1
|
Yin T, Sun S, Peng L, Yang M, Li M, Yang X, Yuan F, Zhu H, Wang S. Targeting microglial NAAA-regulated PEA signaling counters inflammatory damage and symptom progression of post-stroke anxiety. Cell Commun Signal 2025; 23:211. [PMID: 40312408 PMCID: PMC12046839 DOI: 10.1186/s12964-025-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/12/2025] [Indexed: 05/03/2025] Open
Abstract
Post-stroke anxiety (PSA) manifests as anxiety symptoms after stroke, with unclear mechanisms and limited treatment strategies. Endocannabinoids, reported to mitigate fear, anxiety, and stress, undergo dynamic alterations after stroke linked to prognosis intricately. However, endocannabinoid metabolism in ischemic microenvironment and their associations with post-stroke anxiety-like behavior remain largely uncovered. Our findings indicated that endocannabinoid metabolism was dysregulated after stroke, characterized by elevated N-palmitoylethanolamide (PEA) hydrolase N-acylethanolamine-acid amidase (NAAA) in activated microglia from ischemic area, accompanied by rapid PEA exhaustion. Microglial PEA metabolite exhaustion is directly associated with more severe pathological damage, anxiety symptoms and pain sensitivity. Naaa knockout or pharmacological supplementation to boost PEA pool content can effectively promote stroke recovery and alleviate anxiety-like behaviors. In addition, maintaining PEA pool content in ischemic area reduces overactivated microglia by confronting against mitochondria dysfunction and inflammasome cascade triggered IL-18 release and diffusion to contralateral hemisphere. Meanwhile, maintenance of microglial PEA pool content in ischemic-damaged lesion can preserve contralateral vCA1 synaptic integrity, enhancing anxiolytic pBLA-vCA1Calb1+ circuit activity by alleviating microglial phagocytosis-mediated synaptic loss. Thus, we conclude that microglial NAAA-regulated lipid signaling in the ischemic focus remodels contralateral anxiolytic circuit to participate in post-stroke anxiety progression. Blocking PEA signaling breakdown promotes stroke recovery and mitigates anxiety-like symptoms.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Shuaijie Sun
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengmeng Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengyu Li
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Fengyun Yuan
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Hongrui Zhu
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
2
|
Gowrikumar S, Tarudji A, McDonald BZ, Balusa SS, Kievit FM, Dhawan P. Claudin-1 impairs blood-brain barrier by downregulating endothelial junctional proteins in traumatic brain injury. Tissue Barriers 2025:2470482. [PMID: 40018968 DOI: 10.1080/21688370.2025.2470482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/01/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in patients. Brain microvasculature endothelial cells form the blood-brain barrier (BBB) which functions to maintain a protective barrier for the brain from the passive entry of systemic solutes. As a result of the cellular disruption caused by TBI, the BBB is compromised. Tight junction disruption in the endothelium of the BBB has been implicated in this response, but the underlying mechanisms remain unresolved. We utilized various in vivo models of severe to mild TBI as well as in vitro exposure of brain endothelial cells (bEND.3) to analyze conditions encountered following TBI to gain mechanistic insight into alterations observed at the BBB. We found that claudin-1 (CLDN1), was significantly increased in the brain endothelium both in vivo and in vitro. The observed increase of CLDN1 expression correlated with down-regulation of claudin-5 (CLDN5), occludin (OCLN), and zonula occludens (ZO-1), thereby altering BBB integrity by decreasing TEER and increasing permeability. Knockdown of CLDN1 in these pathogenic conditions showed stability of the endothelial junctional proteins. A decline in the epigenetic regulator silent information regulator family protein 1 (SIRT1), a member of the NAD+ dependent protein deacetylases, coincided with this upregulation of CLDN1. Indeed, the quenching of oxidative stress through NAC treatment was able to reduce injury-induced upregulation of CLDN1 in vitro. Mechanistically, an SRC-dependent tyrosine phosphorylation of OCLN and ZO-1 in CLDN1-modulated conditions was observed. Our findings will provide new insights into BBB deregulation and new possible treatment opportunities for TBI.
