1
|
Kim JH, Kang KW, Park Y, Kim BS. CXCR2 inhibition overcomes ponatinib intolerance by eradicating chronic myeloid leukemic stem cells through PI3K/Akt/mTOR and dipeptidylpeptidase Ⅳ (CD26). Heliyon 2023; 9:e22091. [PMID: 38045173 PMCID: PMC10692791 DOI: 10.1016/j.heliyon.2023.e22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
This study explores the therapeutic potential of targeting CXCR2 in patients afflicted with ponatinib-resistant chronic myeloid leukemia (CML). Ponatinib, a third-generation tyrosine kinase inhibitor (TKI), was initially designed for treating patients with CML harboring the T315I mutation. However, resistance or intolerance issues may lead to treatment discontinuation. Additionally, TKIs have exhibited limitations in eradicating quiescent CML stem cells. Our investigation reveals the activation of CXC chemokine receptor 2 (CXCR2) signaling in response to chemotherapeutic stress. Treatment with the CXCR2 antagonist, SB225002, effectively curtails cell proliferation and triggers apoptosis in ponatinib-resistant CML cells. SB225002 intervention also results in the accumulation of reactive oxygen species and disruption of mitochondrial function, phenomena associated with TKI chemoresistance and apoptosis. Furthermore, we demonstrate that activated CXCR2 expression induces the activity of dipeptidylpeptidase Ⅳ (DPP4/CD26), a CML leukemic stem cell marker, and concomitantly inhibits the PI3K/Akt/mTOR pathway cascades. These findings underscore the novel role of CXCR2 in the regulation of not only ponatinib-resistant CML cells, but also CML leukemic stem cells. Consequently, our study proposes that targeting CXCR2 holds promise as a viable therapeutic strategy for addressing patients with CML grappling with ponatinib resistance.
Collapse
Affiliation(s)
- Ji-Hea Kim
- Institute of Stem Cell Research, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Ka-Won Kang
- Department of Internal Medicine, Anam Hospital Korea University Medical Center, Seoul, South Korea
| | - Yong Park
- Department of Internal Medicine, Anam Hospital Korea University Medical Center, Seoul, South Korea
| | - Byung Soo Kim
- Department of Internal Medicine, Anam Hospital Korea University Medical Center, Seoul, South Korea
| |
Collapse
|
2
|
Kayabasi C, Gunduz C. The lncRNA expression profile signature of leukemia stem cells is altered upon PI3K/mTOR inhibition: an in vitro and in silico study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:99-115. [PMID: 37470414 DOI: 10.1080/15257770.2023.2236143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Genetic and/or epigenetic alterations in hematopoietic stem cells (HSCs) contribute to leukemia stem cell (LSC) formation. We aimed to identify alterations in the lncRNA expression profile signature of LSCs upon inhibition of PI3K/Akt/mTOR signaling, which provides selective advantages to LSCs. We also aimed to elucidate the potential interaction networks and functions of differentially expressed lncRNAs (DELs). We suppressed PI3K/Akt/mTOR signaling in LSC and HSC cell-lines by specific PI3K/mTOR dual-inhibitor (VS-5584) and confirmed the inhibition by antibody-array. We defined DELs by qRT-PCR. Increased SRA, ZEB2-AS1, antiPeg11, DLX6-AS, SNHG4, and decreased H19, PCGEM1, CAR-Intergenic-10, L1PA16, IGF2AS, and SNHG5 levels (|log2fold-change|>5) were strictly associated with PI3K/Akt/mTOR pathway inhibition in LSC. We performed in silico analyses for DELs. ZEB2-AS1 was found to be specifically expressed in normal bone marrow and predominantly lower in leukemic cell-lines. Three sub-clusters were identified for DELs and they were associated with "abnormality of multiple cell lineages in the bone marrow." DELs were most highly enriched for "glucuronidation" Reactome pathway and "ascorbate and aldarate metabolism" and "inositol phosphate metabolism" KEGG pathways. Transcription factors, MBD4, NANOG, PAX6, RELA, CEBPB, and CEBPA were predicted to be associated with the DEL profile. SRA was predicted to interact with CREB1, RARA, and PPARA. The possible DELs' targets were predicted to form six ontological groups, be highly enriched for phosphoprotein, and be involved in "PPAR signaling pathway" and "ChREBP regulation by carbohydrates and cAMP." These results will help to elucidate the roles of lncRNAs in the mechanisms that provide selective advantages to leukemia stem cells.
