1
|
Huang D, Song X, Ma J, Li X, Guo Y, Li M, Luo H, Fang Z, Yang C, Xie L, Jiang L. ATP1A3-related phenotypes in Chinese children: AHC, CAPOS, and RECA. Eur J Pediatr 2023; 182:825-836. [PMID: 36484864 DOI: 10.1007/s00431-022-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
UNLABELLED The aim of this research is to study the phenotype, genotype, treatment strategies, and short-term prognosis of Chinese children with ATP1A3 (Na+/K+-ATPase alpha 3 gene)-related disorders in Southwest China. Patients with pathogenic ATP1A3 variants identified using next-generation sequencing were registered at the Children's Hospital of Chongqing Medical University from December 2015 to May 2019. We followed them as a cohort and analyzed their clinical data. Eleven patients were identified with de novo pathogenic ATP1A3 heterozygous variants. One (c.2542 + 1G > T, splicing) has not been reported. Eight patients with alternating hemiplegia of childhood (AHC), one with cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), and two with relapsing encephalopathy with cerebellar ataxia (RECA) were included. The initial manifestations of AHC included hemiplegia, oculomotor abnormalities, and seizures, and the most common trigger was an upper respiratory tract infection without fever. All patients had paroxysmal hemiplegic attacks during their disease course. The brain MRI showed no abnormalities. Six out of eight AHC cases reached a stable disease state after treatment. The initial symptom of the patient with CAPOS was ataxia followed by developmental regression, seizures, deafness, visual impairment, and dysarthria, and the brain MRI indicated mild cerebellar atrophy. No fluctuation was noted after using Acetazolamide. The initial manifestations of the two RECA cases were dystonia and encephalopathy, respectively. One manifested a rapid-onset course of dystonia triggered by a fever followed by dysarthria and action tremors, and independent walking was impossible. The brain MRI image was normal. The other one presented with disturbance of consciousness, seizures, sleep disturbance, tremor, and dyskinesias. The EEG revealed a slow background (δ activity), and the brain MRI result was normal. No response to Flunarizine was noted for them, and it took 61 and 60 months for them to reach a stable disease state, respectively. CONCLUSION Pathogenic ATP1A3 variants play an essential role in the pathogenesis of Sodium-Potassium pump disorders, and AHC is the most common phenotype. The treatment strategies and prognosis depend on the phenotype categories caused by different variation sites and types. The correlation between the genotype and phenotype requires further exploration. WHAT IS KNOWN • Pathogenic heterozygous ATP1A3 variants cause a spectrum of neurological phenotypes, and ATP1A3-disorders are viewed as a phenotypic continuum presenting with atypical and overlapping features. • The genotype-phenotype correlation of ATP1A3-disorders remains unclear. WHAT IS NEW • In this study, the genotypes and phenotypes of ATP1A3-related disorders from Southwest of China were described. The splice-site variation c.2542+1G>T was detected for the first time in ATP1A3-related disorders. • The prognosis of twins with AHC p. Gly947Arg was more serious than AHC cases with other variants, which was inconsistent with previous reports. The phenomenon indicated the diversity of the correlation between the genotype and phenotype.