Collapse
Affiliation(s)
- Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aria Tarudji
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Brandon Z McDonald
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Sai Sindhura Balusa
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Kursancew ACS, Faller CJ, Bortoluzzi DP, Niero LB, Brandão B, Danielski LG, Petronilho F, Generoso JS. Neuroinflammatory Response in the Traumatic Brain Injury: An Update. Neurochem Res 2024; 50:64. [PMID: 39718667 DOI: 10.1007/s11064-024-04316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis. Another highlight is the glymphatic system, which cleans metabolites and waste from the brain. Traumatic brain injury (TBI) represents a significant cause of disability and mortality worldwide, resulting from the application of direct mechanical force to the head that results in a primary injury. Therefore, this review aims to elucidate the mechanisms associated with the secondary injury cascade, in which there is intense activation of glial cells, dysfunction of the glymphatic system, glutamatergic neurotoxicity, additional molecular and biochemical changes that lead to a neuroinflammatory process, and oxidative stress and in which way they can be associated with cognitive damage that is capable of lasting for an extended period.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Daniel Paulo Bortoluzzi
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana Budny Niero
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Beatriz Brandão
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Zhang Y, Xu J, Li P, Luo B, Tang H. Activation of Wnt signaling mitigates blood-brain barrier disruption by inhibiting vesicular transcytosis after traumatic brain injury in mice. Exp Neurol 2024; 377:114782. [PMID: 38641126 DOI: 10.1016/j.expneurol.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Elevated transport of Caveolin-1 (CAV-1) vesicles within vascular endothelial cells constitutes a significant secondary pathogenic event contributing to the compromise of the blood-brain barrier (BBB) post-traumatic brain injury (TBI). While Wnt/β-catenin signaling is recognized for its critical involvement in angiogenesis and the maintenance of BBB integrity, its influence on vascular endothelial transcytosis in the aftermath of TBI is not well-defined. This study aims to elucidate the impact of Wnt/β-catenin signaling on cerebrovascular vesicular transcytosis following TBI. In this experiment, adult male wild-type (WT) C57BL/6 mice underwent various interventions. TBI was induced utilizing the controlled cortical impact technique. Post-TBI, mice were administered either an inhibitor or an agonist of Wnt signaling via intraperitoneal injection. Recombinant adeno-associated virus (rAAV) was administered intracerebroventricularly to modulate the expression of the CAV-1 inhibitory protein, Major facilitator superfamily domain-containing 2a (Mfsd2a). This research utilized Evans blue assay, Western blot analysis, immunofluorescence, transmission electron microscopy, and neurobehavioral assessments. Post-TBI observations revealed substantial increases in macromolecule (Evans blue and albumin) leakage, CAV-1 transport vesicle count, astrocyte end-feet edema, and augmented aquaporin-4 (AQP4) expression, culminating in BBB disruption. The findings indicate that Wnt signaling pathway inhibition escalates CAV-1 transport vesicle activity and aggravates BBB compromise. Conversely, activating this pathway could alleviate BBB damage by curtailing CAV-1 vesicle presence. Post-TBI, there is a diminution in Mfsd2a expression, which is directly influenced by the modulation of WNT signals. Employing a viral approach to regulate Mfsd2a, we established that its down-regulation undermines the protective benefits derived from reducing CAV-1 transport vesicles through WNT signal enhancement. Moreover, we verified that the WNT signaling agonist LiCl notably ameliorates neurological deficits following TBI in mice. Collectively, our data imply that Wnt/β-catenin signaling presents a potential therapeutic target for safeguarding against BBB damage and enhancing neurological function after TBI.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Jianfeng Xu
- Neurosurgery of the Third People's Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Pengcheng Li
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Bo Luo
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
5
|
Maimaiti A, Xie Z, Turhon M, Abulizi A, Wang W, Wu P, Yang Q, Aisha M, Wang Z, Wang Y. Gut Microbiota, Metabolites, Circulating Cytokines and Growth Factors, Plasma Proteins, and Risk of Intracranial Aneurysms: A Two‐Sample Mendelian Randomization Study. Acta Neurol Scand 2024; 2024. [DOI: 10.1155/2024/9764442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/31/2024] [Indexed: 01/03/2025]
Abstract
