1
|
Chen Z, Dou J, Zhang X. Chinese medicine targets cellular autophagy against cardiovascular diseases: research progress and future prospects. Front Cardiovasc Med 2025; 12:1585407. [PMID: 40491718 PMCID: PMC12146376 DOI: 10.3389/fcvm.2025.1585407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 06/11/2025] Open
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health and represent one of the leading causes of death worldwide. Cellular autophagy, an essential intracellular self-degradation and homeostasis maintenance mechanism, plays a pivotal role in the pathogenesis of cardiovascular diseases. Traditional Chinese Medicine (TCM), with its unique theoretical framework and therapeutic principles, has demonstrated remarkable efficacy in CVDs management, garnering increasing scientific attention. In recent years, growing research attention has focused on TCM's autophagy regulation for CVDs treatment. However, most studies remain limited to cellular and animal models, with insufficient clinical data and unclear specific metabolic pathways and targets. Therefore, it is imperative to (1) investigate autophagy mechanisms in depth (2), explore methods for autophagy balance, and (3) clarify drug interactions to establish a foundation for clinical applications. This article comprehensively summarizes relevant research findings, provides an in-depth discussion of TCM's mechanisms in autophagy regulation for CVDs treatment, reviews current research status, and outlines future development trends, aiming to offer valuable theoretical foundations and therapeutic strategies for clinical CVDs management.
Collapse
Affiliation(s)
- Zhengyu Chen
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Zhang Y, Zhan J, Qiu Z, Tian H, Lei S, Huang Q, Xue R, Sun Q, Xia Z. Verbascoside attenuates myocardial ischemia/reperfusion-induced ferroptosis following heterotopic heart transplantation via modulating GDF15/GPX4/SLC7A11 pathway. Sci Rep 2025; 15:15651. [PMID: 40325032 PMCID: PMC12052987 DOI: 10.1038/s41598-025-00112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Myocardial cold ischemia/reperfusion (I/R) injury is an inevitable consequence of heart transplantation, significantly affecting survival rates and therapeutic outcomes. Growth Differentiation Factor 15 (GDF15) has been shown to regulate GPX4-mediated ferroptosis, playing a critical role in mitigating I/R injury. Meanwhile, verbascoside (VB), an active compound extracted from the herbaceous plant, has demonstrated myocardial protective effects. In this study, heart transplantation was performed using a modified non-suture cuff technique, with VB administered at a dose of 20 mg/kg/day via intraperitoneal injection for 3 days in vivo. In vitro, cardiomyocytes were pretreated with 50 µg/ml VB for 24 h. VB treatment significantly reduced histopathological injury, decreased myocardial injury markers, and inhibited ferroptosis and oxidative stress during myocardial cold I/R injury in vivo. In vitro experiments further demonstrated that GDF15 alleviates ferroptosis induced by hypoxic reoxygenation by upregulating GPX4. Therefore, it is concluded that VB preconditioning can effectively reduce ferroptosis induced by myocardial cold I/R after heterotopic heart transplantation, possibly through up-regulation of GDF15/GPX4/SLC7A11 pathway.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Junbiao Zhan
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhen Qiu
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Hao Tian
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Qin Huang
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Rui Xue
- Department of Anesthesiology, Hubei University of Medicine, Renmin Hospital, Shiyan, China
| | - Qian Sun
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China.