Collapse
Affiliation(s)
- Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xiaojie Song
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jiannan Ma
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xiujuan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yi Guo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Mei Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Chen Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Ananthavarathan P, Kamourieh S. Alternating hemiplegia of childhood. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:221-227. [PMID: 38043964 DOI: 10.1016/b978-0-12-823356-6.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Alternating hemiplegia of childhood (AHC) is characterized by recurrent episodes of hemiplegia which may alternate sides between attacks. The condition is associated with severe neurodevelopmental disorder presenting in early infancy, and may encompass a wide range of other paroxysmal manifestations (e.g., dystonia, nystagmus, dysautonomia) and pervasive neurological disabilities (e.g., developmental delay, learning disabilities, choreoathetosis, and ataxia). Epileptic seizures are particularly common among patients with AHC. Diagnosis is usually based on history and clinical grounds using the Aicardi criteria. Mutations in the ATP1A3 gene are implicated in the disease pathology of the condition, as well as several other neurodevelopmental disorders, suggesting AHC forms part of a spectrum of overlapping clinical syndromes rather than a distinct clinical entity per se. Management of patients with AHC includes the rapid induction of sleep during paroxysmal attacks and the avoidance of identified triggers. Pharmacotherapeutic treatments have a role in managing epileptic seizures, as well as in the prevention of paroxysmal attacks wherein flunarizine remains the treatment of choice.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neurology, Headache and Facial Pain Group, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Salwa Kamourieh
- Department of Neurology, Headache and Facial Pain Group, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
3
|
Pavone P, Pappalardo XG, Ruggieri M, Falsaperla R, Parano E. Alternating hemiplegia of childhood: a distinct clinical entity and ATP1A3-related disorders: A narrative review. Medicine (Baltimore) 2022; 101:e29413. [PMID: 35945798 PMCID: PMC9351909 DOI: 10.1097/md.0000000000029413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/05/2023] Open
Abstract
Alternating Hemiplegia of Childhood (AHC) is a rare disorder with onset in the first 18 months of life characterized by stereotyped paroxysmal manifestations of tonic and dystonic attacks, nystagmus with other oculomotor abnormalities, respiratory and autonomic dysfunctions. AHC is often associated with epileptic seizures and developmental delay. Hemiplegic paroxysm is the most remarkable symptom, although AHC includes a large series of clinical manifestations that interfere with the disease course. No cure is available and the treatment involves many specialists and therapies. Flunarizine is the most commonly used drug for reducing the frequency and intensity of paroxysmal events. Mutations in ATP1A2, particularly in ATP1A3, are the main genes responsible for AHC. Some disorders caused by ATP1A3 variants have been defined as ATP1A3-related disorders, including rapid-onset dystonia-parkinsonism, cerebellar ataxia, pes cavus, optic atrophy, sensorineural hearing loss, early infant epileptic encephalopathy, child rapid-onset ataxia, and relapsing encephalopathy with cerebellar ataxia. Recently, the term ATP1A3 syndrome has been identified as a fever-induced paroxysmal weakness and encephalopathy, slowly progressive cerebellar ataxia, childhood-onset schizophrenia/autistic spectrum disorder, paroxysmal dyskinesia, cerebral palsy/spastic paraparesis, dystonia, dysmorphism, encephalopathy, MRI abnormalities without hemiplegia, and congenital hydrocephalus. Herewith, we discussed about historical annotations of AHC, symptoms, signs and associated morbidities, diagnosis and differential diagnosis, treatment, prognosis, and genetics. We also reported on the ATP1A3-related disorders and ATP1A3 syndrome, as 2 recently established and expanded genetic clinical entities.
Collapse
Affiliation(s)
- Piero Pavone
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University Hospital AOU “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Catania, Italy, AOU “Policlinico PO San Marco, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU “Policlinico”, PO “San Marco”, University of Catania, Catania, Italy
| | - Enrico Parano
- Unit of Catania, National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Catania, Italy
| |
Collapse
|
4
|
Mikati MA, Panagiotakaki E, Arzimanoglou A. Revision of the diagnostic criteria of alternating hemiplegia of childhood. Eur J Paediatr Neurol 2021; 32:A4-A5. [PMID: 33975787 DOI: 10.1016/j.ejpn.2021.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, And Department of Neurobiology, Duke University, USA
| | - Eleni Panagiotakaki
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France; Department of Child Neurology and Epilepsy Research Unit, Member of the ERN EpiCARE, Hospital San Juan de Dios, Barcelona, Spain.
