1
|
Gu JP, Qi TZ, Zhu DR, He XJ, Guo SP, Lan X, Gu H, Luo JL, Yang M, Gu YC, Wang WL, Chen GT, Fan BY. Isolation of pentasaccharide resin glycosides from the whole plants of Ipomoea biflora and their cytotoxic activities. PHYTOCHEMISTRY 2025; 236:114494. [PMID: 40154902 DOI: 10.1016/j.phytochem.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
A total of eight previously undescribed pentasaccharide resin glycosides, named ipomofins I-VIII (1-8), along with five known ones (9-13), were isolated from the whole plants of Ipomoea biflora. Their structural elucidation was achieved through a comprehensive application of spectroscopic and chemical techniques. All these resin glycosides were characterized as partially acylated pentasaccharides, originating from operculinic acids A or D, containing l-rhamnose, d-glucose, d-xylose or d-fucose units, and 11S-hydroxyhexadecanoic acid serving as the aglycone. Notably, compounds 1 and 2 represent the first resin glycosides with operculinic acid D as their core structure, while compounds 3 and 4 are the first derivatives of operculinic acid A featuring a 23-membered ring. Compounds 1, 2, and 4-6 exhibited apparent cytotoxic effects against certain cancer cell lines. Particularly, compound 5 demonstrated the ability to impair colony formation, reduce the proportion of EdU-positive cells, and enhance the expression of proteins related to endoplasmic reticulum stress (ERS) in HCT-15 cells, indicating that its cytotoxicity might be driven by the activation of ERS pathways. Collectively, this research identified 13 resin glycosides from I. biflora, including eight previously undescribed compounds, with compound 5 emerging as a potential anticancer agent due to its induction of ERS.
Collapse
Affiliation(s)
- Jin-Ping Gu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Tian-Zi Qi
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Dong-Rong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xu-Jia He
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Su-Peng Guo
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Xin Lan
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Hong Gu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Min Yang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG426EY, UK
| | - Wen-Li Wang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| | - Guang-Tong Chen
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, 226019, People's Republic of China.
| |
Collapse
|
2
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
3
|
Wang Y, Wei W, Zhang Y, Miao J, Bao X, Lu C. MLKL as an emerging machinery for modulating organelle dynamics: regulatory mechanisms, pathophysiological significance, and targeted therapeutics. Front Pharmacol 2025; 16:1512968. [PMID: 40070567 PMCID: PMC11893596 DOI: 10.3389/fphar.2025.1512968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) is a pseudokinase featured by a protein kinase-like domain without catalytic activity. MLKL was originally discovered to be phosphorylated by receptor-interacting protein kinase 1/3, typically increase plasma membrane permeabilization, and disrupt the membrane integrity, ultimately executing necroptosis. Recent evidence uncovers the association of MLKL with diverse cellular organelles, including the mitochondrion, lysosome, endosome, endoplasmic reticulum, and nucleus. Thus, this review mainly focuses on the regulatory functions, mechanisms, and targets of MLKL in organelles rather than necroptosis and summarize the medical significance in multiple diseases. On this basis, we conclude and analyze the current progress and prospect for the development of MLKL-related drugs, from natural products, small-molecule chemical compounds, to proteolysis-targeting chimera. This review is aimed to propel the development of MLKL as a valid drug target and the discovery of novel MLKL-related drugs, and promote their further applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Wang K, Shi X, Lin H, Xu T, Xu S. Selenium deficiency exacerbates ROS/ER stress mediated pyroptosis and ferroptosis induced by bisphenol A in chickens thymus. J Environ Sci (China) 2025; 148:13-26. [PMID: 39095152 DOI: 10.1016/j.jes.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Bisphenol A (BPA) is an industrial pollutant that can cause immune impairment. Selenium acts as an antioxidant, as selenium deficiency often accompanies oxidative stress, resulting in organ damage. This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell (MDCC-MSB-1) via oxidative stress-induced endoplasmic reticulum (ER) stress. We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days. The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities (T-AOC, CAT, and GSH-Px), accumulation of peroxides (H2O2 and MDA), significant upregulation of ER stress-related markers (GRP78, IER 1, PERK, EIF-2α, ATF4, and CHOP), a significant increase in iron ion levels, significant upregulation of pyroptosis-related gene (NLRP3, ASC, Caspase1, GSDMD, IL-18 and IL-1β), significantly increase ferroptosis-related genes (TFRC, COX2) and downregulate GPX4, HO-1, FTH, NADPH. In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results, demonstrating that the addition of antioxidant (NAC), ER stress inhibitor (TUDCA) and pyroptosis inhibitor (Vx765) alleviated oxidative stress, endoplasmic reticulum stress, pyroptosis, and ferroptosis. Overall, this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| |
