1
|
Yang Y, Ma Y, Li M, Han Y, Liu L. Unraveling the causal pathway between phosphatidylinositol, metabolites, and metabolic syndrome: a Mendelian randomization study. Diabetol Metab Syndr 2025; 17:162. [PMID: 40394636 PMCID: PMC12090523 DOI: 10.1186/s13098-025-01731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
INTRODUCTION Observational studies have increasingly acknowledged the influence of Phosphatidylinositol (PI) on metabolic syndrome (MetS). Nevertheless, the causal association between PI and MetS remains unclear due to the presence of confounding factors and the potential for reverse causation in observational settings. This study seeks to clarify the causal link between PI and MetS while investigating the role of mediating metabolites. METHODS A two-sample Mendelian randomization (MR) analysis was performed to examine the association between PI and MetS, utilizing aggregated data from genome-wide association studies (GWAS). Additionally, a two-step MR approach was applied to quantify the mediation effect of metabolites on the PI-MetS relationship. The inverse variance weighted (IVW) method served as the primary analytical approach, complemented by various sensitivity analyses employing alternative techniques. RESULTS A significant positive association was found between genetically predicted PI and a 17% increased risk of MetS. Genetically predicted metabolites, including 4-cholesten-3-one (IVW: OR 1.264, 95% CI 1.076-1.483, p = 0.004), N-acetylalliin (IVW: OR 1.189, 95% CI 1.008-1.402, p = 0.040), and the Adenosine 5'-diphosphate to 5-oxoproline ratio (IVW: OR 1.191, 95% CI 1.045-1.357, p = 0.009), were each significantly associated with an increased risks of MetS, accounting for 14.50, 11.41%, 11.87% and % of the total effect, respectively. Notably, the Retinol to oleoyl-linoleoyl-glycerol ratio (IVW: OR 0.643, 95% CI 0.466-0.887, p = 0.007) mediated 62.6% of the effect, highlighting its pivotal role in the causal pathway linking PI to MetS. Moreover, 1-palmitoyl-2-dihomo-linolenoyl-GPC (IVW: OR 0.865, 95% CI 0.752-0.995, p = 0.042) and the Creatine to carnitine ratio (IVW: OR 0.853, 95% CI 0.740-0.983, p = 0.028) were associated with a reduced risk of MetS, demonstrating inhibitory effects within their respective pathways that accounted to 35.03% and 8.45% reductions in risk, respectively. CONCLUSIONS Our MR analysis demonstrated a positive association between PI and an increased risk of MetS. Furthermore, the metabolite-mediated PI significantly influenced MetS risk. These findings may offer valuable insights into the pathogenesis of MetS and inform future clinical research.
Collapse
Affiliation(s)
- YueGuang Yang
- Heilongjiang University of Chinese Medicine;, Heilongjiang, P.R. China
| | - YanLing Ma
- Heilongjiang University of Chinese Medicine;, Heilongjiang, P.R. China
| | - Ming Li
- Heilongjiang University of Chinese Medicine;, Heilongjiang, P.R. China
| | - YuBo Han
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang, Harbin, Heilongjiang, 150040, P.R. China.
| | - Li Liu
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang, Harbin, Heilongjiang, 150040, P.R. China.
| |
Collapse
|
2
|
Zhang H, Ma L, Zhai Y, Wang H, Niu M, Zhang M, Guo Y, An Y, Li S, Zhao Y. A phosphatidylinositol 4-kinase alpha (PI4KA) gene reduces plant height of common wheat. Gene 2025; 962:149556. [PMID: 40348068 DOI: 10.1016/j.gene.2025.149556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Reducing plant height (PH) plays an important role in reducing lodging and increasing wheat yield. The potential of wheat yields has reached a plateau in recent years. However the discovery and application of new plant height genes could further increases wheat yield potential. This study located a wheat dwarfing gene downstream of Rht1 on chromosome 4B through QTL mapping, called the phosphatidylinositol 4-kinase alpha (PI4KA-4B). The TaPI4KA-4B gene is located on the cell membrane, and the mating based split-ubiquitin system assays (mbSUS) showed that this gene interacts with TaCSN7 (COP9 signalosome subunit 7). Furthermore, this gene was knocked out in the variety Fielder using the CRISPR/Cas9 gene editing technology. Two homozygous mutant genotypes, AAbbDD (-1 bp) and AAbbDD (-2 bp), were obtained by multi-generation hybridization. Compared with the wild type, the plant height of the mutant was significantly reduced by 6-8 cm, and the stem cell length was significantly shortened with irregular cell morphology. RNA-seq analysis of wild type fielder and mutant plants revealed that the differentially expressed genes (DEGs) were mainly involved in microtubule-based processes, macromolecule biosynthesis, carbohydrate metabolism, and cytoskeletal composition, implying that TaPI4KA-4B regulates plant height through modulating organic synthesis and cytoskeletal reorganization. These results indicate that TaPI4KA-4B is a novel Rht gene that controls plant height in wheat.