| |
Collapse
|
5
|
Stępień A, Maślanko K, Krawczyk M, Rekowski W, Kostera-Pruszczyk A. Gross Motor Function Disorders in Patients with Alternating Hemiplegia of Childhood. JOURNAL OF MOTHER AND CHILD 2020; 24:24-32. [PMID: 33074178 PMCID: PMC8518102 DOI: 10.34763/jmotherandchild.2020241.1935.000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Alternating hemiplegia of Childhood (AHC) is a rare disease manifested by transient episodes of hemiplegia and other neurological disorders. Delayed motor development has been reported in patients with AHC, but detailed features of the motor impairment have not been described so far. Aim The aim of the study was to evaluate gross motor function between attacks in a group of Polish patients with AHC. Materials and methods The interictal gross motor function was assessed using the Gross Motor Function AHC scale, which consisted of 41 motor tasks. The study group consisted of 10 patients with AHC older than 2 years of age. The control group consisted of 30 age- and gender-matched subjects. The results achieved in each of the 41 tasks by the study subjects were compared to the results obtained with controls using the non-parametric Mann-Whitney U-test. In tasks 38-41, mean times were compared between the study subjects and controls. Results The study revealed gross motor function impairment in patients with AHC. The greatest differences compared to controls concerned such skills as standing on toes, walking on toes, walking on heels, as well as running and hopping on one leg and on alternate legs. Significant impairment of the motor function of the upper limbs was also found. Conclusions The study confirmed motor function impairment between attacks in patients with AHC. The study findings may indicate the need to introduce individualised physiotherapy management of patients with AHC.
Collapse
Affiliation(s)
- Agnieszka Stępień
- Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Maciej Krawczyk
- Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | - Witold Rekowski
- Psychosocial Foundation of Health and Rehabilitation, Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | |
Collapse
|
6
|
Gropman A, Uittenbogaard M, Brantner CA, Wang Y, Wong LJ, Chiaramello A. Molecular genetic and mitochondrial metabolic analyses confirm the suspected mitochondrial etiology in a pediatric patient with an atypical form of alternating hemiplegia of childhood. Mol Genet Metab Rep 2020; 24:100609. [PMID: 32489883 PMCID: PMC7262444 DOI: 10.1016/j.ymgmr.2020.100609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 02/05/2023] Open
Abstract
Alternative hemiplegia of childhood (AHC) is a rare neurodevelopmental disorder with an extensive phenotypic variability, resulting in a challenging clinical diagnosis. About 75% of AHC cases are caused by pathogenic variants mapping in the ATP1A3, ATP1A2 or GLUT1 gene, leaving many AHC patients clinically and genetically undiagnosed. In this study, we report the case of a 9-year old proband clinically diagnosed with an atypical form of AHC presenting a suspected mitochondrial etiology and an obscure genetic diagnosis. Long-range PCR followed by next generation sequencing of the proband's mitochondrial genome identified a novel mitochondrial variant, m.12302C > A, mapping in the MT-TL2 gene with a low heteroplasmic level in blood and fibroblasts. Whole exome sequencing revealed three known and novel pathogenic variants with different parental inheritance, all involved in the mitochondrial energy metabolism and thus far not associated with AHC. Live-cell mitochondrial metabolic study showed dysregulated mitochondrial oxidative phosphorylation pathway and metabolic plasticity preventing an efficient switch to glycolysis to sustain ATP homeostasis, congruent with the suspected mitochondrial etiology. In conclusion, our comprehensive genetic and metabolic analyses suggest an oligogenic inheritance among the nuclear and mitochondrial variants for the mitochondrial etiology of proband's atypical form of AHC, thereby providing critical insight in terms of genetic clues and bioenergetic deficit. This approach also improves the diagnostic process of atypical form of AHC with an unclear genotype-phenotype correlation to personalize therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Gropman
- Children's National Medical Center, Division of Neurogenetics and Developmental Pediatrics, Washington, DC 20010, USA
| | - Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, Office of the Vice-President for Research, George Washington University, Washington, DC 20052, USA
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
7
|
Novel Homozygous Variant in TTC19 Causing Mitochondrial Complex III Deficiency with Recurrent Stroke-Like Episodes: Expanding the Phenotype. Semin Pediatr Neurol 2018; 26:16-20. [PMID: 29961508 DOI: 10.1016/j.spen.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 7-year-old boy with family history of consanguinity presented with developmental delay and recurrent hemiplegia involving both sides of the body, with variable facial and ocular involvement. Brain MRI showed bilateral striatal necrosis with cystic degeneration and lactate peaks on spectroscopy. Biochemical testing demonstrated mildly elevated lactate and pyruvate. Whole-exome sequencing revealed a novel homozygous pathogenic frameshift mutation in gene TTC19, diagnostic of mitochondrial complex III deficiency.
