1
|
Xiu C, Zhang L, Zhang C, Zhang Y, Luo X, Zhang Z, Zhao H, Ji K, Chen Z, He G, Chen J. Pharmacologically targeting fatty acid synthase-mediated de novo lipogenesis alleviates osteolytic bone loss by directly inhibiting osteoclastogenesis through suppression of STAT3 palmitoylation and ROS signaling. Metabolism 2025; 167:156186. [PMID: 40081616 DOI: 10.1016/j.metabol.2025.156186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Aberrant increases in osteoclast formation and/or activity are the underlying cause of bone loss in a variety of osteolytic diseases. Fatty acid synthase (Fasn)-mediated de novo lipogenesis (DNL) is one of the major lipid metabolic pathways and has been shown to play critical roles in diverse physiological and pathological processes. However, little is known about its role in osteoclastogenesis. Here, we investigate the direct role of DNL in osteoclastogenesis and its therapeutic potential in osteolytic diseases. We found that Fasn expression and DNL levels are upregulated during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Inhibition of Fasn by shRNA knockdown or its pharmacological inhibitors (ASC40 and trans-C75) impairs osteoclast differentiation in vitro. Mechanistically, pharmacological inhibition of Fasn suppresses RANKL-induced c-Fos/NFATc1 expression and thus osteoclastogenesis partly by disrupting STAT3 palmitoylation, while promoting ROS scavenging to impair mitogen-activated protein kinase (MAPK) signaling. Finally, the therapeutic potential of ASC40 for the treatment of osteolytic bone loss is tested in two mouse models of osteolytic diseases, i.e. ovariectomy (OVX)-induced osteoporosis and titanium nanoparticle-induced calvarial osteolysis. The results show that ASC40 significantly attenuates bone loss and osteoclastogenesis in both models. In conclusion, our results demonstrate that Fasn-mediated DNL is a novel positive regulator of osteoclastogenesis and may serve as a promising therapeutic target for the treatment of osteoclast-driven osteolytic bone diseases.
Collapse
Affiliation(s)
- Chunmei Xiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chenxi Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yuannan Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Ziyi Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangkai Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Kaizhong Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiyuan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guangxu He
- Department of Orthopedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Yi J, Jing D. Unlocking the Epigenetic Symphony: Histone Acetylation Orchestration in Bone Remodeling and Diseases. Stem Cell Rev Rep 2025; 21:291-303. [PMID: 39495465 DOI: 10.1007/s12015-024-10807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Histone acetylation orchestrates a complex symphony of gene expression that controls cellular fate and activities, including the intricate processes of bone remodeling. Despite its proven significance, a systematic illustration of this process has been lacking due to its complexity, impeding clinical application. In this review, we delve into the central regulators of histone acetylation, unveiling their multifaceted roles in modulating bone physiology. We explore both contradictory and overlapping roles among these regulators and assess their potential as therapeutic targets for various bone disorders. Furthermore, we highlight current applications and discuss looming questions for a more effective use of epigenetic therapy in bone diseases, aiming to address gaps in knowledge and clinical practice. By providing a panoramic view of histone acetylation's impact on bone health and disease, this review unveils promising avenues for therapeutic intervention and enhances our understanding of skeletal physiology, crucial for improving therapeutical outcomes and quality of patients' life.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
3
|
Liu W, Zhang M, Wu L, Komori T, Jin H, Yang H, Jiang Q, Qin X. Entinostat treatment causes hypophosphatemia and hypocalcemia by increasing Fgf23 in mice. Biochem Biophys Res Commun 2024; 739:150970. [PMID: 39550862 DOI: 10.1016/j.bbrc.2024.150970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Entinostat, a class I HDACs-selective inhibitor, is currently in clinical trials for treating cancers. In some of the trials, Entinostat treatment frequently causes hypophosphatemia and/or hypocalcemia. Moreover, the effect of Entinostat treatment on bone remains incompletely understood. In this study, we found that Entinostat treatment mildly increased the trabecular but not cortical bone volume, without compromising the bone strength, the numbers of Runx2-positive cells and TRAP-positive cells, and the serum levels of P1NP and TRAP-5b. Entinostat treatment significantly reduced the level of Runx2 mRNA but not Runx2 protein, and as a trend attenuated Ctsk expression. Furthermore, Entinostat treatment did not enhance MC3T3-E1 cell proliferation in vitro. These findings suggest that Entinostat increases trabecular bone volume not by regulating osteoblastogenesis or osteoclastogenesis, but possibly by attenuating the resorption capacity. Unexpectedly, Entinostat treatment increased the expression of Fgf23, whose protein is a hormone that regulates the serum level of phosphate (Pi). Meanwhile, Entinostat treatment increased the serum level of the active form (intact) Fgf23 and reduced that of Pi and calcium (Ca) as well. This study raised a concern about the anabolic effects of Entinostat in bone, and demonstrated that Entinostat treatment causes hypophosphatemia and hypocalcemia by upregulating Fgf23 mRNA and increasing intact Fgf23 protein in serum.