Collapse
Affiliation(s)
- Haozhen Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Longteng Ma
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China
| | - Yunhui Zhai
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Hui Wang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Maosen Niu
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China
| | - Mingxia Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Ying Guo
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China
| | - Yanrong An
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Sishen Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Yan Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China.
| |
Collapse
|
3
|
Ogunbawo AR, Hidalgo J, Mulim HA, Carrara ER, Ventura HT, Souza NO, Lourenco D, Oliveira HR. Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle. Front Genet 2025; 16:1549284. [PMID: 40370699 PMCID: PMC12075139 DOI: 10.3389/fgene.2025.1549284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Identifying genomic regions associated with traits of interest and their biological processes provides valuable insights into the phenotypic variability of these traits. This study aimed to identify candidate genes and genomic regions associated with 16 traits currently evaluated by the Brazilian Association of Zebu Breeders (ABCZ). These traits include reproductive traits such as age at first calving (AFC), stayability (STAY), and scrotal circumference at 365 (SC365) and 450 days (SC450). Growth traits include birthweight (BW), expected progeny difference for weight at 120days of age (EPD120), as well as weight at 120 (W120), 210 (W210), 365 (W365), and 450 days of age (W450). Carcass traits include body conformation (BC), finishing score (FS), marbling (MARB), muscularity (MUSC), finishing precocity (FP), and ribeye area (REA). Methods A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute theG A P Y - 1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). Subsequently, the SNP solutions were estimated by back-solving the Genomic Estimated Breeding Values (GEBVs) predicted by ABCZ using the single-step GBLUP method. Genomic regions were identified using sliding windows of 175 consecutive SNPs, and the top 1% genomic windows, ranked based on their proportion of the additive genetic variance, were used to annotate positional candidate genes and genomic regions associated with each of the 16 traits. Results The top 1% windows for all traits explained between 2.779% (STAY) to 3.158% (FP) of the additive genetic variance, highlighting the polygenic nature of these traits. Functional analysis of the candidate genes and genomic regions provided valuable insights into the genetic architecture underlying these traits in Nellore cattle. For instance, our results revealed genes with important functions for each trait, such as SERPINA14 (plays a key role for the endometrial epithelium) identified for AFC, HSPG2 (associated with morphological development and tissue differentiation) identified for BW, among others. Conclusion We identified genomic regions and candidate genes, some of which have been previously reported in the literature, while others are novel discoveries that warrant further investigation. These findings contribute to gene prioritization efforts, facilitating the identification of functional candidate genes that can enhance genomic selection strategies for economically important traits in Nellore cattle.
