1
|
Li Q, Cheng Y, Yang C, Tian M, Wang X, Li D, Li X, Qu J, Zhou S, Zheng L, Tong Q. Targeting the Exonic Circular OGT RNA/O-GlcNAc Transferase/Forkhead Box C1 Axis Inhibits Asparagine- and Alanine-Mediated Ferroptosis Repression in Neuroblastoma Progression. RESEARCH (WASHINGTON, D.C.) 2025; 8:0703. [PMID: 40416363 PMCID: PMC12099056 DOI: 10.34133/research.0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
The disruption of ferroptosis, an emerging form of programmed cell death, is crucial in the development and aggressiveness of tumors. Meanwhile, the mechanisms and treatments that control ferroptosis in neuroblastoma (NB), a prevalent extracranial cancer in children, are still unknown. In this study, forkhead box C1 (FOXC1) and O-GlcNAc transferase (OGT) are identified as regulators of asparagine- and alanine-mediated ferroptosis repression in NB. Mechanistically, OGT facilitates FOXC1 stabilization via inducing O-GlcNAcylation in liquid condensates to increase the expression of asparagine synthetase (ASNS) and glutamate pyruvate transaminase 2 (GPT2), resulting in asparagine and alanine biogenesis, and subsequent synthesis of cystathionine β-synthase (CBS) or ferritin heavy chain 1 (FTH1). Meanwhile, exonic circular OGT RNA (ecircOGT) is able to encode a novel protein (OGT-570aa) containing domain essential for binding of OGT to FOXC1, which competitively decreases the OGT-FOXC1 interaction. Preclinically, miconazole nitrate facilitates the interaction of OGT-570aa with FOXC1, suppresses ferroptosis resistance of NB cells, and inhibits their growth, invasion, and metastasis. In clinical NB cases, higher OGT, FOXC1, ASNS, GPT2, CBS, or FTH1 levels are correlated with worse survival, while lower ecircOGT or OGT-570aa expression is associated with tumor progression. These results indicate that targeting the ecircOGT/OGT/FOXC1 axis inhibits asparagine- and alanine-mediated ferroptosis repression in NB progression.
Collapse
Affiliation(s)
- Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
- Department of Geriatrics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xinyue Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
2
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Xu Z, Li C, Liu X, Zhou Y, Zhang Y, Wang J, Wu H, Al-danakh A, Peng Y, Xiao Z. EIF4A3 Enhances the Proliferation and Cell Cycle Progression of Keloid Fibroblasts by Inducing the hsa_circ_0002198 Expression. Clin Cosmet Investig Dermatol 2024; 17:3045-3058. [PMID: 39759393 PMCID: PMC11698619 DOI: 10.2147/ccid.s475940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Background Recent evidence suggests a crucial biological role for Circular RNAs (circRNAs) in keloid diseases, yet the underlying mechanisms remain unclear. This study explored the biological effects and molecular mechanisms of hsa_circ_0002198 in keloid formation. Methods Real-time quantitative PCR (qRT-PCR) was employed to assess the expression of circ_0002198 in keloid tissues, normal skin tissues, keloid fibroblasts (KFs), and normal skin fibroblasts (NFs) from nine patients. To investigate the role of circ_0002198 in keloid pathogenesis, cell transfection technology was utilized to knock down circ_0002198. Various experiments including Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), Transwell, wound healing assay, flow cytometry, and others were conducted to explore the potential mechanisms associated with circ_0002198 expression. The RNA-binding protein Eukaryotic translation initiation factor 4A, isoform 3 (EIF4A3) binding to circ_0002198 was identified and confirmed through bioinformatics databases prediction and RNA immunoprecipitation (RIP) assay. Finally, the expression of EIF4A3 was assessed, and both silencing and overexpression were employed to verify its role in circ_0002198 regulation. Results The expression levels of circ_0002198 and EIF4A3 were notably elevated in keloid tissues and KFs compared to normal skin tissues and NFs. The reduction of circ_0002198 expression in KFs significantly impeded their proliferation, migration, and invasion. It also hindered the cell cycle process and the expression of associated proteins while concurrently promoting apoptosis in KFs. EIF4A3 was identified to bind to the flanks of circ_0002198, enhancing the occurrence of circ_0002198 and its role in regulating the progression of KFs. Conclusion Our study offers insights into how Circular RNA may contribute to the pathogenesis of keloid formation, highlighting Circ_0002198 as a potential novel biomarker for keloids in association with EIF4A3. Further research, involving larger study cohorts, is necessary to broaden our understanding of keloid mechanisms and potential treatment approaches.