Collapse
Affiliation(s)
- Cagla Kayabasi
- Department of Medical Biology, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Gasimli R, Kayabasi C, Ozmen Yelken B, Asik A, Sogutlu F, Celebi C, Yilmaz Susluer S, Kamer S, Biray Avci C, Haydaroglu A, Gunduz C. The effects of PKI-402 on breast tumor models' radiosensitivity via dual inhibition of PI3K/mTOR. Int J Radiat Biol 2023; 99:1961-1970. [PMID: 37389464 DOI: 10.1080/09553002.2023.2232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE PI3K/Akt/mTOR pathway activation causes relapse and resistance after radiotherapy in breast cancer (BC). We aimed to radiosensitize BC cell lines to irradiation (IR) by PKI-402, a dual PI3K/mTOR inhibitor. METHODS We performed cytotoxicity, clonogenicity, hanging drop, apoptosis and double-strand break detection, and phosphorylation of 16 essential proteins involved in the PI3K/mTOR pathway. RESULTS Our findings showed that PKI-402 has cytotoxic efficiency in all cell lines. Clonogenic assay results showed that PKI-402 plus IR inhibited the colony formation ability of MCF-7 and breast cancer stem cell lines. Results showed that PKI-402 plus IR causes more apoptotic cell death than IR alone in the MCF-7 cells but did not cause significant changes in the MDA-MB-231. γ-H2AX levels were increased in MDA-MB-231 in PKI-402 plus IR groups, whereas we did not observe any apoptotic and γ-H2AX induction in BCSCs and MCF-10A cells in all treatment groups. Some pivotal phosphorylated proteins of the PI3K/AKT pathway decreased, several proteins increased and others did not change. CONCLUSION In conclusion, if the combined use of PKI-402 with radiation is supported by in vivo studies, it can contribute to the treatment options and the course of the disease.
Collapse
Affiliation(s)
- Roya Gasimli
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cagla Kayabasi
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Besra Ozmen Yelken
- Department of Medical Biology, Faculty of Medicine, Bakircay University, Izmir, Turkey
| | - Aycan Asik
- Department of Medical Biology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Caglar Celebi
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sunde Yilmaz Susluer
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Serra Kamer
- Department of Radiation Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayfer Haydaroglu
- Department of Radiation Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Kayabasi C, Yilmaz Susluer S, Balci Okcanoglu T, Ozmen Yelken B, Mutlu Z, Goker Bagca B, Caliskan Kurt C, Saydam G, Durmuskahya C, Kayalar H, Ozbilgin A, Biray Avci C, Gunduz C. Origanum Sipyleum Methanol Extract in Combination with Ponatinib Shows Synergistic anti-Leukemic Activities on Chronic Myeloid Leukemia Cells. Nutr Cancer 2022; 74:3679-3691. [PMID: 35608652 DOI: 10.1080/01635581.2022.2077969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Origanum sipyleum is used in folk medicine due to its anti-inflammatory, antimicrobial, and antioxidant properties. Ponatinib, an effective tyrosine kinase inhibitor in the treatment of chronic myeloid leukemia (CML), has severe side effects. Thus, we aimed to determine a novel herbal combination therapy that might not only increase the anti-leukemic efficacy but also reduce the dose of ponatinib in targeting CML cells. Origanum sipyleum was extracted with methanol (OSM), and secondary metabolites were determined by phytochemical screening tests. The cytotoxic effects of OSM on K562 cells were measured by WST-1 assay. Median-effect equation was used to analyze the combination of ponatinib and OSM (p-OSM). Apoptosis, proliferation, and cell-cycle were investigated by flow-cytometry. Cell-cycle-related gene expressions were evaluated by qRT-PCR. OSM that contains terpenoids, flavonoids, tannins, and anthracenes exhibited cytotoxic effects on K562 cells. The median-effect of p-OSM was found as synergistic; OSM reduced the ponatinib dose ∼5-fold. p-OSM elevated the apoptotic and anti-proliferative activity of ponatinib. Consistently, p-OSM blocked cell-cycle progression in G0/G1, S phases accompanied by regulations in TGFB2, ATR, PP2A, p18, CCND1, CCND2, and CCNA1 expressions. OSM enhanced the anti-leukemic activity of ponatinib synergistically via inducing apoptosis, suppressing proliferation, and cell-cycle. As a result, OSM might offer a potential strategy for treating patients with CML.
Collapse
Affiliation(s)
- Cagla Kayabasi
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | | | | | - Besra Ozmen Yelken
- Faculty of Medicine, Department of Medical Biology, Izmir Bakircay University, Izmir, Turkey
| | - Zeynep Mutlu
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine, Department of Medical Biology, Aydın Adnan Menderes University, Aydın, Turkey
| | - Cansu Caliskan Kurt
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | - Guray Saydam
- Faculty of Medicine, Internal Medicine Department, Division of Hematology, Ege University, Izmir, Turkey
| | - Cenk Durmuskahya
- Faculty of Forestry, Department of Forest Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Husniye Kayalar
- Faculty of Pharmacy, Department of Pharmacognosy, Ege University, Izmir, Turkey
| | - Ahmet Ozbilgin
- Faculty of Medicine, Department of Parasitology, Celal Bayar University, Manisa, Turkey
| | - Cigir Biray Avci
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| |
Collapse
|
5
|
Kayabasi C, Caner A, Yilmaz Susluer S, Balci Okcanoglu T, Ozmen Yelken B, Asik A, Mutlu Z, Caliskan Kurt C, Goker Bagca B, Biray Avci C, Sahin F, Saydam G, Gunduz C. Comparative expression analysis of dasatinib and ponatinib-regulated lncRNAs in chronic myeloid leukemia and their network analysis. Med Oncol 2022; 39:29. [DOI: 10.1007/s12032-021-01629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
|