Collapse
|
8
|
Luo R. [Diagnosis of alternating hemiplegia of childhood]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:959-961. [PMID: 28899462 PMCID: PMC7403063 DOI: 10.7499/j.issn.1008-8830.2017.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Rong Luo
- Department of Pediatrics, West China Second Hospital, Sichuan University /Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu 610041, China
| |
Collapse
|
9
|
Chen H, Liu P, Hu WG, Deng J, Wang YJ. [Alternating hemiplegia of childhood and epilepsy in an infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:956-958. [PMID: 28899461 PMCID: PMC7403067 DOI: 10.7499/j.issn.1008-8830.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Affiliation(s)
- Hui Chen
- Department of Pediatric Neurology, Chengdu Women and Children's Central Hospital, Chengdu 610091, China
| | | | | | | | | |
Collapse
|
10
|
Beinvogl BC, Rosman NP, Baumer FM, Rodan LH, Forster CS, Kwon AH, Berry GT. A 10-Month-Old With Intermittent Hypotonia and Paralysis. Pediatrics 2016; 138:peds.2015-1896. [PMID: 27252036 DOI: 10.1542/peds.2015-1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
A 10-month-old boy presented with a 1-day history of flaccid quadriplegia and dysconjugate gaze. His history was remarkable for stereotyped episodes of flaccid quadriplegia or hemiplegia, oculomotor abnormalities, and limb or neck posturing, beginning in the first days of life and becoming more frequent and more prolonged over time. The patient was healthy and developmentally normal between episodes. Results of extensive laboratory evaluations, including EEG and brain imaging studies, were negative. The patient's history, diagnostic evaluation, and final diagnosis are reviewed. This case illustrates the importance of a fundamental understanding of neurologic localization in pediatric care and a focused diagnostic approach to an infant with paroxysmal neurologic signs.
Collapse
Affiliation(s)
| | - N Paul Rosman
- Division of Pediatric Neurology, Department of Pediatrics and Neurology, Boston Medical Center, Boston, Massachusetts; and
| | | | - Lance H Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | | | - Albert H Kwon
- Division of General Pediatrics, Department of Pediatrics, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Holm TH, Lykke-Hartmann K. Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:209. [PMID: 27378932 PMCID: PMC4906016 DOI: 10.3389/fphys.2016.00209] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
The transmembrane Na(+)-/K(+) ATPase is located at the plasma membrane of all mammalian cells. The Na(+)-/K(+) ATPase utilizes energy from ATP hydrolysis to extrude three Na(+) cations and import two K(+) cations into the cell. The minimum constellation for an active Na(+)-/K(+) ATPase is one alpha (α) and one beta (β) subunit. Mammals express four α isoforms (α1-4), encoded by the ATP1A1-4 genes, respectively. The α1 isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas α2 primarily is expressed in astrocytes and α3 in neurons. Na(+) and K(+) are the principal ions involved in action potential propagation during neuronal depolarization. The α1 and α3 Na(+)-/K(+) ATPases are therefore prime candidates for restoring neuronal membrane potential after depolarization and for maintaining neuronal excitability. The α3 isoform has approximately four-fold lower Na(+) affinity compared to α1 and is specifically required for rapid restoration of large transient increases in [Na(+)]i. Conditions associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal activity. The α3 isoform been suggested to support re-uptake of neurotransmitters. These processes are required for normal brain activity, and in fact autosomal dominant de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset of neurological symptoms, but the predominant neurological manifestations differ with particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC, ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated to study the in vivo consequences of Atp1a3 modulation. The different mice show varying degrees of hyperactivity, gait problems, and learning disability as well as stress-induced seizures. With the advent of several Atp1a3-gene or chemically modified animal models that closely phenocopy many aspects of the human disorders, we will be able to reach a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.
