1
|
Cai L, Yu C, Zhao B, Wu Q, Liang H, Zhou M, Miao J, Luo J, Xu J, Jin H, Pan Y. Catharanthine tartrate ameliorates osteoclastogenesis by destabilizing HIF-1α. Cell Signal 2025; 131:111779. [PMID: 40164418 DOI: 10.1016/j.cellsig.2025.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
With the aging population, postmenopausal osteoporosis (PMOP), clinically manifested by reduced bone density, weakened skeletal strength, and compromised skeletal microstructure, has become the most prevalent type. The decline in estrogen levels fosters oxidative stress and osteoclastogenesis, which significantly enhance the activity of osteoclasts. Current treatments prefer to adopt relevant strategies to inactivate osteoclasts but come with unavoidable side effects. In our study, Catharanthine Tartrate (CAT), a derivative of the alkaloid catharanthine found in Catharanthus roseus, promised to be an effective therapy for PMOP. CAT inhibited RANKL-induced osteoclast differentiation and bone resorption in vitro. Moreover, CAT inhibited osteoclast activity by enhancing the ubiquitination-mediated proteasomal degradation of HIF-1α, which reduced oxidative stress and subsequently suppressed osteoclast activity. The inhibitory effects of CAT on osteoclast function and oxidative stress were reversed by DMOG, a known inhibitor of HIF-1α degradation. Next, an in vivo mouse experiment using the Ovariectomized (OVX) model to induce osteoporosis indicated that CAT enhanced bone mass density, bone structure, and bone remodeling. Our findings revealed that CAT inhibits PMOP through facilitating HIF-1α ubiquitination and degradation, suggesting a promising therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Luqiong Cai
- Department of Endocrinology, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenxin Yu
- Department of Endocrinology, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Binli Zhao
- Department of Endocrinology, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qihang Wu
- Department of Orthopaedics, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haibo Liang
- Department of Orthopaedics, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Meng Zhou
- The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiangtao Luo
- Department of Orthopaedics, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Haiming Jin
- Department of Orthopaedics, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Youjin Pan
- Department of Endocrinology, The 2(nd) Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The 2(nd) School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Zhou Q, Jin M, Cui Y, Jiang S, Shang P, Li L. Advances in pharmacological activity and drug delivery systems of vinca alkaloids. Nat Prod Res 2025:1-21. [PMID: 40276897 DOI: 10.1080/14786419.2025.2494625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Vinca alkaloids (VAs), derived from the Catharanthus roseus, are naturally occurring or semi-synthetic alkaloids primarily used in the treatment approach for diverse types of cancer. They have shown significant efficacy in treating leukaemia, Hodgkin's lymphoma. Nevertheless, their clinical application is considerably limited owing to the severe side effects, low bioavailability, and multidrug resistance (MDR). Over the past few years, drug delivery systems such as nanoparticles, liposomes, and solid lipid nanoparticles (SLN) have been shown to improve the pharmacokinetic properties and tumour targeting of VAs. The use of multiple drugs in combination can also reduce the adverse reactions of VAs and significantly enhance their efficacy, thereby broadening their application. This review introduces the main pharmacologically active components of VAs, summarises their chemotherapeutic effects, and provides a statistical overview and analysis of recent research progress in VAs drug delivery technologies, offering a reference for further research and clinical application of VAs in cancer treatment.
Collapse
Affiliation(s)
- Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Arias HR, Rudin D, Luethi D, Valenta J, Leśniak A, Czartoryska Z, Olejarz-Maciej A, Doroz-Płonka A, Manetti D, De Deurwaerdère P, Romanelli MN, Handzlik J, Liechti ME, Chagraoui A. The psychoplastogens ibogaminalog and ibogainalog induce antidepressant-like activity in naïve and depressed mice by mechanisms involving 5-HT 2A receptor activation and serotonergic transmission. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111217. [PMID: 39662723 DOI: 10.1016/j.pnpbp.2024.111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The antidepressant-like activity of two psychoplastogens, ibogainalog (IBG) and ibogaminalog (DM506), was studied in naïve mice using the forced swim test (FST) and tail suspension test (TST). The behavioral results showed that a single administration of 25 mg/kg DM506 or 10 mg/kg IBG induced antidepressant-like activity in naïve mice in a volinanserin-sensitive manner that persisted for 72 h. Similar results were observed using the chronic immobilization stress (CIS) test, in which depression symptoms were reduced for 48 h. To assess the contribution of serotonergic and/or norepinephrinergic neurotransmission, serotonin (5-HT) and norepinephrine (NE) levels were depleted. The reduction in 5-HT levels, but not NE levels, inhibited the antidepressant-like activity of ibogalogs, suggesting that serotonergic transmission may play a more significant role than norepinephrinergic transmission. Concurrently, DM506, IBG, and TBG (derived from tabernanthine) inhibited monoamine transporters with the following order of selectivity: SERT > NE transporter > dopamine transporter. The IBG exhibited the highest selectivity for SERT. Only TBG inhibited monoamine oxidase A activity, indicating its relatively minor role. Radioligand and functional assays showed that all ibogalogs bind to the 5-HT2 receptor subfamily (DM506 > IBG > TBG) and fully activate 5-HT2A/2C receptors with similar potency in the nM range. However, they act as competitive antagonists of the 5-HT2B receptor, with DM506 as an exception, exhibiting partial but potent agonist activity. In conclusion, ibogalogs induce acute and sustained antidepressant-like activity in naïve and depressed mice through mechanisms involving 5-HT2A receptor activation and serotonergic transmission.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jan Valenta
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Czartoryska
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for ResearchDr.nd Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France.