Background: Increasing evidence implicates the gut microbiota, metabolites, circulating cytokines and growth factors, and plasma proteins as potential susceptibility factors for intracranial aneurysm (IA). However, due to their complexity, the causal relationship between these factors and IA remains unclear. Our goal was to determine whether these factors are causally associated with IA, UIA, and SAH and provide suggestions for the prevention and treatment of these cerebrovascular diseases.Methods: Utilizing data from genome‐wide association studies (GWAS), we conducted a large‐scale Mendelian randomization (MR) analysis between these factors and diseases using five different models (Wald ratio, IVW, MR‐Egger, weighted median, and MRPRESSO). Several sensitivity analyses were also applied to ensure the robustness of the results.Results: Our MR analysis revealed several significant causal relationships between 18 gut microbiota taxa (genus.Bilophila‐SAH, beta[95%CI] = −1.08[−1.61 ~ −0.54]), 55 blood metabolites (7‐alpha‐hydroxy‐3‐oxo‐4‐cholestenoate‐IA, beta[95%CI] = −2.78[−4.47 ~ −1.08]), 2 cytokines (IL‐6‐UIA, beta[95%CI] = 0.73[0.34 ~ 1.39]), 45 plasma proteins (RELT‐UIA, beta[95%CI] = −0.8[−1.22 ~ −0.38]), and IA, UIA, and SAH. Many of these were reported for the first time.Conclusions: In conclusion, our study provides reference of the potential causal effects of gut microbiota, blood metabolites, cytokines, and plasma proteins on IA, UIA, and SAH. These findings may contribute to a better understanding of the pathogenesis and potential therapeutic targets for these cerebrovascular diseases.
Collapse
|
6
|
Xiu Y, Su Y, Gao L, Yuan H, Xu S, Liu Y, Qiu Y, Liu Z, Li Y. Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: a candidate remedy for chronic non-healing wounds. Front Pharmacol 2023; 14:1153810. [PMID: 37266148 PMCID: PMC10229780 DOI: 10.3389/fphar.2023.1153810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Chronic non-healing wound is a considerable clinical challenge and research into the discovery of novel pro-healing agents is underway as existing therapeutic approaches cannot sufficiently meet current needs. Method: We studied the effects of corylin in cell line fibroblasts and macrophages by Western blots, PCR, Flow cytometry assay, Immunofluorescence. Results: We showed that corylin, a main flavonoid extracted from Psoralea corylifolia L, reduced inflammatory responses, promoted collagen deposition, and accelerated the healing of full-thickness skin wounds in mice. Exploration of the underlying mechanisms showed that corylin activated the PI3K/AKT signaling, leading to fibroblasts' migration, proliferation, and scratch healing. Corylin also activated sirtuin 1 (SIRT1) signaling, enhanced the deacetylation and cytoplasmic translocation of NF-κB p65, and therefore reduced lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Furthermore, inhibition of PI3K/AKT and sirtuin 1 pathway with LY294002 and EX527 prevent the therapeutic potency of corylin against chronic wounds. Conclusion: In summary, our results suggested that corylin may be a candidate for the development of novel pro-healing agents.
Collapse
Affiliation(s)
- Yanghui Xiu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Yu Su
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Lihua Gao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Hui Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Xiamen, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| | - Sennan Xu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Ying Liu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Yan Qiu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Zhen Liu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Xiamen, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|
7
|
Ling Y, Ramalingam M, Lv X, Zeng Y, Qiu Y, Si Y, Pedraz JL, Kim HW, Hu J. Recent Advances in Nanomedicine Development for Traumatic Brain Injury. Tissue Cell 2023; 82:102087. [PMID: 37060747 DOI: 10.1016/j.tice.2023.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality worldwide, and it is also a risk factor for neurodegeneration. However, there has not been perceptible progress in treating acute TBI over the last few years, mainly due to the inability of therapeutic drugs to cross the blood-brain barrier (BBB), failing to exert significant pharmacological effects on the brain parenchyma. Recently, nanomedicines are emerging as a powerful tool for the treatment of TBI where nanoscale materials (also called nanomaterials) are employed to deliver therapeutic agents. The advantages of using nanomaterials as a drug carrier include their high solubility and stability, high carrier capacity, site-specific, improved pharmacokinetics, and biodistribution. Keeping these points in consideration, this article reviews the pathophysiology, current treatment options, and emerging nanomedicine strategies for the treatment of TBI. The review will help readers to gain insight into the state-of-the-art of nanomedicine as a new tool for the treatment of TBI.