Collapse
Affiliation(s)
- Adebisi R. Ogunbawo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jorge Hidalgo
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Eula R. Carrara
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | | | - Nadson O. Souza
- Brazilian Association of Zebu Breeders, Uberaba, Minas Gerais, Brazil
| | - Daniela Lourenco
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Blázquez AB, Mingo-Casas P, Quesada E, Priego EM, Pérez-Perez MJ, Martín-Acebes MA. Lipid-targeting antiviral strategies: Current state and future perspectives. Antiviral Res 2025; 236:106103. [PMID: 39947433 DOI: 10.1016/j.antiviral.2025.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
There is an urgent need for antiviral compounds effective against currently known and future viral threats. The development of host-targeting antivirals (HTAs) appears as an alternative strategy to fight viral infections minimizing the potential of resistant mutant development and potentially leading to the identification of broad-spectrum antiviral agents. Among the host factors explored for HTA strategy, lipids constitute an attractive target as many viruses, even genetically diverse, hijack specific lipids during their lifecycle. Multiple repurposing efforts have been performed to analyze the antiviral properties of lipid-targeting compounds. These studies include the analysis of the effects of cholesterol lowering drugs such as statins, cholesterol transport inhibitors, sphingolipid modulators, de novo lipogenesis inhibitors blocking fatty acid synthesis, compounds targeting glycerophospholipids or drugs interfering with lipid droplet metabolism. This review is focused on the current status of lipid-based or lipid-targeting antiviral strategies and their potential for the development of antiviral therapies, with special emphasis on those studies that have reached advanced stages of development such as efficacy studies in animal models or clinical trials. Whereas there is still a long way to go, multiple proof-of-concept studies and clinical evidence reinforce the therapeutic potential of these strategies warranting their further development into effective antiviral therapies.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain.
| | - Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain; Universidad Autónoma de Madrid (UAM, Escuela de Doctorado), Spain
| | | | | | | | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Han H, Liu H, Steiner R, Zhao Z, Jin ZG. Inhibition of protein kinase D and its substrate phosphatidylinositol-4 kinase III beta blocks common human coronavirus replication. Microbiol Spectr 2024; 12:e0150124. [PMID: 39540754 PMCID: PMC11619529 DOI: 10.1128/spectrum.01501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the infection of a coronavirus, named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses can be replicated in the infected host cells. Coronavirus replication involves various steps, including membrane fusion, peri-nuclear particle formation, and matrix vesicle transport to the cell membrane via the endoplasmic reticulum-Golgi-lysosome route. Recent studies have suggested that protein kinase D (PKD) plays a crucial role in regulation of vesicle formation and trafficking in the trans-Golgi network (TGN). Thus, we hypothesize that inhibiting PKD and its associated pathway could be an effective strategy to limit viral replication. Here, we report that molecular and pharmacological inhibition of PKD and its substrate phosphatidylinositol-4 kinase III beta (PI4KIIIβ) significantly diminishes the replication of common human coronaviruses. Specifically, we found that the PKD-silencing siRNA and the PKD inhibitor CRT0066101 have broad-spectrum antiviral activity against HCoV-OC43, HCoV-NL63, and HCoV-229E in cultured cells. Mechanistic studies revealed that the deactivation of PKD reduced the activation of PI4KIIIβ, thereby blocking the transport of viral particles in the host cells. Furthermore, the PI4KIIIβ inhibitor, BQR695, also exhibited antiviral activity against those coronaviruses. In conclusion, PKD and its substrate, PI4KIIIβ, may serve as novel antiviral targets for human coronaviruses and warrant further investigation. IMPORTANCE Human coronaviruses can lead to a range of clinical symptoms, from asymptomatic infection to severe illness and death, with a limited array of antiviral drugs available. Protein kinase D (PKD) is involved in various cellular processes, such as cell proliferation, apoptosis, and membrane fission of the Golgi apparatus. However, the specific role of PKD in the human coronavirus life cycle remains unclear. In this study, we found that PKD inhibitors effectively attenuated human coronavirus replication at the trans-Golgi network (TGN) stage in the viral life cycle. Furthermore, inhibiting PKD reduced PI4KIIIβ activation, thereby blocking viral replication in the host cells. Importantly, PI4KIIIβ inhibitors also blocked human coronavirus replication. Thus, PKD may represent a promising therapeutic target against both current circulating and future emerging coronaviruses.
