1
|
Sichrovsky M, Lacabanne D, Ruprecht JJ, Rana JJ, Stanik K, Dionysopoulou M, Sowton AP, King MS, Jones SA, Cooper L, Hardwick SW, Paris G, Chirgadze DY, Ding S, Fearnley IM, Palmer SM, Pardon E, Steyaert J, Leone V, Forrest LR, Tavoulari S, Kunji ERS. Molecular basis of pyruvate transport and inhibition of the human mitochondrial pyruvate carrier. SCIENCE ADVANCES 2025; 11:eadw1489. [PMID: 40249800 PMCID: PMC12007569 DOI: 10.1126/sciadv.adw1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
The mitochondrial pyruvate carrier transports pyruvate, produced by glycolysis from sugar molecules, into the mitochondrial matrix, as a crucial transport step in eukaryotic energy metabolism. The carrier is a drug target for the treatment of cancers, diabetes mellitus, neurodegeneration, and metabolic dysfunction-associated steatotic liver disease. We have solved the structure of the human MPC1L/MPC2 heterodimer in the inward- and outward-open states by cryo-electron microscopy, revealing its alternating access rocker-switch mechanism. The carrier has a central binding site for pyruvate, which contains an essential lysine and histidine residue, important for its ΔpH-dependent transport mechanism. We have also determined the binding poses of three chemically distinct inhibitor classes, which exploit the same binding site in the outward-open state by mimicking pyruvate interactions and by using aromatic stacking interactions.
Collapse
Affiliation(s)
- Maximilian Sichrovsky
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jessica J. Rana
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Klaudia Stanik
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Mariangela Dionysopoulou
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Alice P. Sowton
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Lee Cooper
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Shane M. Palmer
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Department of Biophysics and Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sotiria Tavoulari
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Politte H, Maram L, Elgendy B. Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules 2025; 15:223. [PMID: 40001526 PMCID: PMC11852594 DOI: 10.3390/biom15020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Henry Politte
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Lingaiah Maram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Bahaa Elgendy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Kousaxidis A, Paoli P, Kovacikova L, Genovese M, Santi A, Stefek M, Petrou A, Nicolaou I. Rational design and synthesis of novel N-benzylindole-based epalrestat analogs as selective aldose reductase inhibitors: An unexpected discovery of a new glucose-lowering agent (AK-4) acting as a mitochondrial uncoupler. Eur J Med Chem 2025; 281:117035. [PMID: 39536493 DOI: 10.1016/j.ejmech.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus is one of the most frequent metabolic diseases associated with hyperglycemia. Although antidiabetic drugs reduce hyperglycemia, diabetic patients suffer from abnormal fluctuations in blood glucose levels leading to the onset of long-term complications. Aldose reductase inhibitors are considered a promising strategy for regulating the occurrence of diabetic-specific comorbidities. So far, epalrestat is the only drug being approved in Asian countries. In this paper, we ground our research in discovering novel epalrestat analogs that prevent chronic complications and normalize hyperglycemia. Herein, we describe the rational design and synthesis of four novel 4-thiazolidinone acetic acid derivatives (AK-1-4) being evaluated for their efficacy against aldose reductase from rat lenses and their specificity over the homologous enzyme from rat kidneys. AK-1-4 were also tested against human recombinant protein tyrosine phosphatase 1B as a key target in insulin sensitization and towards the closely related T-cell-derived enzyme. Docking analyses suggested possible binding modes on examined targets. The promising inhibitory profile of AK-4 sparked our interest in exploring its effect on the insulin-receptor signaling pathway and its ability to stimulate glucose uptake under ex vivo conditions. We further investigated the ability of AK-4 to target mitochondria acting as an uncoupling agent and impairing mitochondrial membrane potential. Herein, we report for the first time a new glucose-lowering agent (AK-4) that can combine alleviation for chronic diabetic complications without off-target adverse effects and antihyperglycemic efficacy through controlled mitochondrial uncoupling activity. Pharmacokinetic and toxicity studies in silico revealed optimal properties of AK-4 for oral administration without potential side effects.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS, Dúbravská cesta 9, 84104, Bratislava, Slovakia
| | - Massimo Genovese
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Alice Santi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM, SAS, Dúbravská cesta 9, 84104, Bratislava, Slovakia
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
4
|
Huang Y, Peng X, Zhang H, Pan M, Su X, Li G, Zhang Q. Design, synthesis and biological evaluation of novel cyano-cinnamate derivatives as mitochondrial pyruvate carrier inhibitors. Bioorg Med Chem Lett 2024; 112:129923. [PMID: 39134097 DOI: 10.1016/j.bmcl.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mitochondrial pyruvate carrier (MPC) inhibitors promote the development of hair follicle stem cells without affecting normal cells, which is promising for the treatment of hair loss. Herein, a series of cyano-cinnamate derivatives of UK-5099 were designed and synthesized. All these new compounds have been tested for their ability to promote cellular lactate production in vitro. Compound 4i (LA content:0.322 μmol/106cell) showed better cellular lactate production activity than UK-5099 (LA content:0.185 μmol/106cell). Further compound 4i was also tested on shaved mice by topical treatment and promoted obvious hair growth on mice.
