre-induced by carbachol, observing the effects across different concentrations. We employed a series of inhibitors, including tetrodotoxin, ω-conotoxin GVIA, rolipram, vardenafil, KT5823, KT5720, NG-nitro-L-arginine, tetraethylammonium (TEA), apamine, iberiotoxin, and glibenclamide, to investigate the underlying mechanisms of berberine-induced LES relaxation. RESULTS Both C. chinensis extract and berberine induced significant, concentration-dependent relaxation of the LES. The relaxation effect of berberine was significantly reduced by TEA, indicating the involvement of potassium channels in this process. CONCLUSIONS This study demonstrates that C. chinensis and berberine significantly promote LES relaxation, primarily through potassium channel activation. These findings provide a foundation for further investigation of these compounds' potential therapeutic applications in esophageal motility disorders, such as achalasia.
Collapse
Affiliation(s)
- Wen-Harn Koh
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Li-Wei Lin
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ting-I Lin
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ching-Wen Liu
- Department of Senior Citizen Health Service and Management, Yuh-Ing Junior College of Health Care and Management, No. 15, Lane 420, Dachang 2nd Road, Kaohsiung City, 80776, Taiwan, R.O.C
| | - Li-Ching Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City, 83301, Taiwan, R.O.C
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Zhongshan S. Road, Zhongzheng District, Taipei City, 100225, Taiwan, R.O.C
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
| |
Collapse
|
3
|
Zhang Y, Xue Y, Ma Y, Du X, Lu B, Wang Y, Yan Z. Improved classification and pathogenicity assessment by comprehensive functional studies in a large data set of KCNQ2 variants. Life Sci 2024; 339:122378. [PMID: 38142737 DOI: 10.1016/j.lfs.2023.122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
AIMS The paucity of functional annotations on hundreds of KCNQ2 variants impedes the diagnosis and treatment of KCNQ2-related disorders. The aims of this work were to determine the functional properties of 331 clinical KCNQ2 variants, interpreted the pathogenicity of 331 variants using functional data,and explored the association between homomeric channel functions and phenotypes. MAIN METHODS We collected 145 KCNQ2 variants from 232 epilepsy patients and 186 KCNQ2 missense variants from the ClinVar database. Whole-cell patch-clamp recording was used to classify the function of 331 variants. Subsequently, we proposed 24 criteria for the pathogenicity interpretation of KCNQ2 variants and used them to assess pathogenicity of 331 variants. Finally, we analyzed the clinical phenotypes of patients carrying these variants, and explored the correlations between functional mechanisms and phenotypes. KEY FINDINGS In the homozygous state, 287 were classified as loss-of-function and 14 as gain-of-function. In the more clinically relative heterozygous state, 200 variants exhibited functional impairment, 121 of which showed dominant-negative effects on wild-type KCNQ2 subunits. After introducing functional data as strong-level evidence to interpret pathogenicity, over half of variants (169/331) were reclassified and 254 were classified as pathogenic/likely pathogenic. Moreover, dominant-negative effect and haploinsufficiency were identified as primary mechanisms in DEE/ID and SeLNE, respectively. The degree of impairment of channel function correlated with the phenotype severity. SIGNIFICANCE Our study reveals the possible cause of KCNQ2-related disorders at the molecular level, provides compelling evidence for clinical classification of KCNQ2 variants, and expands the knowledge of correlations between functional mechanisms and phenotypes.
Collapse
Affiliation(s)
- Yuwei Zhang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuqing Xue
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Zhiqiang Yan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
4
|
Macías Á, Nevado RM, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Dorado B, Benedicto I, Andrés V. Coronary and carotid artery dysfunction and K V7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome. GeroScience 2024; 46:867-884. [PMID: 37233881 PMCID: PMC10828489 DOI: 10.1007/s11357-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.