Collapse
|
8
|
Niu T, Wei Z, Fu J, Chen S, Wang R, Wang Y, Zheng R. Venlafaxine, an anti-depressant drug, induces apoptosis in MV3 human melanoma cells through JNK1/2-Nur77 signaling pathway. Front Pharmacol 2023; 13:1080412. [PMID: 36686679 PMCID: PMC9846499 DOI: 10.3389/fphar.2022.1080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Venlafaxine is one of the most commonly used anti-depressant and antineoplastic drug. Previous studies have predicted venlafaxine as an anti-cancer compound, but the therapeutic effects of venlafaxine in melanoma have not yet been demonstrated. Nur77 is an orphan nuclear receptor that highly expressed in melanoma cells and can interact with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic protein. Method: We examined the effects of venlafaxine in MV3 cells in vitro and MV3 xenograft tumor in nude mice. Western-blot, PCR, TUNEL assay and immunofluorescence were used to reveal the growth of melanoma cells. Results: Here, our data revealed that venlafaxine could reduce the growth, and induce apoptosis of melanoma cells through a Nur77-dependent way. Our results also showed that treatment with venlafaxine (20 mg/kg, i.p.) potently inhibited the growth of melanoma cells in nude mice. Mechanistically, venlafaxine activated JNK1/2 signaling, induced Nur77 expressions and mitochondrial localization, thereby promoting apoptosis of melanoma cells. Knockdown of Nur77 and JNK1/2, or inhibition of JNK1/2 signaling with its inhibitor SP600125 attenuated the anti-cancer effects of venlafaxine. Conclusion: In summary, our results suggested venlafaxine as a potential therapy for melanoma.
Collapse
Affiliation(s)
- Ting Niu
- Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhiying Wei
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shu Chen
- Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ru Wang
- Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuya Wang
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ruihe Zheng
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
9
|
Xie X, Wu X, Zhao D, Liu Y, Du Q, Li Y, Xu Y, Li Y, Qiu Y, Yang Y. Fluvoxamine alleviates bleomycin-induced lung fibrosis via regulating the cGAS-STING pathway. Pharmacol Res 2023; 187:106577. [PMID: 36435270 DOI: 10.1016/j.phrs.2022.106577] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with high mortality and limited effective therapy. Herein, we reported that fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), used in depression and anxiety treatment, also exhibited therapeutic activities in IPF. Fluvoxamine inhibited cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), restrained the activation of their downstream targets, including PERK/ eIF2α/ c-Myc/ miR-9-5p/ TBPL1 and TBK1/ YAP/ JNK1/2/ Bnip3/ CaMKII/ cofilin signaling, thus attenuated the activation and migration of fibroblasts upon TGF-β1 challenge. Fluvoxamine dose-dependently improved pulmonary function, decreased the expression of inflammatory factors, reduced excessive production of extracellular matrix, and thus alleviated bleomycin (BLM)-induced lung fibrosis in mice. Moreover, fluvoxamine at a dose of 10 mg/ kg showed similar efficacy as pirfenidone (PFD) at a dose of 30 mg/kg in a mice model of lung fibrosis. In summary, our results suggest that fluvoxamine is an effective anti-fibrotic agent for IPF.
Collapse
Affiliation(s)
- Xiaohua Xie
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen 361003, China; Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen 361003, China
| | - Xiaofeng Wu
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | | | - Ying Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiyue Du
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yitian Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Yaping Xu
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen, Fujian 361002, China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361002, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian 361005, China.
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yungang Yang
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen 361003, China; Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen 361003, China.