Collapse
Affiliation(s)
- Huijuan Han
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rebbeca Steiner
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zhijun Zhao
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
6
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
7
|
Kundu R, Kumar S, Chandra A, Datta A. Cell-Permeable Fluorescent Sensors Enable Rapid Live Cell Visualization of Plasma Membrane and Nuclear PIP3 Pools. JACS AU 2024; 4:1004-1017. [PMID: 38559732 PMCID: PMC10976597 DOI: 10.1021/jacsau.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Phosphoinositides, phospholipids that are key cell-signal mediators, are present at very low levels in cellular membranes and within nuclei. Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a phosphoinositide barely present in resting cell membranes, is produced when cells receive either growth, proliferation, or movement signals. Aberrant PIP3 levels are associated with the formation of cancers. PIP3 pools are also present in the nucleus, specifically in the nucleolus. However, questions related to the organization and function of this lipid in such membraneless intranuclear structures remain unanswered. Therefore, chemical sensors for tracking cellular PIP3 are invaluable not only for timing signal initiation in membranes but also for identifying the organization and function of membraneless nuclear PIP3 pools. Because PIP3 is present in the inner leaflet of cell membranes and in the nucleus, cell-permeable, rapid-response fluorescent sensors would be ideal. We have designed two peptide-based, water-soluble, cell-permeable, ratiometric PIP3 sensors named as MFR-K17H and DAN-NG-H12G. MFR-K17H rapidly entered into the cell cytoplasm, distinctly reporting rapid (<1 min) time scales of growth factor-stimulated PIP3 generation and depletion within cell membranes in living cells. Importantly, MFR-K17H lighted up inherently high levels of PIP3 in triple-negative breast cancer cell membranes, implying future applications in the detection of enhanced PIP3 levels in cancerous cells. On the other hand, DAN-NG-H12G targeted intranuclear PIP3 pools, revealing that within membraneless structures, PIP3 resided in a hydrophobic environment. Together, both probes form a unique orthogonally targeted combination of cell-permeable, ratiometric probes that, unlike previous cell-impermeable protein-based sensors, are easy to apply and provide an unprecedented handle into PIP3-mediated cellular processes.
Collapse
Affiliation(s)
- Rajasree Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Sahil Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Amitava Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
8
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
10
|
Nieto-Quero A, Infantes-López MI, Zambrana-Infantes E, Chaves-Peña P, Gavito AL, Munoz-Martin J, Tabbai S, Márquez J, Rodríguez de Fonseca F, García-Fernández MI, Santín LJ, Pedraza C, Pérez-Martín M. Unveiling the Secrets of the Stressed Hippocampus: Exploring Proteomic Changes and Neurobiology of Posttraumatic Stress Disorder. Cells 2023; 12:2290. [PMID: 37759512 PMCID: PMC10527244 DOI: 10.3390/cells12182290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Intense stress, especially traumatic stress, can trigger disabling responses and in some cases even lead to the development of posttraumatic stress disorder (PTSD). PTSD is heterogeneous, accompanied by a range of distress symptoms and treatment-resistant disorders that may be associated with a number of other psychopathologies. PTSD is a very heterogeneous disorder with different subtypes that depend on, among other factors, the type of stressor that provokes it. However, the neurobiological mechanisms are poorly understood. The study of early stress responses may hint at the way PTSD develops and improve the understanding of the neurobiological mechanisms involved in its onset, opening the opportunity for possible preventive treatments. Proteomics is a promising strategy for characterizing these early mechanisms underlying the development of PTSD. The aim of the work was to understand how exposure to acute and intense stress using water immersion restraint stress (WIRS), which could be reminiscent of natural disaster, may induce several PTSD-associated symptoms and changes in the hippocampal proteomic profile. The results showed that exposure to WIRS induced behavioural symptoms and corticosterone levels reminiscent of PTSD. Moreover, the expression profiles of hippocampal proteins at 1 h and 24 h after stress were deregulated in favour of increased inflammation and reduced neuroplasticity, which was validated by histological studies and cytokine determination. Taken together, these results suggest that neuroplastic and inflammatory dysregulation may be a therapeutic target for the treatment of post-traumatic stress disorders.
