1
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
2
|
Yen H, Liao W, Chen C, Su Y, Huang Y, Hsiao C, Chou Y, Chu Y, Shih P, Liu C. Targeting chondroitin sulfate suppresses macropinocytosis of breast cancer cells by modulating syndecan-1 expression. Mol Oncol 2024; 18:2569-2585. [PMID: 38770553 PMCID: PMC11459036 DOI: 10.1002/1878-0261.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Accumulation of abnormal chondroitin sulfate (CS) chains in breast cancer tissue is correlated with poor prognosis. However, the biological functions of these CS chains in cancer progression remain largely unknown, impeding the development of targeted treatment focused on CS. Previous studies identified chondroitin polymerizing factor (CHPF; also known as chondroitin sulfate synthase 2) is the critical enzyme regulating CS accumulation in breast cancer tissue. We then assessed the association between CHPF-associated proteoglycans (PGs) and signaling pathways in breast cancer datasets. The regulation between CHPF and syndecan 1 (SDC1) was examined at both the protein and RNA levels. Confocal microscopy and image flow cytometry were employed to quantify macropinocytosis. The effects of the 6-O-sulfated CS-binding peptide (C6S-p) on blocking CS functions were tested in vitro and in vivo. Results indicated that the expression of CHPF and SDC1 was tightly associated within primary breast cancer tissue, and high expression of both genes exacerbated patient prognosis. Transforming growth factor beta (TGF-β) signaling was implicated in the regulation of CHPF and SDC1 in breast cancer cells. CHPF supported CS-SDC1 stabilization on the cell surface, modulating macropinocytotic activity in breast cancer cells under nutrient-deprived conditions. Furthermore, C6S-p demonstrated the ability to bind CS-SDC1, increase SDC1 degradation, suppress macropinocytosis of breast cancer cells, and inhibit tumor growth in vivo. Although other PGs may also be involved in CHPF-regulated breast cancer malignancy, this study provides the first evidence that a CS synthase participates in the regulation of macropinocytosis in cancer cells by supporting SDC1 expression on cancer cells.
Collapse
Affiliation(s)
- Hung‐Rong Yen
- Department of Chinese MedicineChina Medical University HospitalTaichungTaiwan
- Chinese Medicine Research Center, and School of Chinese Medicine, College of Chinese MedicineChina Medical UniversityTaichungTaiwan
| | - Wen‐Chieh Liao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Chia‐Hua Chen
- Molecular Medicine Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Ying‐Ai Su
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- College of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Ying‐Wei Huang
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- College of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Chi Hsiao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- College of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Yu‐Lun Chou
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Yin‐Hung Chu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Pin‐Keng Shih
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of SurgeryChina Medical University HospitalTaichungTaiwan
- School of MedicineChina Medical UniversityTaichungTaiwan
| | - Chiung‐Hui Liu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
3
|
Yang J, Dong J, Li H, Gong Z, Wang B, Du K, Zhang C, Bi H, Wang J, Tian X, Chen L. Circular RNA HIPK2 Promotes A1 Astrocyte Activation after Spinal Cord Injury through Autophagy and Endoplasmic Reticulum Stress by Modulating miR-124-3p-Mediated Smad2 Repression. ACS OMEGA 2024; 9:781-797. [PMID: 38222662 PMCID: PMC10785321 DOI: 10.1021/acsomega.3c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Glial scarring formed by reactive astrocytes after spinal cord injury (SCI) is the primary obstacle to neuronal regeneration within the central nervous system, making them a promising target for SCI treatment. Our previous studies have demonstrated the positive impact of miR-124-3p on neuronal repair, but it remains unclear how miR-124-3p is involved in autophagy or ER stress in astrocyte activation. To answer this question, the expression of A1 astrocyte-related markers at the transcriptional and protein levels after SCI was checked in RNA-sequencing data and verified using quantitative polymerase chain reaction (qPCR) and Western blotting in vitro and in vivo. The potential interactions among circHIPK2, miR-124-3p, and Smad2 were analyzed and confirmed by bioinformatics analyses and a luciferase reporter assay. In the end, the role of miR-124-3p in autophagy, ER stress, and SCI was investigated by using Western blotting to measure key biomarkers (C3, LC3, and Chop) in the absence or presence of corresponding selective inhibitors (siRNA, 4-PBA, TG). As a result, SCI caused the increase of A1 astrocyte markers, in which the upregulated circHIPK2 directly targeted miR-124-3p, and the direct downregulating effect of Smad2 by miR-124-3p was abolished, while Agomir-124 treatment reversed this effect. Injury caused a significant change of markers for ER stress and autophagy through the circHIPK2/miR-124-3p/Smad2 pathway, which might activate the A1 phenotype, and ER stress might promote autophagy in astrocytes. In conclusion, circHIPK2 may play a functional role in sequestering miR-124-3p and facilitating the activation of A1 astrocytes through regulating Smad2-mediated downstream autophagy and ER stress pathways, providing a new perspective on potential targets for functional recovery after SCI.
Collapse
Affiliation(s)
| | | | - Haotian Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhiqiang Gong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kaili Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chunqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hangchuan Bi
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Junfei Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xinpeng Tian
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lingqiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
4
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
5
|
Chu YH, Liao WC, Ho YJ, Huang CH, Tseng TJ, Liu CH. Targeting Chondroitin Sulfate Reduces Invasiveness of Glioma Cells by Suppressing CD44 and Integrin β1 Expression. Cells 2021; 10:3594. [PMID: 34944101 PMCID: PMC8700349 DOI: 10.3390/cells10123594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Chondroitin sulfate (CS) is a major component of the extracellular matrix found to be abnormally accumulated in several types of cancer tissues. Previous studies have indicated that CS synthases and modification enzymes are frequently elevated in human gliomas and are associated with poor prognosis. However, the underlying mechanisms of CS in cancer progression and approaches for interrupting its functions in cancer cells remain largely unexplored. Here, we have found that CS was significantly enriched surrounding the vasculature in a subset of glioma tissues, which was akin to the perivascular niche for cancer-initiating cells. Silencing or overexpression of the major CS synthase, chondroitin sulfate synthase 1 (CHSY1), significantly regulated the glioma cell invasive phenotypes and modulated integrin expression. Furthermore, we identified CD44 as a crucial chondroitin sulfate proteoglycan (CSPG) that was modified by CHSY1 on glioma cells, and the suppression of CS formation on CD44 by silencing the CHSY1-inhibited interaction between CD44 and integrin β1 on the adhesion complex. Moreover, we tested the CS-specific binding peptide, resulting in the suppression of glioma cell mobility in a fashion similar to that observed upon the silencing of CHSY1. In addition, the peptide demonstrated significant affinity to CD44, promoted CD44 degradation, and suppressed integrin β1 expression in glioma cells. Overall, this study proposes a potential regulatory loop between CS, CD44, and integrin β1 in glioma cells, and highlights the importance of CS in CD44 stability. Furthermore, the targeting of CS by specific binding peptides has potential as a novel therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yin-Hung Chu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Chih-Hsien Huang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-H.C.); (W.-C.L.); (C.-H.H.); (T.-J.T.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| |
Collapse
|