| |
Collapse
|
3
|
Khoso MA, Liu H, Zhao T, Zhao W, Huang Q, Sun Z, Dinislam K, Chen C, Kong L, Zhang Y, Liu X. Impact of plant-derived antioxidants on heart aging: a mechanistic outlook. Front Pharmacol 2025; 16:1524584. [PMID: 40191425 PMCID: PMC11969199 DOI: 10.3389/fphar.2025.1524584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Heart aging involves a complex interplay of genetic and environmental influences, leading to a gradual deterioration of cardiovascular integrity and function. Age-related physiological changes, including ventricular hypertrophy, diastolic dysfunction, myocardial fibrosis, increased arterial stiffness, and endothelial dysfunction, are influenced by key mechanisms like autophagy, inflammation, and oxidative stress. This review aims to explore the therapeutic potential of plant-derived bioactive antioxidants in mitigating heart aging. These compounds, often rich in polyphenols, flavonoids, and other phytochemicals, exhibit notable antioxidant, anti-inflammatory, and cardioprotective properties. These substances have intricate cardioprotective properties, including the ability to scavenge ROS, enhance endogenous antioxidant defenses, regulate signaling pathways, and impede fibrosis and inflammation-promoting processes. By focusing on key molecular mechanisms linked to cardiac aging, antioxidants produced from plants provide significant promise to reduce age-related cardiovascular decline and improve general heart health. Through a comprehensive analysis of preclinical and clinical studies, this work highlights the mechanisms associated with heart aging and the promising effects of plant-derived antioxidants. The findings may helpful for researchers in identifying specific molecules with therapeutic and preventive potential for aging heart.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Khuzin Dinislam
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Lingyi Kong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| |
Collapse
|
4
|
Ponce-Mora A, Salazar NA, Domenech-Bendaña A, Locascio A, Bejarano E, Gimeno-Mallench L. Interplay Between Polyphenols and Autophagy: Insights From an Aging Perspective. FRONT BIOSCI-LANDMRK 2025; 30:25728. [PMID: 40152368 DOI: 10.31083/fbl25728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 03/29/2025]
Abstract
The relationship between polyphenols and autophagy, particularly in the context of aging, presents a promising avenue for therapeutic interventions in age-related diseases. A decline in autophagy is associated with aging-related affections, and an increasing number of studies suggest that this enhancement is linked to cellular resilience and longevity. This review delves into the multifaceted roles of autophagy in cellular homeostasis and the potential of polyphenols to modulate autophagic pathways. We revised the most updated literature regarding the modulatory effects of polyphenols on autophagy in cardiovascular, liver, and kidney diseases, highlighting their therapeutic potential. We highlight the role of polyphenols as modulators of autophagy to combat age-related diseases, thus contributing to improving the quality of life in aging populations. A better understanding of the interplay of autophagy between autophagy and polyphenols will help pave the way for future research and clinical applications in the field of longevity medicine.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Nicolle Andrea Salazar
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Alicia Domenech-Bendaña
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Antonella Locascio
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Eloy Bejarano
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Lucia Gimeno-Mallench
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| |
Collapse
|
5
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
6
|
Zhou Y, Wang L, Sun L, Tan R, Wang Z, Pei R. Progress in Chinese medicine monomers and their nanoformulations on myocardial ischemia/reperfusion injury. J Mater Chem B 2025; 13:1159-1179. [PMID: 39670754 DOI: 10.1039/d4tb02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the entire process of myocardial injury resulting from ischemia and hypoxia following acute myocardial infarction, which involves complicated pathogenesis including energy metabolism disorders, calcium overload, oxidative stress and mitochondrial dysfunction. Traditional Chinese medicine (TCM) has attracted intensive attention in the treatment of MIRI owing to its multitarget therapeutic effects and low systemic toxicity. Increasing evidence indicates the promising application of TCM on the protection of cardiomyocytes, improvement of endothelial cell functions and regulation of energy metabolism and inflammatory response. Although the efficacy of TCM has been well-proven, the underlying mechanisms remain unclear. Additionally, the clinical application of much TCM had been hampered due to its low aqueous solubility, poor gastrointestinal absorption, and decreased bioavailability. In this review, we examined the pathological mechanism of MIRI and highlighted recent research studies on the therapeutic effects and molecular mechanisms of monomer compounds derived from TCM. We also summarized the latest studies in nanoformulation-based strategies for improving the targeting and stability of TCM monomers and exerting synergistic effects. The aim of this study was to provide a scientific basis for the treatment of MIRI with TCM monomers combined with nanomaterials, revealing their clinical significance and development prospects.