| |
Collapse
|
10
|
Benchama O, Malamas MS, Praveen K, Ethier EC, Williams MK, Makriyannis A, Avraham HK. Inhibition of triple negative breast cancer-associated inflammation and progression by N- acylethanolamine acid amide hydrolase (NAAA). Sci Rep 2022; 12:22255. [PMID: 36564457 PMCID: PMC9789040 DOI: 10.1038/s41598-022-26564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with high mortality due to the high expression of pro-inflammatory cytokines and lack of targeted therapies. N-acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that promotes inflammatory responses through the deactivation of Palmitoylethanolamide (PEA), an endogenous bioactive lipid mediator. Here, we examined NAAA expression in TNBC cells (MDA-MB-231 and MDA-MB-BrM2 cells) and the effects of NAAA inhibition on TNBC tumor growth, using a selective NAAA inhibitor AM11095 (IC50 = 20 nM). TNBC cells expressed elevated levels of full-length and splice mRNAs naaa variants. TNBC cells also express the N-acyl ethanol amides and elevated levels of the two fatty acid cores arachidonic (AA) and docosahexaenoic (DHA). PEA or AM11095 inhibited the secretion of IL-6 and IL-8, reduced the activation of the NF-kB pathway, decreased the expression of VEGF and Placental growth factor (PLGF) in TNBCs, and inhibited tumor cell migration in vitro. Using cellular magnetic resonance imaging (MRI), body images of mice administered with human MDA-MB-BrM2 cells treated with AM11095 showed a significant decrease in tumor numbers with a lower volume of tumors and increased mice survival. Mice untreated or treated with vehicle control showed a high number of tumors with high volumes in multiple organs. Thus, NAAA inhibition may constitute a potential therapeutic approach in the management of TNBC-associated inflammation and tumor growth.
Collapse
Affiliation(s)
- Othman Benchama
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Michael S. Malamas
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Kulkarni Praveen
- grid.261112.70000 0001 2173 3359Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115 USA
| | - Elizabeth C. Ethier
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | | | - Alexandros Makriyannis
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Hava Karsenty Avraham
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
11
|
Li Y, Li Y, Xu S, Chen Y, Zhou P, Hu T, Li H, Liu Y, Xu Y, Ren J, Qiu Y, Lu C. N-Acylethanolamine acid amidase (NAAA) exacerbates psoriasis inflammation by enhancing dendritic cell (DCs) maturation. Pharmacol Res 2022; 185:106491. [DOI: 10.1016/j.phrs.2022.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
12
|
Xu XJ, Ge QQ, Yang MS, Zhuang Y, Zhang B, Dong JQ, Niu F, Li H, Liu BY. Neutrophil-derived interleukin-17A participates in neuroinflammation induced by traumatic brain injury. Neural Regen Res 2022; 18:1046-1051. [PMID: 36254991 PMCID: PMC9827773 DOI: 10.4103/1673-5374.355767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
After brain injury, infiltration and abnormal activation of neutrophils damages brain tissue and worsens inflammation, but the mediators that connect activated neutrophils with neuroinflammation have not yet been fully clarified. To identify regulators of neutrophil-mediated neuroinflammation after traumatic brain injury, a mouse model of traumatic brain injury was established by controlled cortical impact. At 7 days post-injury (sub-acute phase), genome-wide transcriptomic data showed that interleukin 17A-associated signaling pathways were markedly upregulated, suggesting that interleukin 17A may be involved in neuroinflammation. Double immunofluorescence staining showed that interleukin 17A was largely secreted by neutrophils rather than by glial cells and neurons. Furthermore, nuclear factor-kappaB and Stat3, both of which are important effectors in interleukin 17A-mediated proinflammatory responses, were significantly activated. Collectively, our findings suggest that neutrophil-derived interleukin 17A participates in neutrophil-mediated neuroinflammation during the subacute phase of traumatic brain injury. Therefore, interleukin 17A may be a promising therapeutic target for traumatic brain injury.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qian-Qian Ge
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jin-Qian Dong
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hao Li
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,Correspondence to: Bai-Yun Liu, .