Collapse
Affiliation(s)
- Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - María Inmaculada Infantes-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Patricia Chaves-Peña
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Ana L. Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Jose Munoz-Martin
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Sara Tabbai
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Javier Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab, Universidad de Málaga, 29010 Malaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - María Inmaculada García-Fernández
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Universidad de Málaga, 29010 Malaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Margarita Pérez-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| |
Collapse
|
11
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
12
|
Bura A, Čabrijan S, Bertović I, Jurak Begonja A. The intracellular and plasma membrane pools of phosphatidylinositol-4-monophosphate control megakaryocyte maturation and proplatelet formation. Res Pract Thromb Haemost 2023; 7:100169. [PMID: 37304829 PMCID: PMC10251075 DOI: 10.1016/j.rpth.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023] Open
Abstract
Background Megakaryocytes (MKs) develop from hematopoietic stem cells after stimulation by the cytokine thrombopoietin. During megakaryopoiesis, MKs enlarge, undergo the process of endomitosis, and develop intracellular membranes (demarcation membrane system, DMS). During DMS formation, there is active transport of proteins, lipids, and membranes from the Golgi apparatus to the DMS. The most important phosphoinositide that controls anterograde transport from the Golgi apparatus to the plasma membrane (PM) is phosphatidylinositol-4-monophosphate (PI4P), whose levels are controlled by suppressor of actin mutations 1-like protein (Sac1) phosphatase at the Golgi and endoplasmic reticulum. Objectives Here we investigated the role of Sac1 and PI4P in megakaryopoiesis. Methods We analyzed Sac1 and PI4P localization in primary MKs derived from fetal liver or bone marrow and in the DAMI cell line by immunofluorescence. The intracellular and PM pools of PI4P in primary MKs were modulated by expression of Sac1 constructs from retroviral vector and inhibition of PI4 kinase IIIα, respectively. Results We showed that in primary mouse MKs, PI4P is mostly found in the Golgi apparatus and the PM in immature MKs, while in mature MKs, it is found in the cell periphery and at the PM. The exogenous expression of wild-type but not C389S mutant (catalytically dead) Sac1 results in the perinuclear retention of the Golgi apparatus resembling immature MKs, with decreased ability to form proplatelets. The pharmacologic inhibition of PI4P production specifically at the PM also resulted in a significant decrease in MKs that form proplatelets. Conclusion These results indicate that both intracellular and PM pools of PI4P mediate MK maturation and proplatelet formation.
Collapse
Affiliation(s)
| | | | | | - Antonija Jurak Begonja
- Correspondence Antonija Jurak Begonja, University of Rijeka, Department of Biotechnology, Laboratory of hematopoiesis, R. Matejcic 2, 51 000 Rijeka, Croatia. @JurakBegonja
| |
Collapse
|
13
|
He R, Liu F, Wang H, Huang S, Xu K, Zhang C, Liu Y, Yu H. ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites. Cell Mol Life Sci 2023; 80:77. [PMID: 36853333 PMCID: PMC11072704 DOI: 10.1007/s00018-023-04728-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.
Collapse
Affiliation(s)
- Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hui Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Ji S, Galon EM, Amer MM, Zafar I, Yanagawa M, Asada M, Zhou J, Liu M, Xuan X. Phosphatidylinositol 4-kinase is a viable target for the radical cure of Babesia microti infection in immunocompromised hosts. Front Cell Infect Microbiol 2022; 12:1048962. [DOI: 10.3389/fcimb.2022.1048962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Human babesiosis is a global emerging tick-borne disease caused by infection with intra-erythrocytic parasites of the genus Babesia. With the rise in human babesiosis cases, the discovery and development of new anti-Babesia drugs are essential. Phosphatidylinositol 4-kinase (PI4K) is a widely present eukaryotic enzyme that phosphorylates lipids to regulate intracellular signaling and trafficking. Previously, we have shown that MMV390048, an inhibitor of PI4K, showed potent inhibition against Babesia species, revealing PI4K as a druggable target for babesiosis. However, twice-administered, 7-day regimens failed to clear Babesia microti parasites from the immunocompromised host. Hence, in this study, we wanted to clarify whether targeting PI4K has the potential for the radical cure of babesiosis. In a B. microti-infected SCID mouse model, a 64-day-consecutive treatment with MMV390048 resulted in the clearance of parasites. Meanwhile, an atovaquone (ATO) resistant parasite line was isolated from the group treated with ATO plus azithromycin. A nonsynonymous variant in the Y272C of the cytochrome b gene was confirmed by sequencing. Likewise, MMV390048 showed potent inhibition against ATO-resistant parasites. These results provide evidence of PI4K as a viable drug target for the radical cure of babesiosis, which will contribute to designing new compounds that can eradicate parasites.
Collapse
|
15
|
Doumane M, Caillaud MC, Jaillais Y. Experimental manipulation of phosphoinositide lipids: from cells to organisms. Trends Cell Biol 2022; 32:445-461. [DOI: 10.1016/j.tcb.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|