Collapse
Affiliation(s)
- Yanrong Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Li Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
7
|
Wang Y, Fu X, Shang Z, Qiao Y, Liu Y, Zhou L, Liu D. In vivo and in vitro study on the regulatory mechanism of XiaoChaiHu decoction on PANoptosis in sepsis-induced cardiomyopathy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118740. [PMID: 39197800 DOI: 10.1016/j.jep.2024.118740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In accordance with the tenets of traditional Chinese medicine, sepsis is categorized into three distinct syndromes: heat syndrome, blood stasis syndrome, and deficiency syndrome. Xiaochaihu decoction (XCHD) has many functions, including the capacity to protect the liver, cholagogue, antipyretic, anti-inflammatory, and anti-pathogenic microorganisms. XCHD exerts the effect of clearing heat and reconciling Shaoyang. The XCHD contains many efficacious active ingredients, yet the mechanism of sepsis-induced cardiomyopathy (SIC) remains elusive. AIM OF THE STUDY To investigate the molecular mechanisms underlying the protective effects of XCHD against SIC using an integrated approach combining network pharmacology and molecular biology techniques. MATERIALS AND METHODS Network pharmacology methods identified the active ingredients, target proteins, and pathways affected by XCHD in the context of SIC. We conducted in vivo experiments using mice with lipopolysaccharide-induced SIC, evaluating cardiac function through echocardiography and histology. XCHD-containing serum was analyzed to determine its principal active components using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of XCHD-containing serum on SIC were further tested in vitro in LPS-treated H9c2 cardiac cells. Protein expression levels were quantified via Western blotting and enzyme-linked immunosorbent assay (ELISA). Additionally, molecular docking was performed between the active components and ZBP1, a potential target protein. Overexpression of ZBP1 in H9c2 cells allowed for a deeper exploration of its role in modulating SIC-associated gene expression. RESULTS UPLC-MS/MS identified 31 shared XCHD and XCHD-containing serum components. These included organic acids, terpenoids, and flavonoids, which have been identified as the active components of XCHD. Our findings revealed that XCHD alleviated LPS-induced myocardial injury, improved cardiac function, and preserved cardiomyocyte morphology in mice. In vitro studies, we demonstrated that XCHD-containing serum significantly suppressed the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) in LPS-induced H9c2 cells. Mechanistic investigations showed that XCHD downregulated genes associated with PANoptosis, a novel cell death pathway, suggesting its protective role in sepsis-damaged hearts. Conversely, overexpression of ZBP1 abolished the protective effects of XCHD and amplified PANoptosis-related gene expression. CONCLUSIONS Our study provides the first evidence supporting the protective effects of XCHD against SIC, both in vitro and in vivo. The underlying mechanism involves the inhibition of ZBP1-initiated PANoptosis, offering new insights into treating SIC using XCHD.
Collapse
Affiliation(s)
- Yaru Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xingxing Fu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Zhao Shang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yue Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Li Zhou
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Dan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
8
|
Yuan Y, Lai S, Hu T, Hu F, Zou C, Wang X, Fang M, Liu J, Huang H. Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1. Sci Rep 2025; 15:794. [PMID: 39755744 PMCID: PMC11700218 DOI: 10.1038/s41598-024-84808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality. Additionally, Pue significantly alleviated histopathological damage in MIRI-treated myocardium, as evidenced by HE staining and TUNEL assay. In vitro, Pue pretreatment significantly alleviated A/R-induced damage by decreasing LDH levels, increasing cellular activity, inhibiting autophagic lysosomal overactivation, inhibiting oxidative stress (ROS, LIP ROS, MDA), increasing antioxidant defense (SOD, GSH-Px), and increasing P62 protein expression while decreasing LC3II/I ratio. Furthermore, Pue inhibited apoptosis and maintained mitochondrial homeostasis by up-regulating the expression of Hairy and Enhancer of Split-1 (HES1) protein, which was crucial for its cardioprotective effects. Nevertheless, the cardioprotective efficacy of Pue pretreatment was negated via the knockdown of HES1 protein expression via pAD/HES1-shRNA transfection. In conclusion, Pue effectively ameliorated HES1-mediated MIRI-induced autophagy, apoptosis, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Chenchao Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiuqi Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ming Fang