Collapse
Affiliation(s)
- Wenguang Liu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Manyu Zhang
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Lili Wu
- Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Haoyunyan Jin
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Jiang
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xin Qin
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Chen C, Li Y, Feng T, Chen X, Li C, Li L, Zhu M, Chang Y, Wang S. LMK-235 suppresses osteoclastogenesis and promotes osteoblastogenesis by inhibiting HDAC4. Sci Rep 2024; 14:19973. [PMID: 39198677 PMCID: PMC11358535 DOI: 10.1038/s41598-024-70814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoblasts and osteoclasts play an important role in maintaining the structural integrity of bone tissue, in which osteoclasts degrade bone structure and osteoblasts restore bone tissue. The imbalance of osteoblast and osteoclast function can lead to many bone-related diseases, such as osteoporosis and inflammatory osteolysis. The drug that can both promote bone formation and inhibit bone loss will be able to treat those diseases. In this study, it was found that LMK-235, an selective HDAC4/5 inhibitor, inhibited the differentiation and maturation of osteoclasts by regulating NF-κB and p-Smad2/3 signaling pathways via inhibition of HDAC4. At the same time, we found that LMK-235 promoted osteoblast mineralization by upregulating Runx2 expression via inhibition of HDAC4. In vivo, LMK-235 was able to alleviate lipopolysaccharide (LPS)-induced calvarial osteolysis and promote the repair of bone defects. Taken together, LMK-235 suppresses osteoclast differentiation and promotes osteoblast formation by inhibiting HDAC4. This may provide a valuable treatment for bone diseases caused by abnormal osteoclast bone resorption and osteoblast bone regeneration.
Collapse
Affiliation(s)
- Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yue Li
- Department of Biochemistry, Basic Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Teng Feng
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengbo Zhu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Yaqiong Chang
- Department of Nursing, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
5
|
Zhou L, Wu Y, Ying Y, Ding Y. Current knowledge of ferroptosis in the pathogenesis and prognosis of oral squamous cell carcinoma. Cell Signal 2024; 119:111176. [PMID: 38636767 DOI: 10.1016/j.cellsig.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Therapeutic strategies are the hot-spot issues in treating patients with advanced oral squamous cell carcinoma (OSCC). Mounting studies have proved that triggering ferroptosis is one of the promising targets for OSCC management. In this study, we performed a first attempt to collect the current evidence on the proposed roles of ferroptosis in OSCC through a comprehensive review. Based on clinical data from the relevant studies within this topic, we found that ferroptosis-associated tumor microenvironment, ferroptosis-related genes (FRGs), and ferroptosis-related lncRNAs exhibited a potent prognostic value for OSCC patients. Mechanistically, experimental data revealed that the proliferation and tumorigenesis of OSCC might be associated with the inhibition of cellular ferroptosis through the activation of glutathione peroxidase 4 (GPX4) and adipocyte enhancer-binding protein 1 (AEBP1), suppression of glutathione (GSH) and Period 1 (PER1) expression, and modulation of specific non-coding RNAs (i.e., miR-520d-5p, miR-34c-3p, and miR-125b-5p) and their targeted proteins. Several specific interventions (i.e., Quisinostat, Carnosic acid, hyperbaric oxygen, melatonin, aqueous-soluble sporoderm-removed G. lucidum spore powder, and disulfiram/copper complex) were found to dramatically induce ferroptosis cell death of OSCC via multiple mechanisms. This review highlighted the pivotal role of ferroptosis in the pathogenesis and prognosis of OSCC. Future anticancer therapeutic strategies targeting ferroptosis and its associated molecules might provide a new insight for OSCC treatment.