Collapse
|
5
|
Wang K, Zhu Q, Liu W, Wang L, Li X, Zhao C, Wu N, Ma C. Mitochondrial apoptosis in response to cardiac ischemia-reperfusion injury. J Transl Med 2025; 23:125. [PMID: 39875870 PMCID: PMC11773821 DOI: 10.1186/s12967-025-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI. The death of each cell (cardiomyocytes, endothelial cells, vascular smooth muscle cells, cardiac fibroblasts, and mesenchymal stem cells) after myocardial ischemia/reperfusion is associated with apoptosis due to mitochondrial dysfunction. Abnormal opening of the mitochondrial permeability transition pore, aberrant mitochondrial membrane potential, Ca2+ overload, mitochondrial fission, and mitophagy can lead to mitochondrial dysfunction, thereby inducing mitochondrial apoptosis. The manifestation of mitochondrial apoptosis varies according to cell type. Here, we reviewed the characteristics of mitochondrial apoptosis in cardiomyocytes, endothelial cells, vascular smooth muscle cells, cardiac fibroblasts, and mesenchymal stem cells following myocardial ischemia/reperfusion.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Wen Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Zhang X, Huang DX, Xuan C, Li Y, Jiang Y, Wu X, Zhou W, Lei Y, Yang F, Ma H, Hou K, Han X, Li G. Aerobic exercise training attenuates ischemia-reperfusion injury in mice by decreasing the methylation level of METTL3-associated m6A RNA in cardiomyocytes. Life Sci 2025; 361:123294. [PMID: 39645164 DOI: 10.1016/j.lfs.2024.123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Ischemic heart disease (IHD) presents a significant global health challenge, with myocardial ischemia-reperfusion injury (MIRI) being a major pathophysiological contributor and lacking effective interventions. While aerobic exercise training (AET) enhances cardiovascular health, its protective mechanism in MIRI remains elusive. This study aims to elucidate the protective effect of AET in MIRI and its underlying mechanism. METHODS A mouse model of AET and MIRI was established to evaluate basic indices, cardiac ultrasound, and myocardial injury markers. Dot Blot, qRT-PCR, and Western blot were employed to assess m6A RNA methylation levels and related protein expression in myocardial tissue. In vitro, primary cardiomyocyte culture was utilized to mimic MIRI, evaluating cell viability, mitochondrial membrane potential, etc. Finally, myocardial tissues of MIRI mice were immunoprecipitated for m6A RNA methylation and sequenced to analyze related signaling pathways. KEY RESULTS AET significantly improved cardiac function and mitigated myocardial injury and fibrosis. Moreover, AET protected myocardium from MIRI by reducing m6A RNA methylation levels and modulating METTL3 expression. In vitro experiments demonstrated that the decrease in m6A RNA methylation levels and METTL3 expression conferred resistance to hypoxia/reoxygenation-induced injury. Furthermore, sequencing results indicated elevated myocardial tissue m6A RNA methylation levels during MIRI, activation of the Nrf2-related signaling pathway, and AET-mediated regulation of the Nrf2/HO-1 signaling pathway, thereby attenuating MIRI through modulation of METTL3-related m6A methylation. CONCLUSION AND SIGNIFICANCE AET attenuates MIRI by reducing the level of METTL3-related m6A RNA methylation in cardiomyocytes and activating the Nrf2/HO-1 antioxidant signaling pathway. This finding provides a novel insight and strategy for the prevention and treatment of IHD, holding significant clinical implications.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China; The Public Laboratory Platform of First Hospital of Jilin University, Changchun 130021, China
| | - Dong-Xu Huang
- Department of Hand and Podiatric Surgery, Orthopedics Center, First Hospital of Jilin University, Changchun 130021, China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, First Hospital of Jilin University, Changchun 130021, China
| | - Chengluan Xuan
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Yanhui Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Yuting Jiang
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuehan Wu
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Wenqian Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun 130021, China
| | - Yang Lei
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Fan Yang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Haichun Ma
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Kun Hou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Guichen Li
- Department of Neurology, First Hospital of Jilin University, 1 Xinmin Avenue, 130021, Changchun, China.