- Department of Emergency, Gaoxin Branch of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
10
|
Zhou JB, Wei TP, Wu D, Zhou F, Wang RX. DJ-1 as a Novel Therapeutic Target for Mitigating Myocardial Ischemia-Reperfusion Injury. Cardiovasc Ther 2024; 2024:6615720. [PMID: 39742003 PMCID: PMC11661871 DOI: 10.1155/cdr/6615720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Ischemic heart disease (IHD) remains one of the most prominent causes of mortality and morbidity globally, and the risk of ischemia-reperfusion injury is becoming more severe and constant. This underscores the need to develop new methods to protect the heart from damage. DJ-1 is a multifunctional intracellular protein encoded by the PARK7 gene that plays roles in processes including the control of autophagy, the preservation of mitochondrial integrity, the prevention of apoptosis, and the elimination of oxidative stress. DJ-1 has recently been the focus of growing interest as a target molecule relevant to treating myocardial ischemia-reperfusion injury due to its protective properties and its role in cellular response mechanisms. Consistently, DJ-1-related interventions, such as its exogenous administration or the use of pharmacological agents, have been demonstrated to help protect the myocardium from ischemia-reperfusion injury and associated adverse outcomes. This review provides an overview of DJ-1 and its therapeutic relevance in the myocardium in the setting of ischemia and reperfusion.
Collapse
Affiliation(s)
- Jia-Bin Zhou
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China
| | - Tian-Peng Wei
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China
| | - Dan Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China
| | - Feng Zhou
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
11
|
Cotino-Nájera S, García-Villa E, Cruz-Rosales S, Gariglio P, Díaz-Chávez J. Resveratrol inhibits Lin28A expression and induces its degradation via the proteasomal pathway in NCCIT cells. Oncol Lett 2024; 28:577. [PMID: 39397804 PMCID: PMC11467847 DOI: 10.3892/ol.2024.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Lin28A is an oncoprotein overexpressed in several cancer types such as testicular, ovarian, colon, breast and lung cancers. As a pluripotency factor that promotes tumorigenesis, Lin28A is associated with more undifferentiated and aggressive tumors phenotypes. Moreover, Lin28A is a highly stable protein that is difficult to downregulate. The compound resveratrol (RSV) has anticancer effects. The present study aimed to elucidate the mechanisms underlying the downregulation of Lin28A protein expression by RSV in the NCCIT cell line. NCCIT cells were treated with different concentrations of RSV to investigate its effects on Lin28A expression. The mRNA expression levels of Lin28A and ubiquitin-specific protease 28 (USP28) were assessed using reverse transcription-quantitative PCR. Western blot analysis was employed to evaluate the protein levels of Lin28A, USP28 and phosphorylated Lin28A. In addition, in some experiments, cells were treated with a MAPK/ERK pathway inhibitor, and other experiments involved transfecting cells with small interfering RNAs targeting USP28. The results demonstrated that RSV significantly reduced Lin28A expression by destabilizing the protein; this effect was mediated by the ability of RSV to suppress the expression of USP28, a deubiquitinase that normally protects Lin28A from ubiquitination and degradation. Additionally, RSV inhibited phosphorylation of Lin28A via the MAPK/ERK pathway; this phosphorylation event has previously been shown to enhance the stability of Lin28A by increasing its half-life. This resulted in Lin28A degradation through the proteasomal pathway in NCCIT cells. The results provide further evidence of the anticancer activity of RSV, and identified Lin28A and USP28 as promising therapeutic targets. As a stable oncoprotein, downregulating Lin28A expression is challenging. However, the present study demonstrated that RSV can overcome this hurdle by inhibiting USP28 expression and MAPK/ERK signaling to promote Lin28A degradation. Furthermore, elucidating these mechanisms provides avenues for developing targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Enrique García-Villa