Collapse
Affiliation(s)
- Zidi Xu
- Department of Medical Cosmetology, the Second Affiliated Hospital of Xi an Medical University, Xi ‘an,People’s Republic of China
| | - Chang Li
- Shenzhen Pingshan Central Hospital, Shenzhen, People’s Republic of China
| | - Xueyi Liu
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Yongting Zhou
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Yingbo Zhang
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Jie Wang
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Hao Wu
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Abdullah Al-danakh
- Department of Urology, the First affiliated hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yixuan Peng
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| | - Zhibo Xiao
- Plastic Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China’
| |
Collapse
|
4
|
Shaikh M, Doshi G. Unraveling non-coding RNAs in breast cancer: mechanistic insights and therapeutic potential. Med Oncol 2024; 42:37. [PMID: 39730979 DOI: 10.1007/s12032-024-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Breast cancer remains a leading global health challenge requiring innovative, therapeutic strategies to improve patient outcomes. This review explores the pivotal roles of non-coding RNAs (ncRNAs), including long non-coding RNA, micro RNA, and circular RNA, in breast cancer biology. We highlight how these molecules regulate critical signaling pathways, influence tumor microenvironments, and contribute to treatment resistance. Our findings underscore the potential of ncRNAs as biomarkers for early diagnosis and as treatment targets for personalized treatment strategies. To pave the way for innovative cancer management approaches, we investigate the complex interactions of ncRNAs and their impact on tumor progression. This comprehensive review enhances our understanding of breast cancer biology while emphasizing the translational significance of ncRNA research in developing effective treatment strategies. Additional research and clinical studies are required to confirm the diagnostic and medicinal value of ncRNAs in breast cancer. Investigating the complex networks of ncRNA interactions and their links to other biological pathways can lead to the discovery of new treatment targets. Furthermore, leveraging advanced technologies, such as machine learning and multi-omics methods, will be critical in improving our understanding of ncRNAs biomarkers and translating these insights into impactful clinical applications.
Collapse
Affiliation(s)
- Muqtada Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
5
|
Wang J, Wang X, Yang C, Li Q, Li D, Du X, Cheng Y, Tian M, Zheng L, Tong Q. circE2F1-encoded peptide inhibits circadian machinery essential for nucleotide biosynthesis and tumor progression via repressing SPIB/E2F1 axis. Int J Biol Macromol 2024; 280:135698. [PMID: 39288851 DOI: 10.1016/j.ijbiomac.2024.135698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Circadian clock dominates a variety of biological activities, while its roles and regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy, still remain largely elusive. Herein, through comprehensive analyses of public datasets, E2F transcription factor 1 (E2F1) and its circular RNA (circE2F1)-encoded 99-amino acid peptide (E2F1-99aa) were identified as vital regulators of circadian machinery essential for purine and pyrimidine biosynthesis during NB progression. Mechanistically, through interaction with Spi-B transcription factor (SPIB), E2F1 was transactivated to up-regulate circadian machinery genes (CRY1 and TIMELESS), resulting in relief of CLOCK/BMAL1-repressed transcription of enzymes (DHODH, PAICS, or PPAT) essential for de novo purine and pyrimidine biosynthesis. The biogenesis of circE2F1 was repressed by eukaryotic translation initiation factor 4A3 (EIF4A3), while E2F1-99aa or its truncated peptide competitively bound to SPIB, leading to decrease in SPIB-E2F1 interaction, circadian machinery and nucleotide biosynthetic gene expression, purine or pyrimidine biosynthesis, tumorigenesis, and aggresiveness of NB cells. In clinical NB cases, high EIF4A3, E2F1 or SPIB expression was correlated with low survival possibility of patients, while lower circE2F1 or E2F1-99aa levels were associated with advanced stages and tumor progression. These results indicate that circE2F1-encoded peptide inhibits circadian machinery essential for nucleotide biosynthesis and tumor progression via repressing SPIB/E2F1 axis.