| |
Collapse
|
7
|
Zhang S, Ye Y, Li Q, Zhao J, Song R, Huang C, Lu X, Huang C, Yin L, You Q. Andrographolide Attenuates Myocardial Ischemia-Reperfusion Injury in Mice by Up-Regulating PPAR-α. Inflammation 2024:10.1007/s10753-024-02193-1. [PMID: 39585583 DOI: 10.1007/s10753-024-02193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Andrographolide (AGP), a bioactive diterpene lactone, is an active constituent extracted from Andrographis paniculata. It has many biological activities, such as antioxidant, antitumor, antivirus, anti-inflammation, hepatoprotection, and cardioprotection. The aim of the present study is to investigate the cardioprotective effects of AGP in a mouse model of myocardial ischemia-reperfusion injury (MIRI). Adult male C57BL/6 J mice were pre-treated orally with AGP (25 mg/kg) for six days. After 30 min of the left anterior descending coronary artery occlusion followed by 24 h of reperfusion, mice received an additional dose of AGP. The results showed that: (i) AGP pretreatment significantly reduced myocardial infarct size and cardiac injury biomarkers in MIRI mice and improved left ventricular ejection fraction (EF) and fractional shortening (FS); (ii) AGP pretreatment attenuated MIRI-induced oxidative stress imbalance in MIRI mice by increasing total antioxidant capacity (T-AOC) and reducing the levels of hydrogen peroxide (H2O2), nitric oxide (NO), malondialdehyde (MDA), and dihydroethidium (DHE); (iii) AGP pretreatment increased Bcl-2 expression and decreased caspase-3 and Bax expression in ischemic myocardial tissue, along with a reduction in TUNEL-positive cells. Further analysis showed that stimulation by I/R decreased peroxisome proliferator-activated receptor-α (PPAR-α) expression in ischemic cardiac tissue, which was prevented by AGP administration. Moreover, administration of the PPAR-α antagonist GW6471 (1 mg/kg) abolished the protective effect of AGP on oxidative stress and apoptosis in the ischemic heart tissue of mice stimulated by ischemia-reperfusion. Taken together, these results suggest that AGP attenuates MIRI-induced cardiac injury by up-regulating PPAR-α expression, thereby preventing oxidative stress and cellular apoptosis.
Collapse
Affiliation(s)
- Shenjie Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Juan Zhao
- Department of Cardiology, Tongzhou People's Hospital, 999 Jianshe Road, Nantong, 226300, Jiangsu Province, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, 999 Jianshe Road, Nantong, 226300, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Chen Huang
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Le Yin
- Department of Cardiology, Tongzhou People's Hospital, 999 Jianshe Road, Nantong, 226300, Jiangsu Province, China.