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Samantha Cruz-Rosales
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - José Díaz-Chávez
- Biomedical Cancer Research Unit, Biomedical Research Institute, National Autonomous University of Mexico/National Cancer Institute, Mexico City 14080, Mexico
- Department of Cellular Biology, Faculty of Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
- School of Medicine and Health Sciences, Monterrey Institute of Technology, Mexico City 14380, Mexico
| |
Collapse
|
12
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
13
|
Lv Q, Xu W, Yang F, Li J, Wei W, Chen X, Liu Y, Zhang Z. Protective and Detoxifying Effects of Resveratrol on Zearalenone-Mediated Toxicity: A Review. Int J Mol Sci 2024; 25:11003. [PMID: 39456789 PMCID: PMC11507252 DOI: 10.3390/ijms252011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals. Through oxidative stress, immunosuppression, apoptosis, autophagy, and mitochondrial dysfunction, ZEA leads to hepatitis, neurodegenerative diseases, cancer, abortion, and stillbirth in female animals, and decreased sperm motility in male animals. In recent years, due to the influence of climate, storage facilities, and other factors, the problem of ZEA pollution in global food crops has become particularly prominent, resulting in serious problems for the animal husbandry and feed industries, and threatening human health. Resveratrol (RSV) is a natural product with therapeutic activities such as anti-inflammatory, antioxidant, and anticancer properties. RSV can alleviate ZEA-induced toxic effects by targeting signaling pathways such as NF-κB, Nrf2/Keap1, and PI3K/AKT/mTOR via attenuating oxidative damage, inflammatory response, and apoptosis, and regulating cellular autophagy. Therefore, this paper provides a review of the protective effect of RSV against ZEA-induced toxicity and its molecular mechanism, and discusses the safety and potential clinical applications of RSV in the search for natural mycotoxin detoxification agents.
Collapse
|
14
|
Yao H, Xie Y, Li C, Liu W, Yi G. Mitochondria-Associated Organelle Crosstalk in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1106-1118. [PMID: 38807004 DOI: 10.1007/s12265-024-10523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.
Collapse
Affiliation(s)
- Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Yuxin Xie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Chaoquan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Wanting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
15
|
Yu Z, Teng Y, Yang H, Wang Y, Li X, Feng L, Xu W, Hao Y, Li Y. Inhibiting H2AX Can Ameliorate Myocardial Ischemia/Reperfusion Injury by Regulating P53/JNK Signaling Pathway. Cardiol Res Pract 2024; 2024:1905996. [PMID: 39257436 PMCID: PMC11387088 DOI: 10.1155/2024/1905996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 09/12/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a significant area of focus in cardiovascular disease research. I/R injury can increase intracellular oxidative stress, leading to DNA damage. H2AX plays a crucial role in DNA repair. This study utilized mouse and cell models of myocardial I/R to investigate the impact of H2AX on cardiomyocytes during I/R. This study initially assessed the expression of H2AX in MI/R mice compared to a sham surgery group. Subsequently, cardiac function, infarct area, and mitochondrial damage were evaluated after inhibiting H2AX in MI/R mice and a negative control group. Furthermore, the study delved into the molecular mechanisms by analyzing the expression of H2AX, P53, p-JNK, SHP2, p-SHP2, p-RAS, parkin, Drp1, Cyt-C, Caspase-3, and Caspase-8 in cardiomyocytes following the addition of JNK or P53 agonists. The results from western blotting in vivo indicated significantly higher H2AX expression in the MI/R group compared to the sham group. Inhibiting H2AX improved cardiac function, reduced myocardial infarct area, and mitigated mitochondrial damage in the MI/R group. In vitro experiments demonstrated that inhibiting H2AX could attenuate mitochondrial damage and apoptosis in myocardial cells by modulating the P53 and JNK signaling pathways. These findings suggested that inhibiting H2AX may alleviate myocardial I/R injury through the regulation of the P53/JNK pathway, highlighting H2AX as a potential target for the treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ziyang Yu
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yirong Teng
- Department of General Practice The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Hongbo Yang
- Department of Cardiology Fuwai Yunnan Hospital Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yudi Wang