| |
Collapse
|
13
|
Lama A, Pirozzi C, Severi I, Morgese MG, Senzacqua M, Annunziata C, Comella F, Del Piano F, Schiavone S, Petrosino S, Mollica MP, Diano S, Trabace L, Calignano A, Giordano A, Mattace Raso G, Meli R. Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain Behav Immun 2022; 102:110-123. [PMID: 35176443 PMCID: PMC10662208 DOI: 10.1016/j.bbi.2022.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022] Open
Abstract
High-fat diet (HFD) consumption leads to obesity and a chronic state of low-grade inflammation, named metainflammation. Notably, metainflammation contributes to neuroinflammation due to the increased levels of circulating free fatty acids and cytokines. It indicates a strict interplay between peripheral and central counterparts in the pathogenic mechanisms of obesity-related mood disorders. In this context, the impairment of internal hypothalamic circuitry runs in tandem with the alteration of other brain areas associated with emotional processing (i.e., hippocampus and amygdala). Palmitoylethanolamide (PEA), an endogenous lipid mediator belonging to the N-acylethanolamines family, has been extensively studied for its pleiotropic effects both at central and peripheral level. Our study aimed to elucidate PEA capability in limiting obesity-induced anxiety-like behavior and neuroinflammation-related features in an experimental model of HFD-fed obese mice. PEA treatment promoted an improvement in anxiety-like behavior of obese mice and the systemic inflammation, reducing serum pro-inflammatory mediators (i.e., TNF-α, IL-1β, MCP-1, LPS). In the amygdala, PEA increased dopamine turnover, as well as GABA levels. PEA also counteracted the overactivation of HPA axis, reducing the expression of hypothalamic corticotropin-releasing hormone and its type 1 receptor. Moreover, PEA attenuated the immunoreactivity of Iba-1 and GFAP and reduced pro-inflammatory pathways and cytokine production in both the hypothalamus and hippocampus. This finding, together with the reduced transcription of mast cell markers (chymase 1 and tryptase β2) in the hippocampus, indicated the weakening of immune cell activation underlying the neuroprotective effect of PEA. Obesity-driven neuroinflammation was also associated with the disruption of blood-brain barrier (BBB) in the hippocampus. PEA limited the albumin extravasation and restored tight junction transcription modified by HFD. To gain mechanistic insight, we designed an in vitro model of metabolic injury using human neuroblastoma SH-SY5Y cells insulted by a mix of glucosamine and glucose. Here, PEA directly counteracted inflammation and mitochondrial dysfunction in a PPAR-α-dependent manner since the pharmacological blockade of the receptor reverted its effects. Our results strengthen the therapeutic potential of PEA in obesity-related neuropsychiatric comorbidities, controlling neuroinflammation, BBB disruption, and neurotransmitter imbalance involved in behavioral dysfunctions.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto, 10, A - 60020 Ancona, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20 - 71122 Foggia, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto, 10, A - 60020 Ancona, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20 - 71122 Foggia, Italy
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte, Sant'Angelo, Cupa Nuova Cinthia 21 - Edificio 7, 80126 Naples, Italy
| | - Sabrina Diano
- Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20 - 71122 Foggia, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto, 10, A - 60020 Ancona, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy.
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano, 49 - 80131 Naples, Italy
| |
Collapse
|
14
|
Xie X, Li Y, Xu S, Zhou P, Yang L, Xu Y, Qiu Y, Yang Y, Li Y. Genetic Blockade of NAAA Cell-specifically Regulates Fatty Acid Ethanolamides (FAEs) Metabolism and Inflammatory Responses. Front Pharmacol 2022; 12:817603. [PMID: 35069223 PMCID: PMC8777083 DOI: 10.3389/fphar.2021.817603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme responsible for the hydrolysis of fatty acid ethanolamides (FAEs). However, the role of NAAA in FAEs metabolism and regulation of pain and inflammation remains mostly unknown. Here, we generated NAAA-deficient (NAAA-/-) mice using CRISPR-Cas9 technique, and found that deletion of NAAA increased PEA and AEA levels in bone marrow (BM) and macrophages, and elevated AEA levels in lungs. Unexpectedly, genetic blockade of NAAA caused moderately effective anti-inflammatory effects in lipopolysaccharides (LPS)-induced acute lung injury (ALI), and poor analgesic effects in carrageenan-induced hyperalgesia and sciatic nerve injury (SNI)-induced mechanical allodynia. These data contrasted with acute (single dose) or chronic NAAA inhibition by F96, which produced marked anti-inflammation and analgesia in these models. BM chimera experiments indicated that these phenotypes were associated with the absence of NAAA in non-BM cells, whereas deletion of NAAA in BM or BM-derived cells in rodent models resulted in potent analgesic and anti-inflammatory phenotypes. When combined, current study suggested that genetic blockade of NAAA regulated FAEs metabolism and inflammatory responses in a cell-specifical manner.
Collapse
Affiliation(s)
- Xiaohua Xie
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Institute of Pediatrics, Xiamen University, Xiamen, China
| | - Yitian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Sennan Xu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Pan Zhou
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen, China
| | - Yan Qiu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Yungang Yang
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Institute of Pediatrics, Xiamen University, Xiamen, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China.,Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|