Collapse
Affiliation(s)
- Thomas H. Holm
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
12
|
Gupta SN, Gupta VS, Borad N. Spectrum of migraine variants and beyond: The individual syndromes in children. Brain Dev 2016; 38:10-26. [PMID: 26081103 DOI: 10.1016/j.braindev.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 01/03/2023]
Abstract
"Migraine-related conditions" are probably the second most common condition after seizure encountered in pediatric neurology requiring frequent Emergency Department visits. Among migraines, migraine-related condition presents with an acute onset sign or symptom other than headache or visual aura of unknown etiology. A delay in diagnosis is a common occurrence. Previously, the authors proposed a common clinical profile and suggested that the future review should seek the applicability of the common profile in aid to clinical diagnosis of migraine-related individual syndromes. Authors describe the clinical characteristics and differential diagnosis of the spectrum of migraine variants and beyond in children.
Collapse
Affiliation(s)
- Surya N Gupta
- Section of Child Neurology, Women's and Children's Hospital, Charleston Area Medical Center, Charleston, WV, USA.
| | - Vikash S Gupta
- MS-IV, Texila American University, Woolford Ave, Georgetown, Guyana.
| | - Nirali Borad
- Department of Physiology, P.D.U. Government Medical College, Rajkot, Gujarat, India.
| |
Collapse
|
13
|
The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia-Parkinsonism, CAPOS and beyond. Pediatr Neurol 2015; 52:56-64. [PMID: 25447930 PMCID: PMC4352574 DOI: 10.1016/j.pediatrneurol.2014.09.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/09/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND ATP1A3 mutations have now been recognized in infants and children presenting with a diverse group of neurological phenotypes, including Rapid-onset Dystonia-Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and most recently, Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss (CAPOS) syndrome. METHODS Existing literature on ATP1A3-related disorders in the pediatric population were reviewed, with attention to clinical features and associated genotypes among those with RDP, AHC, or CAPOS syndrome phenotypes. RESULTS While classically defined phenotypes associated with AHC, RDP, and CAPOS syndromes are distinct, common elements among ATP1A3-related neurological disorders include characteristic episodic neurological symptoms and signs that vary in severity, duration, and frequency of occurrence. Affected children typically present in the context of an acute onset of paroxysmal, episodic neurological symptoms ranging from oculomotor abnormalities, hypotonia, paralysis, dystonia, ataxia, seizure-like episodes, or encephalopathy. Neurodevelopmental delays or persistence of dystonia, chorea, or ataxia after resolution of an initial episode are common, providing important clues for diagnosis. CONCLUSIONS The phenotypic spectrum of ATP1A3-related neurological disorders continues to expand beyond the distinct yet overlapping phenotypes in patients with AHC, RDP, and CAPOS syndromes. ATP1A3 mutation analysis is appropriate to consider in the diagnostic algorithm for any child presenting with episodic or fluctuating ataxia, weakness or dystonia whether they manifest persistence of neurological symptoms between episodes. Additional work is needed to better identify and classify affected patients and develop targeted treatment approaches.