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Xichen Li
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Lei Feng
- Department of Laboratory Yan'an Hospital of Kunming City, Kunming, Yunnan, China
| | - Wenbo Xu
- Department of Laboratory The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yinglu Hao
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yanping Li
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| |
Collapse
|
16
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
17
|
Wu Y, Zhang H, Wang Y, Zhang Y, Hong Z, Wang D. Sephin1 enhances integrated stress response and autophagy to alleviate myocardial ischemia-reperfusion injury in mice. Biomed Pharmacother 2024; 176:116869. [PMID: 38850665 DOI: 10.1016/j.biopha.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE Integrated stress response (ISR) is activated to promote cell survival by maintaining the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α). We investigated whether Sephin1 enhances ISR and attenuates myocardial ischemia-reperfusion (MIR) injury. METHODS Male C57BL/6 J mice were injected with Sephin1 (2 mg/kg,i.p.) 30 min before surgery to establish a model of MIR with 45 min ischemia and 180 min reperfusion. In vitro, the H9C2 cell line with hypoxia-reoxygenation (H/R) was used to simulate MIR. Myocardial injury was evaluated by echocardiography, histologic observation after staining with TTC and H&E and electron microscopy. ISR, autophagy and apoptosis in vivo and in vitro were evaluated by immunoblotting, immunohistochemistry, immunofluorescence, and flow cytometry, respectively. Global protein synthesis was determined using a non-radioactive SUnSET Assay based on the puromycin method. Autophinib, an autophagy-specific inhibitor, was used to investigate the correlation between autophagy and apoptosis in the presence of Sephin1. RESULTS In vivo, Sephin1 significantly reduced myocardial injury and improved the cardiac function in MIR mice. Sephin1 administration prolonged ISR, reduced cell apoptosis, and promoted autophagy. In vitro, Sephin1 increased the number of stress granules (SGs) and autophagic vesicles, enhanced ISR and related protein synthesis suppression, and reduced cell apoptosis. Autophinib partly reversed autophagosome formation and apoptosis in H9c2 cells. CONCLUSIONS Sephin1 enhances ISR and related protein synthesis suppression, ameliorates myocardial apoptosis, and promotes autophagy during MIR stress. Sephin1 could act as a noval ISR enhancer for managing acute myocardial ischemia disease.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Huabin Zhang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; School of Pharmacy, Wannan Medical College, Wuhu 241001, China
| | - Yue Wang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Ying Zhang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Zongyuan Hong
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
| | - Deguo Wang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China.
| |
Collapse
|
18
|
Yu X, Jia Y, Ren F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front Nutr 2024; 11:1408651. [PMID: 38933889 PMCID: PMC11199730 DOI: 10.3389/fnut.2024.1408651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Resveratrol (RES) is a naturally occurring polyphenolic compound. Recent studies have identified multiple potential health benefits of RES, including antioxidant, anti-inflammatory, anti-obesity, anticancer, anti-diabetic, cardiovascular, and neuroprotective properties. The objective of this review is to summarize and analyze the studies on the biological activities of RES in disease prevention and treatment, as well as its metabolism and bioavailability. It also discusses the challenges in its clinical application and future research directions. RES exhibits significant potential in the prevention and treatment of many diseases. The future direction of RES research should focus on improving its bioavailability, conducting more clinical trials to determine its effectiveness in humans, and investigating its mechanism of action. Once these challenges have been overcome, RES is expected to become an effective health intervention.
Collapse
Affiliation(s)
| | | | - Feiyue Ren
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
19
|
Su Y, Zhao L, Lei D, Yang X. Inhibition of circ_0073932 attenuates myocardial ischemia‒reperfusion injury via miR-493-3p/FAF1/JNK. In Vitro Cell Dev Biol Anim 2024; 60:628-643. [PMID: 38578382 DOI: 10.1007/s11626-024-00900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT-qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.