| |
Collapse
|
4
|
Arias HR, Kazmierska-Grebowska P, Kowalczyk T, Shim Y, Caban B, Aman C, Allain AE, De Deurwaerdère P, Chagraoui A. Coronaridine congeners induce anticonvulsant activity in rodents by hippocampal mechanisms involving mainly potentiation of GABA A receptors. Eur J Pharmacol 2024; 982:176911. [PMID: 39179091 DOI: 10.1016/j.ejphar.2024.176911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The coronaridine congeners catharanthine and 18-methoxycoronaridine (18-MC) display sedative, anxiolytic, and antidepressant properties by acting on mechanisms involving GABAergic and/or monoaminergic transmissions. Here, we expanded their pharmacological properties by studying their anticonvulsant activity in male and female mice using the pentylenetetrazole (PTZ)-induced seizure test. To determine potential neurochemical mechanisms, the effect of congeners on monoamine content and kainic acid (KA)-induced epileptiform discharge was studied in the hippocampus. The behavioral results showed that coronaridine congeners induce acute anticonvulsant activity in a dose-dependent but sex-independent manner. Repeated treatment with a subthreshold dose (20 mg/kg) of each congener produced anticonvulsant activity in a sex-independent manner, but was significantly higher in male mice when compared to its acute effect. Using a behaviourally relevant regimen, we found that PTZ increased dopamine metabolites and serotonin tissue content. Coronaridine congeners, which induced distinct effects on monoamines, blunted the effect of PTZ instead of potentiating it, suggesting the existence of another mechanism in their anticonvulsant activity. The electrophysiological results indicated that both congeners inhibit KA-induced epileptiform discharges in hippocampal slices. A key aspect of this study is that the activity of both congeners was observed only in the presence of GABA, supporting the notion that hippocampal GABAAR potentiation plays an important role. Our study showed that coronaridine congeners induce acute anticonvulsant activity in a sex-independent manner. However, a comparatively higher susceptibility was observed in male mice after repeated treatment. The underlying hippocampal mechanisms mainly involve GABAAR potentiation, whereas monoamines play a minor role in the anticonvulsive action.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | | | - Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Yaeun Shim
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Chloé Aman
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Anne-Emilie Allain
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine of Normandy (IRIB) Rouen, France.
| |
Collapse
|
5
|
Williams BM, Steed ND, Woolley JT, Moedl AA, Nelson CA, Jones GC, Burris MD, Arias HR, Kim OH, Jang EY, Hone AJ, McIntosh JM, Yorgason JT, Steffensen SC. Catharanthine Modulates Mesolimbic Dopamine Transmission and Nicotine Psychomotor Effects via Inhibition of α6-Nicotinic Receptors and Dopamine Transporters. ACS Chem Neurosci 2024; 15:1738-1754. [PMID: 38613458 PMCID: PMC11744774 DOI: 10.1021/acschemneuro.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3β2β3 or α6/α3β4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.