Collapse
Affiliation(s)
- Liyuan Zhou
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), 318000 Zhejiang, China
| | - Youjun Wu
- Department of Dermatology, Taizhou Second People's Hospital, Taizhou, China
| | - Yukang Ying
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), 318000 Zhejiang, China
| | - Yan Ding
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China.
| |
Collapse
|
6
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
7
|
Luo N, Zhang L, Xiu C, Luo X, Hu S, Ji K, Liu Q, Chen J. Piperlongumine, a Piper longum-derived amide alkaloid, protects mice from ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis via suppression of p38 and JNK signaling. Food Funct 2024; 15:2154-2169. [PMID: 38311970 DOI: 10.1039/d3fo03830k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease that results from overproduction and hyperactivation of osteoclasts caused by insufficient estrogen in women after menopause. Current therapeutic strategies are mainly focused on treating PMOP patients who have already developed severe bone loss or even osteoporotic fractures. Obviously, a better strategy is to prevent PMOP from occurring in the first place. However, such reagents are largely lacking. Piperlongumine (PLM), an amide alkaloid extracted from long pepper Piper longum, exhibits the anti-osteoclastogenic effect in normal bone marrow macrophages (BMMs) and the protective effect against osteolysis induced by titanium particles in mice. This study examined the preventive effect of PLM on PMOP and explored the potential mechanism of this effect using both ovariectomized mice and their primary cells. The result showed that PLM (5 and 10 mg kg-1) administered daily for 6 weeks ameliorated ovariectomy-induced bone loss and osteoclast formation in mice. Further cell experiments showed that PLM directly suppressed osteoclast formation, F-actin ring formation, and osteoclastic resorption pit formation in BMMs derived from osteoporotic mice, but did not obviously affect osteogenic differentiation of bone marrow stromal cells (BMSCs) from these mice. Western blot analysis revealed that PLM attenuated maximal activation of p38 and JNK pathways by RANKL stimulation without affecting acute activation of NF-κB, AKT, and ERK signaling. Furthermore, PLM inhibited expression of key osteoclastogenic transcription factors NFATc1/c-Fos and their target genes (Dcstamp, Atp6v0d2, Acp5, and Oscar). Taken together, our findings suggest that PLM inhibits osteoclast formation and function by suppressing RANKL-induced activation of the p38/JNK-cFos/NFATc1 signaling cascade, thereby preventing ovariectomy-induced osteoporosis in mice. Thus, PLM can potentially be used as an anti-resorption drug or dietary supplement for the prevention of PMOP.
Collapse
Affiliation(s)
- Na Luo
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunmei Xiu
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Siyuan Hu
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Kaizhong Ji
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
| | - Qingbai Liu
- Department of Orthopaedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Jianquan Chen
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 51 Huzhou Street, Gongshu District, Hangzhou, Zhejiang 310015, China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Ma L, Zhang L, Liao Z, Xiu C, Luo X, Luo N, Zhang L, He G, Chen J. Pharmacological inhibition of protein S-palmitoylation suppresses osteoclastogenesis and ameliorates ovariectomy-induced bone loss. J Orthop Translat 2023; 42:1-14. [PMID: 37521493 PMCID: PMC10372326 DOI: 10.1016/j.jot.2023.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Excessive osteoclast formation disrupts bone homeostasis, thereby significantly contributing to pathological bone loss associated with a variety of diseases. Protein S-palmitoylation is a reversible post-translational lipid modification catalyzed by ZDHHC family of palmitoyl acyltransferases, which plays an important role in various physiological and pathological processes. However, the role of palmitoylation in osteoclastogenesis has never been explored. Consequently, it is unclear whether this process can be targeted to treat osteolytic bone diseases that are mainly caused by excessive osteoclast formation. Materials and methods In this study, we employed acyl-biotin exchange (ABE) assay to reveal protein S-palmitoylation in differentiating osteoclasts (OCs). We utilized 2-bromopalmitic acid (2-BP), a pharmacological inhibitor of protein S-palmitoylation, to inhibit protein palmitoylation in mouse bone marrow-derived macrophages (BMMs), and