1
|
Zhang Y, Dai H, Lv M, Wang Y, Zheng Y, Luo J, Li S. Edaravone alleviates sepsis-induced diaphragmatic dysfunction via Sirt1/Nrf2 pathway. Int Immunopharmacol 2025; 153:114475. [PMID: 40106902 DOI: 10.1016/j.intimp.2025.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The mechanisms underlying the development of sepsis-induced diaphragmatic dysfunction (SIDD) are poorly understood. Activation of the SIRT1/Nrf2 signaling pathway can attenuate oxidative stress damage in skeletal muscle injury. The present study aimed to validate the hypothesis that edaravone (ED) can improve SIDD through modulation of the SIRT1/Nrf2 signaling pathway and to explore the underlying mechanisms. METHODS Animal models (mice) were constructed using the cecal ligation and puncture (CLP) method, while the C2C12 cells were stimulated by lipopolysaccharide (LPS). The diaphragmatic function was accessed by diaphragm ultrasonography. We examined the expression levels of proteins involved in the SIRT1/Nrf2 pathway (Sirt1, Nrf2, and HO-1), oxidative stress markers (SOD, ROS, and GPX4), and muscle atrophy-related proteins (MuRF1 and Atrogin-1) to test the role of ED in SIDD. RESULTS We found that sepsis-induced a significant decrease in both diaphragmatic excursion and contractile velocity. Administration of ED (5 mg/kg) improved the diaphragmatic function in mice. Moreover, sepsis mice showed increased levels of oxidative stress markers and muscle atrophy-related proteins and a down-regulated pathway of SIRT1/Nrf2. The intervention of ED could modulate the SIRT1/Nrf2 pathway, which in turn protects the diaphragm from SIDD. Similar findings were also observed in vitro experiments with small interfering RNAs. CONCLUSIONS Edaravone was demonstrated to potentially alleviate SIDD by activating the SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Youping Zhang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Man Lv
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, PR China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Yang W, Wen W, Chen H, Zhang H, Lu Y, Wang P, Xu S. Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Chin J Nat Med 2025; 23:77-89. [PMID: 39855833 DOI: 10.1016/s1875-5364(25)60808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 01/27/2025]
Abstract
The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear. This study employed an oxygen-glucose deprivation (OGD) cell model using SH-SY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation (2VO). The effects of ZFXN on learning and memory, neuroprotective activity, mitochondrial function, oxidative stress, and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro. Results indicated that ZFXN significantly increased the B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax) ratio, reduced terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL)+ cells, and markedly improved cognition, synaptic plasticity, and neuronal function in the hippocampus and cortex. Furthermore, ZFXN exhibited potent antioxidant activity, evidenced by decreased ROS and malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels. ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential (MMP), Tom20 fluorescence intensity, adenosine triphosphate (ATP) and energy charge (EC) levels, and mitochondrial complex I and III activity, thereby inhibiting mitochondrial damage. Additionally, ZFXN significantly increased SIRT1 activity and elevated SIRT1, nuclear Nrf2, and HO-1 levels. Notably, these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro. In conclusion, ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.