Collapse
Affiliation(s)
- Yang Su
- The Outpatient Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Lili Zhao
- Radiology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Dongli Lei
- Intensive Care Unit, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Xiaoming Yang
- Information Statistics Centre, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
20
|
Liu H, Wang X, He K, Chen Z, Li X, Ren J, Zhao X, Liu S, Zhou T, Chen H. Oxidized DJ-1 activates the p-IKK/NF-κB/Beclin1 pathway by binding PTEN to induce autophagy and exacerbate myocardial ischemia-reperfusion injury. Eur J Pharmacol 2024; 971:176496. [PMID: 38508437 DOI: 10.1016/j.ejphar.2024.176496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Patients with myocardial infarction have a much worse prognosis when they have myocardial ischemia-reperfusion (I/R) injury. Further research into the molecular basis of myocardial I/R injury is therefore urgently needed, as well as the identification of novel therapeutic targets and linkages to interventions. Three cysteine residues are present in DJ-1 at amino acids 46, 53, and 106 sites, with the cysteine at position 106 being the most oxidation-prone. This study sought to understand how oxidized DJ-1(C106) contributes to myocardial I/R damage. Rats' left anterior descending branches were tied off to establish a myocardial I/R model in vivo. A myocardial I/R model in vitro was established via anoxia/reoxygenation (A/R) of H9c2 cells. The results showed that autophagy increased after I/R, accompanied by the increased expression of oxidized DJ-1 (ox-DJ-1). In contrast, after pretreatment with NAC (N-acetylcysteine, a ROS scavenger) or Comp-23 (Compound-23, a specific antioxidant binding to the C106 site of DJ-1), the levels of ox-DJ-1, autophagy and LDH release decreased, and cell survival rate increased. Furthermore, the inhibition of interaction between ox-DJ-1 and PTEN could increase PTEN phosphatase activity, inhibit the p-IKK/NF-κB/Beclin1 pathway, reduce injurious autophagy, and alleviate A/R injury. However, BA (Betulinic acid, a NF-κB agonist) was able to reverse the protective effects produced by Comp-23 pretreatment. In conclusion, ox-DJ-1 could activate detrimental autophagy through the PTEN/p-IKK/NF-κB/Beclin1 pathway and exacerbate myocardial I/R injury.
Collapse
Affiliation(s)
- Huiru Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xueying Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330004, PR China
| | - Kang He
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zihan Chen
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoqi Li
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jianmin Ren
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Song Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Zhou
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Heping Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
21
|
Peng Y, Tao Y, Liu L, Zhang J, Wei B. Crosstalk among Reactive Oxygen Species, Autophagy and Metabolism in Myocardial Ischemia and Reperfusion Stages. Aging Dis 2024; 15:1075-1107. [PMID: 37728583 PMCID: PMC11081167 DOI: 10.14336/ad.2023.0823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
Collapse
Affiliation(s)
- Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yachuan Tao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, Shanghai, China
| | - Lingxu Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, Henan, China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
22
|
Zhao L, Shi H, Zhang F, Xue H, Han Q. Hederagenin protects against myocardial ischemia-reperfusion injury via attenuating ALOX5-mediated ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3411-3424. [PMID: 37955689 DOI: 10.1007/s00210-023-02829-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Hederagenin (HDG), a medical herb, is known for its beneficial activities against diverse diseases. The cardioprotective effect of HDG has been preliminarily disclosed, but the efficacy and underlying mechanism by which HDG protects against myocardial ischemia-reperfusion (MI/R) injury have not been elucidated yet. To simulate MI/R injury, the left anterior descending artery was occluded for 30 min and then reperfusion for 120 min in a rat model, and the cellular model of hypoxia-reoxygenation (H/R) injury was constructed in H9c2 cardiomyocytes. Hematoxylin-eosin, Prussian blue, and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining were conducted to assess the histological injury, iron deposition, and myocardial infarction. Myocardial enzymes and oxidative stress-related factors were detected using their commercial kits. Lipid peroxidation was measured using BODIPY581/591 probe, and iron content was detected. Cell counting kit (CCK)-8, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and flow cytometry assays were performed to assess cell viability and apoptosis. Protein levels were investigated by western blot. The interaction between HDG and 5-lipoxygenase (ALOX5) was verified using molecular docking. Our findings indicated that HDG significantly attenuated myocardial dysfunction by reducing infarction and myocardial injury. HDG significantly attenuated myocardial apoptosis in vitro and in vivo, as well as alleviating oxidative stress via reducing reactive oxygen species (ROS) and maintaining the balance between antioxidant and oxidant enzymes. Meanwhile, HDG inhibited I/R-induced ferroptosis in myocardium and cardiomyocytes, including reducing lipid peroxidation and iron level. Moreover, the binding relationship between HDG and ALOX5 was verified, and HDG could concentration dependently downregulate ALOX5. Furthermore, ALOX5 overexpression eliminated the inhibition of HDG on H/R-induced apoptosis, oxidative stress, and ferroptosis in H9c2 cardiomyocytes. HDG ameliorated myocardial dysfunction and cardiomyocyte injury by reducing apoptosis, oxidative stress, and ferroptosis through inhibiting ALOX5, providing a new perspective on the prevention and treatment of MI/R injury.