Collapse
|
14
|
Yang X, Gao H, Zhang J, Xu X, Liu X, Wu X, Wei L, Zhang Y. ATP1A3 mutations and genotype-phenotype correlation of alternating hemiplegia of childhood in Chinese patients. PLoS One 2014; 9:e97274. [PMID: 24842602 PMCID: PMC4026576 DOI: 10.1371/journal.pone.0097274] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/17/2014] [Indexed: 11/19/2022] Open
Abstract
Alternating hemiplegia of childhood (AHC) is a rare and severe neurological disorder. ATP1A3 was recently identified as the causative gene. Here we report the first genetic study in Chinese AHC cohort. We performed whole-exome sequencing on three trios and three unrelated patients, and screened additional 41 typical cases and 100 controls by PCR-Sanger sequencing. ATP1A3 mutations were detected in 95.7% of typical AHC patients. At least 93.3% were de novo. Four late onset, atypical AHC patients were also mutation positive, suggesting the need for testing ATP1A3 mutations in atypical cases. Totally, 13 novel missense mutations (T370N, G706R, L770R, T771N, T771I, S772R, L802P, D805H, M806K, P808L, I810N, L839P and G893R) were identified in our study. By homology modeling of the mutant protein structures and calculation of an extensive list of molecular features, we identified two statistically significant molecular features, solvent accessibility and distance to metal ion, that distinguished disease-associated mutations from neutral variants. A logistic regression classifier achieved 92.9% accuracy by the average of 100 times of five-fold cross validations. Genotype-phenotype correlation analysis showed that patients with epilepsy were more likely to carry E815K mutation. In summary, ATP1A3 is the major pathogenic gene of AHC in Chinese patients; mutations have distinctive molecular features that discriminate them from neutral variants and are correlated with phenotypes.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua Gao
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jie Zhang
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Xiaojing Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
15
|
Ulate-Campos A, Fons C, Campistol J, Martorell L, Cancho-Candela R, Eiris J, López-Laso E, Pineda M, Sans A, Velázquez R. [Alternating hemiplegia of childhood: ATP1A3 gene analysis in 16 patients]. Med Clin (Barc) 2014; 143:25-8. [PMID: 24768197 DOI: 10.1016/j.medcli.2014.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Alternating hemiplegia in childhood (AHC) is a disease characterized by recurrent episodes of hemiplegia, tonic or dystonic crisis and abnormal ocular movements. Recently, mutations in the ATP1A3 gene have been identified as the causal mechanism of AHC. The objective is to describe a series of 16 patients with clinical and genetic diagnosis of AHC. PATIENTS AND METHOD It is a descriptive, retrospective, multicenter study of 16 patients with clinical diagnosis of AHC in whom mutations in ATP1A3 were identified. RESULTS Six heterozygous, de novo mutations were found in the ATP1A3 gene. The most frequent mutation was G2401A in 8 patients (50%) followed by G2443A in 3 patients (18.75%), G2893A in 2 patients (12.50%) and C2781G, G2893C and C2411T in one patient, respectively (6.25% each). CONCLUSIONS In the studied population with AHC, de novo mutations were detected in 100% of patients. The most frequent mutations were D801N y la E815K, as reported in other series.
Collapse
Affiliation(s)
- Adriana Ulate-Campos
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España.
| | - Carmen Fons
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España
| | - Jaume Campistol
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España
| | - Loreto Martorell
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España; Servicio de Genética Molecular, Hospital Universitario Sant Joan de Déu, Barcelona, España
| | - Ramón Cancho-Candela
- Unidad de Neurología Pediátrica, Servicio de Pediatría, Hospital Universitario Río Hortega, Valladolid, España
| | - Jesús Eiris
- Servicio de Neurología Pediátrica, Departamento de Pediatría, Hospital Clínico Universitario, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, España
| | - Eduardo López-Laso
- Unidad de Neurología Pediátrica, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | | | - Anna Sans
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España
| | - Ramón Velázquez
- Servicio de Neurología Infantil, Hospital Infantil Universitario La Paz, Madrid, España
| |
Collapse
|
16
|
Ulate-Campos A, Fons C, Artuch R, Castejón E, Martorell L, Ozelius L, Pascual J, Campistol J. Alternating hemiplegia of childhood with a de novo mutation in ATP1A3 and changes in SLC2A1 responsive to a ketogenic diet. Pediatr Neurol 2014; 50:377-9. [PMID: 24491413 DOI: 10.1016/j.pediatrneurol.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alternating hemiplegia of childhood (AHC) is a rare condition characterized by an early onset of hemiplegic episodes and other paroxysmal or permanent neurological dysfunctions. Recently, mutations in the ATP1A3 gene have been identified as the causal mechanism of AHC. Regarding the differential diagnosis of AHC, glucose transporter 1 deficiency syndrome may be considered because these two disorders share some paroxystic and nonparoxystic features. PATIENT AND RESULTS We report a typical case of AHC harboring a de novo mutation in the ATP1A3 gene, together with a duplication and insertion in the SLC2A1 gene who exhibited marked clinical improvement following ketogenic diet. CONCLUSION Because the contribution of the SLC2A1 mutation to the clinical phenotype cannot be definitely demonstrated, the remarkable clinical response after ketogenic diet led us to the hypothesis that ketogenic diet might be effective in AHC as it provides an alternative energy source for the brain.