Collapse
Affiliation(s)
- Benjamin M. Williams
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Nathan D. Steed
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Joel T. Woolley
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Aubrey A. Moedl
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Christina A. Nelson
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Gavin C. Jones
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Matthew D. Burris
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma 74464, United States
| | - Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Arik J. Hone
- George E. Wahlen Veterans Affairs Medical Center, and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - J. Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jordan T. Yorgason
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Scott C. Steffensen
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
6
|
Arias HR, Rudin D, Hines DJ, Contreras A, Gulsevin A, Manetti D, Anouar Y, De Deurwaerdere P, Meiler J, Romanelli MN, Liechti ME, Chagraoui A. The novel non-hallucinogenic compound DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole) induces sedative- and anxiolytic-like activity in mice by a mechanism involving 5-HT 2A receptor activation. Eur J Pharmacol 2024; 966:176329. [PMID: 38253116 DOI: 10.1016/j.ejphar.2024.176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The anxiolytic and sedative-like effects of 3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole (DM506), a non-hallucinogenic compound derived from ibogamine, were studied in mice. The behavioral effects were examined using Elevated O-maze and novelty suppressed feeding (NSFT) tests, open field test, and loss of righting reflex (LORR) test. The results showed that 15 mg/kg DM506 induced acute and long-lasting anxiolytic-like activity in naive and stressed/anxious mice, respectively. Repeated administration of 5 mg/kg DM506 did not cause cumulative anxiolytic activity or any side effects. Higher doses of DM506 (40 mg/kg) induced sedative-like activity, which was inhibited by a selective 5-HT2A receptor antagonist, volinanserin. Electroencephalography results showed that 15 mg/kg DM506 fumarate increased the transition from a highly alert state (fast γ wavelength) to a more synchronized deep-sleeping activity (δ wavelength), which is reflected in the sedative/anxiolytic activity in mice but without the head-twitch response observed in hallucinogens. The functional, radioligand binding, and molecular docking results showed that DM506 binds to the agonist sites of human 5-HT2A (Ki = 24 nM) and 5-HT2B (Ki = 16 nM) receptors and activates them with a potency (EC50) of 9 nM and 3 nM, respectively. DM506 was relatively less potent and behaved as a partial agonist (efficacy <80%) for both receptor subtypes compared to the full agonist DOI (2,5-dimethoxy-4-iodoamphetamine). Our study showed for the first time that the non-hallucinogenic compound DM506 induces anxiolytic- and sedative-like activities in naïve and stressed/anxious mice in a dose-, time-, and volinanserin-sensitive manner, likely through mechanisms involving 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Deborah Rudin
- Divison of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dustin J Hines
- Psychological and Brain Sciences, University of Nevada, Las Vegas, NV, USA
| | - April Contreras
- Psychological and Brain Sciences, University of Nevada, Las Vegas, NV, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Integratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, 04103, Leipzig, Germany
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Matthias E Liechti
- Divison of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France.
| |
Collapse
|
7
|
Arias HR, De Deurwaerdère P, Scholze P, Sakamoto S, Hamachi I, Di Giovanni G, Chagraoui A. Coronaridine congeners induce sedative and anxiolytic-like activity in naïve and stressed/anxious mice by allosteric mechanisms involving increased GABA A receptor affinity for GABA. Eur J Pharmacol 2023:175854. [PMID: 37331683 DOI: 10.1016/j.ejphar.2023.175854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
The sedative and anxiolytic-like activity of two coronaridine congeners, (+)-catharanthine and (-)-18-methoxycoronaridine (18-MC), was studied in male and female mice. The underlying molecular mechanism was subsequently determined by fluorescence imaging and radioligand binding experiments. The loss of righting reflex and locomotor activity results showed that both (+)-catharanthine and (-)-18-MC induce sedative effects at doses of 63 and 72 mg/kg in a sex-independent manner. At a lower dose (40 mg/kg), only (-)-18-MC induced anxiolytic-like activity in naïve mice (elevated O-maze test), whereas both congeners were effective in mice under stressful/anxiogenic conditions (light/dark transition test) and in stressed/anxious mice (novelty-suppressed feeding test), where the latter effect lasted for 24 h. Coronaridine congeners did not block pentylenetetrazole-induced anxiogenic-like activity in mice. Considering that pentylenetetrazole inhibits GABAA receptors, this result supports a role for this receptor in the activity mediated by coronaridine congeners. Functional and radioligand binding results showed that coronaridine congeners interact with a site different from that for benzodiazepines, increasing GABAA receptor affinity for GABA. Our study showed that coronaridine congeners induce sedative and anxiolytic-like activity in naïve and stressed/anxious mice in a sex-independent fashion, likely by a benzodiazepine-independent allosteric mechanism that increases GABAA receptor affinity for GABA.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM U1239, Institute for Research and Innovation in Biomedicine of Normandy (IRIB) Rouen, France.
| |
Collapse
|
8
|
Ren P, Wang JY, Chen HL, Chang HX, Zeng ZR, Li GX, Ma H, Zhao YQ, Li YF. Sigma-1 receptor agonist properties that mediate the fast-onset antidepressant effect of hypidone hydrochloride (YL-0919). Eur J Pharmacol 2023; 946:175647. [PMID: 36898424 DOI: 10.1016/j.ejphar.2023.175647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The most intriguing characteristic of the sigma-1 receptor is its ability to regulate multiple functional proteins directly via protein-protein interactions, giving the sigma-1 receptor the powerful ability to regulate several survival and metabolic functions in cells, fine tune neuronal excitability, and regulate the transmission of information within brain circuits. This characteristic makes sigma-1 receptors attractive candidates for the development of new drugs. Hypidone hydrochloride (YL-0919), a novel structured antidepressant candidate developed in our laboratory, possess a selective sigma-1 receptor agonist profile, as evidenced by molecular docking, radioligand receptor binding assays, and receptor functional experiments. In vivo studies have revealed that YL-0919 elicits a fast-onset antidepressant activity (within one week) that can be attenuated with pretreatment of the selective sigma-1 receptor antagonist, BD-1047. Taken together, the findings of the current study suggest that YL-0919 activates the sigma-1 receptor to partially mediate the rapid onset antidepressant effects of YL-0919. Thus, YL-0919 is a promising candidate as a fast-onset antidepressant that targets the sigma-1 receptor.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|