Collapse
Affiliation(s)
- Álvaro Macías
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rosa M Nevado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina González-Gómez
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gonzalo
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jesús Andrés-Manzano
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Dorado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Benedicto
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040, Madrid, Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Borowicz-Reutt K, Czernia J, Krawczyk M. Genetic Background of Epilepsy and Antiepileptic Treatments. Int J Mol Sci 2023; 24:16280. [PMID: 38003469 PMCID: PMC10671416 DOI: 10.3390/ijms242216280] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Advanced identification of the gene mutations causing epilepsy syndromes is expected to translate into faster diagnosis and more effective treatment of these conditions. Over the last 5 years, approximately 40 clinical trials on the treatment of genetic epilepsies have been conducted. As a result, some medications that are not regular antiseizure drugs (e.g., soticlestat, fenfluramine, or ganaxolone) have been introduced to the treatment of drug-resistant seizures in Dravet, Lennox-Gastaut, maternally inherited chromosome 15q11.2-q13.1 duplication (Dup 15q) syndromes, and protocadherin 19 (PCDH 19)-clusterig epilepsy. And although the effects of soticlestat, fenfluramine, and ganaxolone are described as promising, they do not significantly affect the course of the mentioned epilepsy syndromes. Importantly, each of these syndromes is related to mutations in several genes. On the other hand, several mutations can occur within one gene, and different gene variants may be manifested in different disease phenotypes. This complex pattern of inheritance contributes to rather poor genotype-phenotype correlations. Hence, the detection of a specific mutation is not synonymous with a precise diagnosis of a specific syndrome. Bearing in mind that seizures develop as a consequence of the predominance of excitatory over inhibitory processes, it seems reasonable that mutations in genes encoding sodium and potassium channels, as well as glutamatergic and gamma-aminobutyric (GABA) receptors, play a role in the pathogenesis of epilepsy. In some cases, different pathogenic variants of the same gene can result in opposite functional effects, determining the effectiveness of therapy with certain medications. For instance, seizures related to gain-of-function (GoF) mutations in genes encoding sodium channels can be successfully treated with sodium channel blockers. On the contrary, the same drugs may aggravate seizures related to loss-of-function (LoF) variants of the same genes. Hence, knowledge of gene mutation-treatment response relationships facilitates more favorable selection of drugs for anticonvulsant therapy.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.C.); (M.K.)
| | | | | |
Collapse
|
6
|
Emerging mechanisms involving brain Kv7 channel in the pathogenesis of hypertension. Biochem Pharmacol 2022; 206:115318. [PMID: 36283445 DOI: 10.1016/j.bcp.2022.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
|
7
|
Zhang H, Sheng ZF, Wang J, Zheng PR, Kang XL, Chang HM, Yeh ETH, Li DP. Signaling pathways involved in NMDA-induced suppression of M-channels in corticotropin-releasing hormone neurons in central amygdala. J Neurochem 2022; 161:478-491. [PMID: 35583089 DOI: 10.1111/jnc.15647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptors (NMDARs) and Kv7/M channels are importantly involved in regulating neuronal activity involved in various physiological and pathological functions. Corticotropin-releasing hormone (CRH)-expressing neurons in the central nucleus of the amygdala (CeA) critically mediate autonomic response during stress. However, the interaction between NMDA receptors and Kv7/M channels in the CRHCeA neurons remains unclear. In this study, we identified rat CRHCeA neurons through the expression of an AAV viral vector-mediated enhanced green fluorescent protein (eGFP) driven by the rat CRH promoter. M-currents carried by Kv7/M channels were recorded using the whole-cell patch-clamp approach in eGFP-tagged CRHCeA neurons in brain slices. Acute exposure to NMDA significantly reduced M-currents recorded from the CRHCeA neurons. NMDA-induced suppression of M-currents was eliminated by chelating intracellular Ca2+ , supplying phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, or blocking phosphoinositide3-kinase (PI3K). In contrast, inhibiting protein kinase C (PKC) or calmodulin did not alter NMDA-induced suppression of M-currents. Sustained exposure of NMDA decreased Kv7.3 membrane protein levels and suppressed M-currents, while the Kv7.2 expression levels remained unaltered. Pre-treatment of brain slices with PKC inhibitors alleviated the decreases in Kv7.3 and reduction of M-currents in CRHCeA neurons induced by NMDA. PKC inhibitors did not alter Kv7.2 and Kv7.3 membrane protein levels and M-currents in CRHCeA neurons. These data suggest that transient activation of NMDARs suppresses M-currents through the Ca2+ -dependent PI3K-PIP2 signaling pathway. In contrast, sustained activation of NMDARs reduces Kv7.3 protein expression and suppresses M-currents through a PKC-dependent pathway.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Jingxiong Wang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Pei Ru Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Xun Lei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Hui-Ming Chang
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences
| | - Edward T H Yeh
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| |
Collapse
|
8
|
Singh SP, William M, Malavia M, Chu XP. Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders. MEMBRANES 2022; 12:membranes12050499. [PMID: 35629827 PMCID: PMC9143857 DOI: 10.3390/membranes12050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Collapse
|