Collapse
Affiliation(s)
- Yilei Huang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Xinyan Peng
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; Pharmaceutical department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| | - Han Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Min Pan
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xiaojing Su
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Gang Li
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China.
| |
Collapse
|
5
|
Herzig S, Li L, Jiménez-Sánchez C, Martinou JC, Maechler P. Screening for new inhibitors of the human Mitochondrial Pyruvate Carrier and their effects on hepatic glucose production and diabetes. Biochim Biophys Acta Gen Subj 2023; 1867:130492. [PMID: 37871770 DOI: 10.1016/j.bbagen.2023.130492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The mitochondrial pyruvate carrier (MPC) is a protein complex composed of two subunits, MPC1 and MPC2. This carrier is at the interface between glycolysis and mitochondrial metabolism and plays an essential role in hepatic glucose production. METHODS Here we describe an in vitro screen for small molecule inhibitors of the MPC using a strain of Lactococcus lactis that has been engineered to co-express the two subunits of the human MPC and is able to import exogenous 14C-pyruvate. We then tested the top candidates for potential antidiabetic effects through the repression of gluconeogenesis. RESULTS By screening the Prestwick compound library of 1'200 drugs approved by the Food and Drug Administration for inhibitors of pyruvate uptake, twelve hit molecules were identified. In a secondary screen, the most potent inhibitors were found to inhibit pyruvate-driven oxygen consumption in mouse C2C12 muscle cells. Assessment of gluconeogenesis showed that Zaprinast, as well as the established MPC inhibitor UK5099, inhibited in vitro and in vivo hepatic glucose production. However, when tested acutely in mice without the administration of gluconeogenic substrates, MPC inhibitors raised blood glucose levels, pointing to liver-independent effects. Furthermore, chronic treatment with Zaprinast failed to correct hyperglycemia in both lean and obese diabetic mouse models. CONCLUSIONS New MPC inhibitors have been identified, showing inhibitory effects on hepatic glucose production. GENERAL SIGNIFICANCE For potential antidiabetic applications, MPC inhibitors should target the liver without undesired inhibition of mitochondrial pyruvate metabolism in the skeletal muscles or pancreatic beta-cells in order to avoid dual effects on glycemia.
Collapse
Affiliation(s)
- Sébastien Herzig
- Department of Molecular and Cellular Biology, University of Geneva, quai Ernest-Ansermet 30, 1205 Geneva, Switzerland
| | - Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, rue Michel-Servet 1, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva, 1206 Geneva, Switzerland
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, rue Michel-Servet 1, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva, 1206 Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, University of Geneva, quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, rue Michel-Servet 1, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
6
|
Lu L, Hu C, Min X, Liu Z, Xu X, Gan L. In Vitro and In Vivo Biological Evaluation of Indole-thiazolidine-2,4-dione Derivatives as Tyrosinase Inhibitors. Molecules 2023; 28:7470. [PMID: 38005192 PMCID: PMC10673563 DOI: 10.3390/molecules28227470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Tyrosinase is an important rate-limiting enzyme in melanin biosynthesis. To find potential tyrosinase inhibitors with anti-melanogenic activity, a series of indole-thiazolidine-2,4-dione derivatives 5a~5z were synthesized by incorporating indole with thiazolidine-2,4-dione into one compound and assayed for their biological activities. All compounds displayed tyrosinase inhibitory activities and 5w had the highest anti-tyrosinase inhibitory activity with an IC50 value of 11.2 μM. Inhibition kinetics revealed 5w as a mixed-type tyrosinase inhibitor. Fluorescence quenching results indicated that 5w quenched tyrosinase fluorescence in a static process. CD spectra and 3D fluorescence spectra results suggested that the binding of 5w with tyrosinase could change the conformation and microenvironment of tyrosinase. Molecular docking also represented the binding between 5w and tyrosinase. Moreover, 5w could inhibit tyrosinase activity and melanogenesis both in B16F10 cells and the zebrafish model. Therefore, compound 5w could serve as a tyrosinase inhibitor with anti-melanogenic activity.