Collapse
Affiliation(s)
- Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Lu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Lin L, Xu H, Yao Z, Zeng X, Kang L, Li Y, Zhou G, Wang S, Zhang Y, Cheng D, Chen Q, Zhao X, Li R. Jin-Xin-Kang alleviates heart failure by mitigating mitochondrial dysfunction through the Calcineurin/Dynamin-Related Protein 1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118685. [PMID: 39127116 DOI: 10.1016/j.jep.2024.118685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic heart failure (CHF) is a severe consequence of cardiovascular disease, marked by cardiac dysfunction. Jin-Xin-Kang (JXK) is a traditional Chinese herbal formula used for the treatment of CHF. This formula consists of seven medicinal herbs, including Ginseng (Ginseng quinquefolium (L.) Alph.Wood), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge), Salvia miltiorrhiza (Salvia miltiorrhiza Bunge), Descurainiae Semen Lepidii Semen (Descurainia sophia (L.) Webb ex Prantl), Leonuri Herba (Leonurus japonicus Houtt.), Cinnamomi Ramulus (Cinnamomum cassia (L.) J.Presl), and Ilex pubescens (Ilex pubescens Hook. & Arn.). Its clinical efficacy has been validated through prospective randomized controlled studies. However, the specific mechanisms of action for this formula have yet to be elucidated. AIM OF THE STUDY This study aimed to investigate the effect of JXK on mitochondrial function and its mechanism in the treatment of CHF. METHODS JXK components were qualitatively analyzed using UPLC-Q-Orbitrap-MS. HF was induced in mice via transverse aortic constriction (TAC). After successful model establishment, lyophilized JXK-L (4.38 g/kg) and JXK-H (13.14 g/kg) were administered for 8 weeks. In vitro, hypertrophic myocardium was induced using angiotensin II (Ang II) for 48 h, followed by JXK-L and JXK-H treatment. Network pharmacology and molecular docking techniques were used to predict the relevant targets of JXK. Cardiac function, serum markers, and histopathological changes were evaluated to assess cardiac function. Immunofluorescence of Tomm20, mitochondrial membrane potential, and ROS were measured to assess mitochondrial dysfunction. Protein expression of calcineurin (CaN) and Drp1 in the myocardium was assessed by Western blot analysis. RESULTS We detected that the active components of JXK include terpenes, glycosides, flavonoids, amino acids, and alkaloids, among others. In mice with CHF, JXK improved cardiac function and reversed ventricular remodeling. Network pharmacology indicated that JXK can inhibit the calcium signaling pathway. The molecular docking results demonstrated that the active components of JXK effectively bind with CaN. Both in vitro and in vivo experiments confirmed that JXK regulated the CaN/Drp1 pathway and alleviated mitochondrial dysfunction. CONCLUSION JXK can inhibit the CaN/Drp1 pathway to improve mitochondrial function, and consequently treat CHF.
Collapse
Affiliation(s)
- Liwen Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China; Innovation Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Zhengyang Yao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyou Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihua Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guiting Zhou
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shushu Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danling Cheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xinjun Zhao
- Cardiology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Rong Li
- Cardiology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Abdelzaher WY, Geddawy A, Attya ME, Ali AHSA, Elroby Ali DM, Waggas DS, Alshaeri HK, Ibrahim YF. Sirt1/Nrf2/TNFα; TLR4/Myd88/NF-κB signaling pathways are involved in mediating hepatoprotective effect of bupropion in rat model of myocardial infarction. Immunopharmacol Immunotoxicol 2024; 46:872-883. [PMID: 39390633 DOI: 10.1080/08923973.2024.2415461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The aim of the current study is to identify the possible protective effect of bupropion (BUP) on liver injury in rat model of myocardial infarction (MI). BUP was administered in the presence and absence of MI. MATERIALS AND METHODS Thirty-two Wistar adult male rats were randomly arranged into four groups: control, BUP (30 mg/kg/day, intraperitoneal) for 28 days, isoproterenol (ISO) was injected subcutaneous (85 mg/kg) in the 26th and 27th days and BUP/ISO groups. Cardiac and hepatic enzymes were measured, also Hepatic oxidative stress indicators, as well as inflammatory and apoptotic biomarkers, were evaluated. Cardiac and hepatic histopathological examination and hepatic nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) immunohistochemical study were also detected. RESULTS ISO significantly increased cardiac and hepatic enzymes, hepatic oxidative stress, inflammatory, apoptotic, with a histopathological picture of cardiac and hepatic damage and high hepatic NF-κB immunoexpression were detected. BUP significantly normalized the upraised oxidative, inflammatory, and apoptotic parameters, with an impressive improvement in the histopathological picture and a reduction in hepatic NF-κB immunoexpression. CONCLUSION BUP protects against liver injury on top of MI in rat model via modulation of Sirtuin type 1 (Sirt1)/Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/tumor necrosis factor α (TNFα); Toll-like receptor 4 (TLR4)/Hepatic myeloid differentiation primary response 88(Myd88)/NF-κB signaling pathways.