Collapse
Affiliation(s)
- Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China; Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Xinyi Du
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
6
|
Chen M, He H, Cheng H, Zhang G. EIF4A3-induced hsa_circ_0078136 inhibits the tumorigenesis of retinoblastoma via IL-17 signaling pathway. Int Ophthalmol 2024; 44:352. [PMID: 39180619 DOI: 10.1007/s10792-024-03276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Retinoblastoma (RB) is one of the most common intraocular cancers, with the highest prevalence among infants and young children under the age five. Numerous findings across the literature illustrate the involvement and significance of circular RNAs (circRNAs) in human malignancies, including RB. The current investigation attempted to decipher the exact roles and underlying mechanisms of a novel circRNA, hsa_circ_0078136, in RB progression. METHODS The hsa_circ_0078136 expression was evaluated in RB tumors and cell lines via qRT-PCR. The significance of hsa_circ_0078136 in RB was examined by performing CCK8 assay, transwell assays, western blotting of apoptotic and IL-17 signaling ligand molecules, and a subcutaneous xenograft tumor model. In addition, the interaction of circRNA and eukaryotic translation initiation factor 4A3 (EIF4A3) was determined with bioinformatics, western blot, and RIP assay. RESULTS The hsa_circ_0078136 expression was reduced in RB tumor samples and cells. Additionally, its overexpression restricted the oncogenic properties of RB cells in vitro. Moreover, hsa_circ_0078136 overexpression lowered the protein levels of cytokine ligand molecules of IL-17 signaling pathway in RB cell lines. In vivo, hsa_circ_0078136 overexpression in subcutaneous tumor xenografts reduced tumor growth. We also observed that EIF4A3 binds to the downstream flanking sequence of hsa_circ_0078136 in the SHRPH pre-mRNA transcript, and EIF4A3 overexpression reduced hsa_circ_0078136 expression, suggesting that EIF4A3 inhibited hsa_circ_0078136 formation. CONCLUSIONS Our results demonstrate that hsa_circ_0078136 is regulated by EIF4A3 and functions as a tumor suppressor via the IL-17 signaling pathway in RB.
Collapse
Affiliation(s)
- Min Chen
- Department of Ophthalmology, Wuhan Asia General Hospital, Wuhan, 430000, Hubei, China
| | - Heng He
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Department of Ophthalmology, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Huili Cheng
- Department of Ophthalmology, Wuhan Asia General Hospital, Wuhan, 430000, Hubei, China
| | - Guanghong Zhang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China.
- Department of Ophthalmology, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China.
- Department of Ophthalmology, Hubei Province Academy of Traditional Chinese Medicine, No.856, Luoyu Road, Hongshan District, Wuhan, 430074, Hubei, China.
- Department of Ophthalmology, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| |
Collapse
|
7
|
Zhao S, Xiao M, Li L, Zhang H, Shan M, Cui S, Zhang L, Zhang G, Wu S, Jin C, Yang J, Lu X. A unique circ_0067716/EIF4A3 double-negative feedback loop impacts malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171349. [PMID: 38438030 DOI: 10.1016/j.scitotenv.2024.171349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Liuli Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingming Shan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang 110005, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|