Collapse
Affiliation(s)
| | - Carmen Fons
- Department of Pediatric Neurology, Hospital Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Rafael Artuch
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Esperanza Castejón
- Department of Gastroenterology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Loreto Martorell
- Department of Molecular Genetics, Hospital Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Laurie Ozelius
- Departments of Genetics, Genomic Sciences and Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Juan Pascual
- Rare Brain Disorders Clinic and Laboratory, UT Southwestern Medical Center, Dallas, Texas
| | - Jaume Campistol
- Department of Pediatric Neurology, Hospital Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| |
Collapse
|
17
|
Gergont A, Kaciński M. Alternating hemiplegia of childhood: new diagnostic options. Neurol Neurochir Pol 2014; 48:130-135. [PMID: 24821639 DOI: 10.1016/j.pjnns.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 05/13/2013] [Indexed: 10/25/2022]
Abstract
A syndrome of alternating hemiplegia of childhood (AHC) is a rare disorder first presented in 1971. AHC is characterized by transient episodes of hemiplegia affecting either one or both sides of the body. Age of onset is before 18 months and the common earliest manifestations are dystonic or tonic attacks and nystagmus. Hemiplegic episodes last minutes to days and the frequency and duration tend to decrease with time. Motor and intellectual development is affected, deficits may also develop later. Epileptic seizures occur in some patients. Neuroimaging of the brain usually reveals no abnormalities. The variability of individual clinical presentations and evolution of symptoms have made diagnosis difficult. Therefore the problems of misdiagnosis could account for the low prevalence of this syndrome. This paper hopes to present actual data on AHC, especially of the results of genetic research and new diagnostic tools.
Collapse
Affiliation(s)
- Aleksandra Gergont
- Department of Neurology of Children and Youth, Jagiellonian University, Collegium Medicum, Krakow, Poland.
| | - Marek Kaciński
- Department of Neurology of Children and Youth, Jagiellonian University, Collegium Medicum, Krakow, Poland
| |
Collapse
|
18
|
Alternating hemiplegia of childhood in Denmark: clinical manifestations and ATP1A3 mutation status. Eur J Paediatr Neurol 2014; 18:50-4. [PMID: 24100174 DOI: 10.1016/j.ejpn.2013.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
Abstract
Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disorder characterized by early-onset recurrent distinctive hemiplegic episodes commonly accompanied by other paroxysmal features and developmental impairment. De novo mutations in ATP1A3 were recently identified as a genetic cause of AHC. To describe the entire Danish cohort of paediatric AHC patients we approached neuropaediatricians nationwide. All currently acknowledged Danish patients ≤16 years with AHC were genetically tested and seen by the same child neurologist (PU). Ten patients; seven girls and three boys were identified. Mean present age was 10.0 years (range 1-16). Mean age at presentation was 7.4 months (range 1-18 months). Sequencing of ATP1A3 in all ten patients revealed a pathogenic mutation in seven. Two females with moderate psychomotor impairment were heterozygous for the known p.G947R mutation, whereas one severely retarded boy was heterozygous for the common p.E815K mutation. The prevalent p.D801N mutation was identified in two moderate to severely retarded children. Interestingly, in a set of monochorionic male twins a novel p.D801E mutation was identified, underscoring that the asparagine at position 801 is a mutation hotspot. Three girls aged 5-13 years did not reveal any ATP1A3 mutations. They were rather mildly clinically affected and displayed a normal or near-normal psychomotor development. This is the first study of AHC in the Danish paediatric population. The patients harboured a wide range of psychomotor difficulties. Patients with no mutation detected tended to be less severely affected. Prevalence was approximately 1 per 100,000 children.