Collapse
Affiliation(s)
- Li Zhao
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Hongtao Shi
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fan Zhang
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Honghong Xue
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Qinghua Han
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
- Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
23
|
Pálóczi J, Paál Á, Pigler J, Kiss B, Rhoden A, Varga ZV, Ferdinandy P, Eschenhagen T, Görbe A. Organ-specific model of simulated ischemia/reperfusion and hyperglycemia based on engineered heart tissue. Vascul Pharmacol 2023; 152:107208. [PMID: 37572973 DOI: 10.1016/j.vph.2023.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Here we aimed to establish an in vitro engineered heart tissue (EHT) co-morbidity mimicking model of ischemia-reperfusion injury and diabetes. EHTs were generated from primary neonatal rat cardiomyocytes. Hyperglycemic conditions or hyperosmolar controls were applied for one day to model acute hyperglycemia and for seven days to model chronic hyperglycemia. 120 min' simulated ischemia (SI) was followed by 120 min' reperfusion (R) and 1-day follow-up reperfusion (FR). Normoxic controls (N) were not subjected to SI/R. Half of the EHTs was paced, the other half was left unpaced. To assess cell injury, lactate-dehydrogenase (LDH) concentration was measured. Beating force and activity (frequency) were monitored as cardiomyocyte functional parameters. LDH-release indicated relevant cell injury after SI/N in each experimental condition, with much higher effects in the chronically hyperglycemic/hyperosmolar groups. SI stopped beating of EHTs in each condition, which returned during reperfusion, with weaker recovery in chronic conditions than in acute conditions. Acutely treated EHTs showed small LDH-release and ∼80% recovery of force during reperfusion and follow-up, while chronically treated EHTs showed a marked LDH-release, only ∼30% recovery with reperfusion and complete loss of beating activity during 24 h follow-up reperfusion. We conclude that EHTs respond differently to SI/R injury in acute and chronic hyperglycemia/hyperosmolarity, and that our EHT model is a novel in vitro combination of diabetes and ischemia-reperfusion.
Collapse
Affiliation(s)
- J Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged H-6720, Hungary; Pharmahungary Group, Szeged H-6722, Hungary
| | - Á Paál
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest H-1089, Hungary
| | - J Pigler
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged H-6720, Hungary
| | - B Kiss
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest H-1089, Hungary
| | - A Rhoden
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, DZHK (German Centre for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; DiNAQOR Deutschland GmbH, Start-up Labs Bahrenfeld, Luruper Hauptstrasse 1, Hamburg 22547, Germany
| | - Z V Varga
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest H-1089, Hungary
| | - P Ferdinandy
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest H-1089, Hungary; Pharmahungary Group, Szeged H-6722, Hungary
| | - T Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, DZHK (German Centre for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - A Görbe
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest H-1089, Hungary; Pharmahungary Group, Szeged H-6722, Hungary.
| |
Collapse
|