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
8
|
Zheng Y, Xu Y, Ji L, San W, Shen D, Zhou Q, Meng G, Shi J, Chen Y. Roles of distinct nuclear receptors in diabetic cardiomyopathy. Front Pharmacol 2024; 15:1423124. [PMID: 39114353 PMCID: PMC11303215 DOI: 10.3389/fphar.2024.1423124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yongji Xu
- School of Medicine, Nantong University, Nantong, China
| | - Li Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Danning Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qianyou Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
9
|
Sun Z, Hu Y, Qu J, Zhao Q, Gao H, Peng Z. Identification of apoptosis-immune-related gene signature and construction of diagnostic model for sepsis based on single-cell sequencing and bulk transcriptome analysis. Front Genet 2024; 15:1389630. [PMID: 38894720 PMCID: PMC11183325 DOI: 10.3389/fgene.2024.1389630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Sepsis leads to multi-organ dysfunction due to disorders of the host response to infections, which makes diagnosis and prognosis challenging. Apoptosis, a classic programmed cell death, contributes to the pathogenesis of various diseases. However, there is much uncertainty about its mechanism in sepsis. Methods Three sepsis gene expression profiles (GSE65682, GSE13904, and GSE26378) were downloaded from the Gene Expression Omnibus database. Apoptosis-related genes were obtained from the Kyoto Encyclopedia of Genes and Genomes Pathway database. We utilized LASSO regression and SVM-RFE algorithms to identify characteristic genes associated with sepsis. CIBERSORT and single cell sequencing analysis were employed to explore the potential relationship between hub genes and immune cell infiltration. The diagnostic capability of hub genes was validated across multiple external datasets. Subsequently, the animal sepsis model was established to assess the expression levels of hub genes in distinct target organs through RT-qPCR and Immunohistochemistry analysis. Results We identified 11 apoptosis-related genes as characteristic diagnostic markers for sepsis: CASP8, VDAC2, CHMP1A, CHMP5, FASLG, IFNAR1, JAK1, JAK3, STAT4, IRF9, and BCL2. Subsequently, a prognostic model was constructed using LASSO regression with BCL2, FASLG, IRF9 and JAK3 identified as hub genes. Apoptosis-related genes were closely associated with the immune response during the sepsis process. Furthermore, in the validation datasets, aside from IRF9, other hub genes demonstrated similar expression patterns and diagnostic abilities as observed in GSE65682 dataset. In the mouse model, the expression differences of hub genes between sepsis and control group revealed the potential impacts on sepsis-induced organ injury. Conclusion The current findings indicated the participant of apoptosis in sepsis, and apoptosis-related differentially expressed genes could be used for diagnosis biomarkers. BCL2, FASLG, IRF9 and JAK3 might be key regulatory genes affecting apoptosis in sepsis. Our findings provided a novel aspect for further exploration of the pathological mechanisms in sepsis.
Collapse
Affiliation(s)
- Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Yanan Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jiachen Qu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Han Gao
- Department of Pulmonary Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| |
Collapse
|
10
|
Bai JQ, Li PB, Li CM, Li HH. N-arachidonoylphenolamine alleviates ischaemia/reperfusion-induced cardiomyocyte necroptosis by restoring proteasomal activity. Eur J Pharmacol 2024; 963:176235. [PMID: 38096967 DOI: 10.1016/j.ejphar.2023.176235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Necroptosis and apoptosis contribute to the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury and subsequent heart failure. N-arachidonoylphenolamine (AM404) is a paracetamol lipid metabolite that has pleiotropic activity to modulate the endocannabinoid system. However, the protective role of AM404 in modulating I/R-mediated myocardial damage and the underlying mechanism remain largely unknown. A murine I/R model was generated by occlusion of the left anterior descending artery. AM404 (20 mg/kg) was injected intraperitoneally into mice at 2 and 24 h before the I/R operation. Our data revealed that AM404 administration to mice greatly ameliorated I/R-triggered impairment of myocardial performance and reduced infarct area, myocyte apoptosis, oxidative stress and inflammatory response accompanied by the reduction of receptor interacting protein kinase (RIPK)1/3- mixed lineage kinase domain-like (MLKL)-mediated necroptosis and upregulation of the immunosubunits (β2i and β5i). In contrast, administration of epoxomicin (a proteasome inhibitor) dramatically abolished AM404-dependent protection against myocardial I/R damage. Mechanistically, AM404 treatment increases β5i expression, which interacts with Pellino-1 (Peli1), an E3 ligase, to form a complex with RIPK1/3, thereby promoting their degradation, which leads to inhibition of cardiomyocyte necroptosis in the I/R heart. In conclusion, these findings demonstrate that AM404 could prevent cardiac I/R damage and may be a promising drug for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Jun-Qin Bai
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Min Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