Collapse
|
19
|
De Grandis E, Stagnaro M, Biancheri R, Giannotta M, Gobbi G, Traverso M, Veneselli E, Zara F. Lack of SLC2A1 (glucose transporter 1) mutations in 30 Italian patients with alternating hemiplegia of childhood. J Child Neurol 2013; 28:863-6. [PMID: 22899793 DOI: 10.1177/0883073812452789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternating hemiplegia of childhood is a rare, predominantly sporadic disorder. Diagnosis is clinical, and little is known about genetics. Glucose transporter 1 deficiency syndrome shares with alternating hemiplegia of childhood paroxysmal and nonparoxysmal symptoms. The aim of the study was to investigate glucose transporter 1 mutations in 30 Italian patients. Genetic material was analyzed by DNA amplification and glucose transporter 1 region sequencing. Mutational analysis findings of the SLC2A1 gene were negative in all patients. The pattern of movement disorders was reviewed. Interictal dystonia and multiple paroxysmal events were typical of alternating hemiplegia of childhood. In conclusion, alternating hemiplegia of childhood is a heterogeneous clinical condition, and although glucose transporter 1 deficiency can represent an undiagnosed cause of this disorder, mutational analysis is not routinely recommended. Alternatively, a careful clinical analysis and the 3-O-methyl-D-glucose uptake test can allow prompt identification of a subgroup of patients with alternating hemiplegia of childhood treatable with a ketogenic diet.
Collapse
Affiliation(s)
- Elisa De Grandis
- Child Neuropsychiatry Unit, Department of Neurosciences, Ophthalmology & Genetics, G. Gaslini Institute, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmüller J, Frommolt P, Zirn B, Ebinger F, Siemes H, Nürnberg P, Brockmann K, Gärtner J. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol 2012; 11:764-773. [PMID: 22850527 DOI: 10.1016/s1474-4422(12)70182-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alternating hemiplegia of childhood (AHC) is a rare neurological disorder characterised by early-onset episodes of hemiplegia, dystonia, various paroxysmal symptoms, and developmental impairment. Almost all cases of AHC are sporadic but AHC concordance in monozygotic twins and dominant transmission in a family with a milder phenotype have been reported. Thus, we aimed to identify de-novo mutations associated with this disease. METHODS We recruited patients with clinically characterised AHC from paediatric neurology departments in Germany and with the aid of a parental support group between Sept, 2004, and May 18, 2012. We used whole-exome sequencing of three proband-parent trios to identify a disease-associated gene and then tested whether mutations in the gene were also present in the remaining patients and their healthy parents. We analysed genotypes and characterised their associations with the phenotypic spectrum of the disease. FINDINGS We studied 15 female and nine male patients with AHC who were aged 8-35 years. ATP1A3 emerged as the disease-associated gene in AHC. Whole-exome sequencing showed three heterozygous de-novo missense mutations. Sequencing of the 21 remaining affected individuals identified disease-associated mutations in ATP1A3 in all patients, including six de-novo missense mutations and one de-novo splice-site mutation. Because ATP1A3 is also the gene associated with rapid-onset dystonia-parkinsonism (DYT12, OMIM 128235) we compared the genotypes and phenotypes of patients with AHC in our cohort with those of patients with rapid-onset dystonia-parkinsonism reported in the scientific literature. We noted overlapping clinical features, such as abrupt onset of dystonic episodes often triggered by emotional stress, a rostrocaudal (face to arm to leg) gradient of involvement, and signs of brainstem dysfunction, as well as clearly differentiating clinical characteristics, such as episodic hemiplegia and quadriplegia. INTERPRETATION Mutation analysis of the ATP1A3 gene in patients who met clinical criteria for AHC allows for definite genetic diagnosis and sound genetic counselling. AHC and rapid-onset dystonia-parkinsonism are allelic diseases related to mutations in ATP1A3 and form a phenotypical continuum of a dystonic movement disorder. FUNDING Eva Luise and Horst Köhler Foundation for Humans with Rare Diseases.
Collapse
Affiliation(s)
- Hendrik Rosewich
- Department of Paediatrics and Paediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|