Collapse
Affiliation(s)
- Li Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Chunmei Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Xiaofeng Min
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Lishe Gan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| |
Collapse
|
7
|
Tavoulari S, Sichrovsky M, Kunji ERS. Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiol (Oxf) 2023; 238:e14016. [PMID: 37366179 PMCID: PMC10909473 DOI: 10.1111/apha.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The mitochondrial pyruvate carrier (MPC) resides in the mitochondrial inner membrane, where it links cytosolic and mitochondrial metabolism by transporting pyruvate produced in glycolysis into the mitochondrial matrix. Due to its central metabolic role, it has been proposed as a potential drug target for diabetes, non-alcoholic fatty liver disease, neurodegeneration, and cancers relying on mitochondrial metabolism. Little is known about the structure and mechanism of MPC, as the proteins involved were only identified a decade ago and technical difficulties concerning their purification and stability have hindered progress in functional and structural analyses. The functional unit of MPC is a hetero-dimer comprising two small homologous membrane proteins, MPC1/MPC2 in humans, with the alternative complex MPC1L/MPC2 forming in the testis, but MPC proteins are found throughout the tree of life. The predicted topology of each protomer consists of an amphipathic helix followed by three transmembrane helices. An increasing number of inhibitors are being identified, expanding MPC pharmacology and providing insights into the inhibitory mechanism. Here, we provide critical insights on the composition, structure, and function of the complex and we summarize the different classes of small molecule inhibitors and their potential in therapeutics.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Maximilian Sichrovsky
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
8
|
Moura-Silva J, Tavares MPS, Almeida-Oliveira F, Majerowicz D. Diet supplementation with egg yolk powder fattens the beetle Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e22000. [PMID: 36656770 DOI: 10.1002/arch.22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Insects have become essential models in studying human metabolic diseases, mainly due to their low maintenance cost and available tools. Both mutations and modified diets induce metabolic states similar to human obesity and diabetes. Here, we explore the effect of a high-calorie, high-fat diet on the metabolism of the beetle Tribolium castaneum. Supplementation of the wheat flour diet with powdered egg yolk for 3 weeks increased the total triacylglycerol and accelerated larval development. In addition, this diet increased the triacylglycerol levels of adult beetles. However, this egg yolk supplementation did not alter the larvae's total glucose levels or lipogenic capacity and ATP citrate lyase activity. The diet also did not change the expression profile of several lipid and carbohydrate metabolism genes and insulin-like peptides. Thus, we conclude that the diet supplemented with egg yolk induces increased fat without causing diabetes phenotypes, as seen in other hypercaloric diets in insects.
Collapse
Affiliation(s)
- Julia Moura-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P S Tavares
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Cortelazzo-Polisini E, Boisbrun M, Gansmüller AH, Comoy C. Photoisomerization of Arylidene Heterocycles: Toward the Formation of Fused Heterocyclic Quinolines. J Org Chem 2022; 87:9699-9713. [PMID: 35801862 DOI: 10.1021/acs.joc.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the photoinduced isomerization of a series of arylidene heterocycles 1. The photoreaction mechanism was investigated by a combined UV-vis/photo-NMR spectroscopic study, and we showed that Ar-TZDs exhibit a positive P-type photochromism, which limits their isomerization efficiency. By exploring the solvatochromism in a series of solvents, the conditions favoring the conversion toward one or the other stereoisomer have been studied, in particular by choosing the appropriate wavelengths. Finally, the extension of this photoisomerization study was proposed with a convenient preparation of various fused heterocyclic quinolines in good overall yields.
Collapse
Affiliation(s)
| | | | | | - Corinne Comoy
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| |
Collapse
|
10
|
Tavoulari S, Schirris TJJ, Mavridou V, Thangaratnarajah C, King MS, Jones DTD, Ding S, Fearnley IM, Kunji ERS. Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Mol Metab 2022; 60:101469. [PMID: 35278701 PMCID: PMC8968063 DOI: 10.1016/j.molmet.2022.101469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) has emerged as a promising drug target for metabolic disorders, including non-alcoholic steatohepatitis and diabetes, metabolically dependent cancers and neurodegenerative diseases. A range of structurally diverse small molecule inhibitors have been proposed, but the nature of their interaction with MPC is not understood, and the composition of the functional human MPC is still debated. The goal of this study was to characterise the human MPC protein in vitro, to understand the chemical features that determine binding of structurally diverse inhibitors and to develop novel higher affinity ones. METHODS We recombinantly expressed and purified human MPC hetero-complexes and studied their composition, transport and inhibitor binding properties by establishing in vitro transport assays, high throughput thermostability shift assays and pharmacophore modeling. RESULTS We determined that the functional unit of human MPC is a hetero-dimer. We compared all different classes of MPC inhibitors to find that three closely arranged hydrogen bond acceptors followed by an aromatic ring are shared characteristics of all inhibitors and represent the minimal requirement for high potency. We also demonstrated that high affinity binding is not attributed to covalent bond formation with MPC cysteines, as previously proposed. Following the basic pharmacophore properties, we identified 14 new inhibitors of MPC, one outperforming compound UK5099 by tenfold. Two are the commonly prescribed drugs entacapone and nitrofurantoin, suggesting an off-target mechanism associated with their adverse effects. CONCLUSIONS This work defines the composition of human MPC and the essential MPC inhibitor characteristics. In combination with the functional assays we describe, this new understanding will accelerate the development of clinically relevant MPC modulators.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Tom J J Schirris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Vasiliki Mavridou
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Daniel T D Jones
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Ian M Fearnley
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|