tested its effect on receptor activator of nuclear factor κβ ligand (RANKL)-induced osteoclast differentiation and activity by TRAP staining, phalloidin staining, qPCR analyses, and pit formation assays. We also evaluated the protective effect of 2-BP against estrogen deficiency-induced bone loss and bone resorption in ovariectomized (OVX) mice using μCT, H&E staining, TRAP staining, and ELISA assay. Furthermore, we performed western blot analyses to explore the molecular mechanism underlying the inhibitory effect of 2-BP on osteoclastogenesis. Results We found that many proteins were palmitoylated in differentiating OCs and that pharmacological inhibition of palmitoylation impeded RANKL-induced osteoclastogenesis, osteoclast-specific gene expression, F-actin ring formation and osteoclastic bone resorption in vitro, and to a lesser extent, osteoblast formation from MC3T3-E1 cells. Furthermore, we demonstrated that administration of 2-BP protected mice from ovariectomy-induced osteoporosis and bone resorption in vivo. Mechanistically, we showed that 2-BP treatment inhibited osteoclastogenesis partly by downregulating the expression of c-Fos and NFATc1 without overtly affecting RANKL-induced activation of osteoclastogenic AKT, MAPK, and NF-κB pathways. Conclusion Pharmacological inhibition of palmitoylation potently suppresses RANKL-mediated osteoclast differentiation in vitro and protects mice against OVX-induced osteoporosis in vivo. Mechanistically, palmitoylation regulates osteoclast differentiation partly by promoting the expression of c-Fos and NFATc1. Thus, palmitoylation plays a key role in promoting osteoclast differentiation and activity, and could serve as a potential therapeutic target for the treatment of osteoporosis and other osteoclast-related diseases. The translational potential of this article The translation potential of this article is that we first revealed palmitoylation as a key mechanism regulating osteoclast differentiation, and therefore provided a potential therapeutic target for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Linghui Ma
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, China
| | - Zirui Liao
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunmei Xiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Na Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Xiu C, Gong T, Luo N, Ma L, Zhang L, Chen J. Suppressor of fused-restrained Hedgehog signaling in chondrocytes is critical for epiphyseal growth plate maintenance and limb elongation in juvenile mice. Front Cell Dev Biol 2022; 10:997838. [PMID: 36120578 PMCID: PMC9479194 DOI: 10.3389/fcell.2022.997838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hedgehog (Hh) signaling plays multiple critical roles in regulating chondrocyte proliferation and differentiation during epiphyseal cartilage development. However, it is still unclear whether Hh signaling in chondrocytes is required for growth plate maintenance during juvenile growth, and whether sustained activation of Hh signaling in chondrocytes promotes limb elongation. In this study, we first utilized Hh reporter mice to reveal that Hh signaling was activated in resting and columnar chondrocytes in growth plates of juvenile and adult mice. Next, we genetically modulated Hh signaling by conditionally deleting Smo or Sufu in all or a subpopulation of growth plate chondrocytes, and found that ablation of either Smo or Sufu in chondrocytes of juvenile mice caused premature closure of growth plates and shorter limbs, whereas Osx-Cre-mediated deletion of either of these two genes in prehypertrophic chondrocytes did not lead to obvious growth plate defects, indicating that Hh signaling mainly functions in resting and/or columnar chondrocytes to maintain growth plates at the juvenile stage. At the cellular level, we found that chondrocyte-specific ablation of Smo or Sufu accelerated or suppressed chondrocyte hypertrophy, respectively, whereas both decreased chondrocyte proliferation and survival. Thus, our study provided the first genetic evidence to establish the essential cell-autonomous roles for tightly-regulated Hh signaling in epiphyseal growth plate maintenance and limb elongation during juvenile growth.
Collapse
Affiliation(s)
- Chunmei Xiu
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Gong
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Na Luo
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Linghui Ma
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Jianquan Chen, ; Lei Zhang,
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Jianquan Chen, ; Lei Zhang,
| |
Collapse
|