11
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
12
|
Zhang HJ, Fu Y, Zhang H, Lai ZQ, Dong YF. Sophocarpine alleviates doxorubicin-induced heart injury by suppressing oxidative stress and apoptosis. Sci Rep 2024; 14:428. [PMID: 38172265 PMCID: PMC10764776 DOI: 10.1038/s41598-023-51083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
Doxorubicin (DOX) is an effective anti-tumor drug accompanied with many side effects, especially heart injury. To explore what effects of sophocarpine (SOP) on DOX-induced heart injury, this study conducted in vivo experiment and in vitro experiment, and the C57BL/6J mice and the H9C2 cells were used. The experimental methods used included echocardiography, enzyme-linked immunosorbent assay (ELISA), dihydroethidium (DHE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, western blotting and so on. Echocardiography showed that SOP alleviated DOX-induced cardiac dysfunction, as evidenced by the improvements of left ventricle ejection fraction and left ventricle fractional shortening. DOX caused upregulations of creatine kinase (CK), creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), while SOP reduced these indices. The relevant stainings showed that SOP reversed the increases of total superoxide level induced by DOX. DOX also contribute to a higher level of MDA and lower levels of SOD and GSH, but these changes were suppressed by SOP. DOX increased the pro-oxidative protein level of NOX-4 while decreased the anti-oxidative protein level of SOD-2, but SOP reversed these effects. In addition, this study further discovered that SOP inhibited the decreases of Nrf2 and HO-1 levels induced by DOX. The TUNEL staining revealed that SOP reduced the high degree of apoptosis induced by DOX. Besides, pro-apoptosis proteins like Bax, cleaved-caspase-3 and cytochrome-c upregulated while anti-apoptosis protein like Bcl-2 downregulated when challenged by DOX, but them were suppressed by SOP. These findings suggested that SOP could alleviate DOX-induced heart injury by suppressing oxidative stress and apoptosis, with molecular mechanism activating of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hong-Jin Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Molecular Biology in Jiangxi Province, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yang Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Molecular Biology in Jiangxi Province, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Huang Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Molecular Biology in Jiangxi Province, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ze-Qun Lai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Molecular Biology in Jiangxi Province, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yi-Fei Dong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
- Key Laboratory of Molecular Biology in Jiangxi Province, China. No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
13
|
Ding J, Sun T, Wu H, Zheng H, Wang S, Wang D, Shan W, Ling Y, Zhang Y. Novel Canthin-6-one Derivatives: Design, Synthesis, and Their Antiproliferative Activities via Inducing Apoptosis, Deoxyribonucleic Acid Damage, and Ferroptosis. ACS OMEGA 2023; 8:31215-31224. [PMID: 37663479 PMCID: PMC10468838 DOI: 10.1021/acsomega.3c03358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
A series of novel canthin-6-one (CO) derivatives (8a-l) were designed and synthesized by introducing different amide side chains at the C-2 position, and their water solubility, antiproliferative activity, and preliminary mechanism were investigated. Most compounds displayed high cytotoxicity exhibiting low-micromolar IC50 values against four human cancer cell lines, especially HT29 cells. Meanwhile, the water solubility of active CO derivatives was significantly improved. Among these compounds, compound 8h with the N-methyl piperazine group exhibiting the highest antiproliferative capability with an IC50 value of 1.0 μM against HT29 cells, which was 8.6-fold lower than that of CO. Furthermore, 8h could upregulate the levels of reactive oxygen species, leading to mitochondrial damage. In addition, 8h could promote cell apoptosis and DNA damage by regulating the expression of apoptosis-associated proteins (Bcl-2 and cleaved-caspase 3) and the DNA damage-associated protein (H2AX). Most importantly, 8h also exerted ferroptosis by reducing the GSH level and GPX4 expression as well as increasing the lipid peroxidation level. Thus, the novel CO derivative 8h with N-methylpiperazine represents a promising anticancer candidate and warrants a more intensive study.
Collapse
Affiliation(s)
- Jinfeng Ding
- Department
of Pharmacy, Jiangsu Vocational College
of Medicine, Yancheng 224005, China
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongmei Wu
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongwei Zheng
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Sijia Wang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Dezhi Wang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wenpei Shan
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yong Ling
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School
of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and
Molecular Drug Target, Nantong University, Nantong 226001, China
- Nantong
Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|