Collapse
Affiliation(s)
| | - Ayman Geddawy
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudia Arabia
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Doaa Mohamed Elroby Ali
- Department of Biochemistry and molecular biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Dania S Waggas
- Pathological Sciences Department- MBBS Program, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Heba K Alshaeri
- Pharmaceutical Sciences Department- PharmD Program, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Yasmine F Ibrahim
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Wang S, Feng D, Wang W, Zheng C, Liang C, Li S, Li H, Xu F, Cao H, Hua H, Cheng M, Li D. Discovery of SIRT1-Activating Hydrogen Sulfide Donating Derivatives for Efficient Resistant of Myocardial Ischemic Injury. J Med Chem 2024; 67:17657-17675. [PMID: 39268676 DOI: 10.1021/acs.jmedchem.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Activating SIRT1 or promoting SIRT1 expression are both protective against myocardial ischemia. Combining these approaches would be an effective strategy for treating ischemic heart disease. Herein, we identified lead compounds with SIRT1 activation activity through screening the natural product library, and five series of H2S donating derivatives were designed and synthesized. Among them, compound 17 exerted an effective cardioprotective effect in vitro and in vivo. The addition of H2S scavenger attenuated the protective activity, emphasizing the critical involvement of H2S in the myocardial ischemia process. Interestingly, 17 exhibited stronger direct SIRT1 activative ability and induced higher SIRT1 expression capability compared to the lead. Furthermore, 17 attenuates oxidative stress-induced cardiomyocytes apoptosis by activating the SIRT1-PGC1α signaling pathway. Our study validated the promising potential of activating SIRT1 and promoting SIRT1 expression through H2S to improve cardiomyocytes function, providing novel insights into the protective mechanisms during the progression of ischemic heart disease.
Collapse
Affiliation(s)
- Shenglin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Dongyan Feng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Weirenbo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Chao Zheng
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T-1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5T-1R8, Canada
| | - Chaowei Liang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Siqing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, and Key Laboratory of Microbial Pharmaceutics, Liaoning Province, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
6
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
7
|
Zhang Y, Yang Y, Ren J, Yan G, Yang L, Wu X, Kong L, Sun H, Han Y, Zhang X, Wang X. Chinmedomics strategy for elucidating the effects and effective constituents of Danggui Buxue Decoction in treating blood deficiency syndrome. Front Mol Biosci 2024; 11:1376345. [PMID: 38560521 PMCID: PMC10978583 DOI: 10.3389/fmolb.2024.1376345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Danggui Buxue Decoction (DBD) is a clinically proven, effective, classical traditional Chinese medicine (TCM) formula for treating blood deficiency syndrome (BDS). However, its effects and effective constituents in the treatment of BDS remain unclear, limiting precise clinical therapy and quality control. This study aimed to accurately evaluate the effects of DBD and identify its effective constituents and quality markers. Methods BDS was induced in rats by a combined injection of acetylphenylhydrazine and cyclophosphamide, and the efficacy of DBD against BDS was evaluated based on body weight, body temperature, energy metabolism, general status, visceral indices, histopathology, biochemical markers, and metabolomics. The effects of DBD on urinary and serum biomarkers of BDS were investigated, and the associated metabolic pathways were analyzed via metabolomics. Guided by Chinmedomics, the effective constituents and quality markers of DBD were identified by analyzing the dynamic links between metabolic biomarkers and effective constituents in vivo. Results DBD improved energy metabolism, restored peripheral blood and serum biochemical indices, and meliorated tissue damage in rats with BDS. Correlation analyses between biochemical indices and biomarkers showed that 15(S)-HPETE, LTB4, and taurine were core biomakers and that arachidonic acid, taurine, and hypotaurine metabolism were core metabolic pathways regulated by DBD. Calycosin-7-glucoside, coumarin, ferulic acid sulfate, cycloastragenol, (Z)-ligustilide + O, astragaloside IV, acetylastragaloside I, and linoleic acid were identified as effective constituents improving the hematopoietic function of the rats in the BDS model. Additionally, calycosin-7-glucoside, ferulic acid, ligustilide, and astragaloside IV were identified as quality markers of DBD. Conclusion The hematopoietic function of DBD was confirmed through analysis of energy metabolism, biochemical markers, histopathology, and metabolomics. Moreover, by elucidating effective constituents of DBD in BDS treatment, quality markers were confirmed using a Chinmedomics strategy. These results strengthen the quality management of DBD and will facilitate drug innovation.
Collapse
Affiliation(s)
- Ye Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Yang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junling Ren
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuhong Wu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|