1
|
Petkov V, Tsibranska S, Manoylov I, Kechidzhieva L, Ilieva K, Bradyanova S, Ralchev N, Mihaylova N, Denkov N, Tchorbanov A, Tcholakova S. ISCOM-type matrix from beta-escin and glycyrrhizin saponins. Heliyon 2025; 11:e41935. [PMID: 39897917 PMCID: PMC11786834 DOI: 10.1016/j.heliyon.2025.e41935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Background and aims Nanotechnology provides the opportunity for construction of modern transport devices such as nanoparticles for a variety of applications in the field of medicine. A novel experimental protocol for the formation of saponin-cholesterol-phospholipid nanoparticles of vesicular structure has been developed and applied to prepare stable nanoparticles using escin or glycyrrhizin as saponins. Methods The methods for nanoparticle construction include a sonication at 90 °C of the initial mixture of components, followed by an additional sonication on the next day for incorporation of an additional amount of cholesterol, thus forming stable unilamellar vesicles. Tests and assays for cell viability, erythrocyte hemolysis, flow cytometry, and fluorescent microscopy analyses have been performed. Results By selecting appropriate component ratios, stable and safe particles were formulated with respect to the tested bio-cells. The prepared nanoparticles have mean diameter between 70 and 130 nm, depending on their composition. The versatility of these nanoparticles allows for the encapsulation of various molecules, either within the vesicle interior for water-soluble components or within the vesicle walls for hydrophobic components. The saponin particles formed after cholesterol post-addition (E3-M2) are stable and 100 % of the cells remain viable even after 10-times dilution of the initial particle suspension. These particles are successful included into isolated mouse macrophages. Conclusions Among the variety of generated nanoparticles, the E3-M2 particles demonstrated properties of safe and efficient devices for future vaccine design and antigen targeting to immune system.
Collapse
Affiliation(s)
- V. Petkov
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - S. Tsibranska
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - I. Manoylov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - L. Kechidzhieva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - K. Ilieva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Bradyanova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Ralchev
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Denkov
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - A. Tchorbanov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Tcholakova
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| |
Collapse
|
2
|
Ma F, Xu Q, Wang A, Yang D, Li Q, Guo J, Zhang L, Ou J, Li R, Yin H, Li K, Wang L, Wang Y, Zhao X, Niu X, Zhang S, Li X, Chai S, Zhang E, Rao Z, Zhang G. A universal design of restructured dimer antigens: Development of a superior vaccine against the paramyxovirus in transgenic rice. Proc Natl Acad Sci U S A 2024; 121:e2305745121. [PMID: 38236731 PMCID: PMC10823241 DOI: 10.1073/pnas.2305745121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The development of vaccines, which induce effective immune responses while ensuring safety and affordability, remains a substantial challenge. In this study, we proposed a vaccine model of a restructured "head-to-tail" dimer to efficiently stimulate B cell response. We also demonstrate the feasibility of using this model to develop a paramyxovirus vaccine through a low-cost rice endosperm expression system. Crystal structure and small-angle X-ray scattering data showed that the restructured hemagglutinin-neuraminidase (HN) formed tetramers with fully exposed quadruple receptor binding domains and neutralizing epitopes. In comparison with the original HN antigen and three traditional commercial whole virus vaccines, the restructured HN facilitated critical epitope exposure and initiated a faster and more potent immune response. Two-dose immunization with 0.5 μg of the restructured antigen (equivalent to one-127th of a rice grain) and one-dose with 5 μg completely protected chickens against a lethal challenge of the virus. These results demonstrate that the restructured HN from transgenic rice seeds is safe, effective, low-dose useful, and inexpensive. We provide a plant platform and a simple restructured model for highly effective vaccine development.
Collapse
Affiliation(s)
- Fanshu Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Qianru Xu
- School of Basic Medical Sciences, Henan University, Kaifeng475004, China
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430074, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Longxian Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Jiquan Ou
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Heng Yin
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Kunpeng Li
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Li Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Yanan Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangyue Zhao
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangxiang Niu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shujun Chai
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing100084, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|
3
|
Karczmarzyk K, Kęsik-Brodacka M. Attacking the Intruder at the Gate: Prospects of Mucosal Anti SARS-CoV-2 Vaccines. Pathogens 2022; 11:pathogens11020117. [PMID: 35215061 PMCID: PMC8876505 DOI: 10.3390/pathogens11020117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The sudden outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic in December 2019 caused crises and health emergencies worldwide. The rapid spread of the virus created an urgent need for the development of an effective vaccine and mass immunization to achieve herd immunity. Efforts of scientific teams at universities and pharmaceutical companies around the world allowed for the development of various types of preparations and made it possible to start the vaccination process. However, it appears that the developed vaccines are not effective enough and do not guarantee long-lasting immunity, especially for new variants of SARS-CoV-2. Considering this problem, it is promising to focus on developing a Coronavirus Disease 2019 (COVID-19) mucosal vaccine. Such a preparation applied directly to the mucous membranes of the upper respiratory tract might provide an immune barrier at the primary point of virus entry into the human body while inducing systemic immunity. A number of such preparations against SARS-CoV-2 are already in various phases of preclinical and clinical trials, and several of them are very close to being accepted for general use, constituting a milestone toward pandemic containment.
Collapse
Affiliation(s)
- Kacper Karczmarzyk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
4
|
Evaluation of adjuvant activity of Astragaloside VII and its combination with different immunostimulating agents in Newcastle Disease vaccine. Biologicals 2021; 70:28-37. [PMID: 33608170 DOI: 10.1016/j.biologicals.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/06/2023] Open
Abstract
Astragaloside VII (AST-VII), a major cycloartane saponin isolated from Turkish Astragalus species, turned out to be one of the most active metabolites demonstrating Th1/Th2 balanced immune response. As Quillaja saponins are extensively used in adjuvant systems, this study made an attempt to improve AST-VII based adjuvant systems by using different immunostimulatory/delivery agents (monophosphoryllipid A (MPL), Astragalus polysaccharide (APS) and squalene) and to induce cellular and humoral immune response against a viral vaccine. For this purpose, Newcastle Disease vaccine (NDV) was chosen as a model vaccine. Swiss albino mice were immunized subcutaneously with LaSota vaccines in the presence/absence of AST-VII or developed adjuvant systems. AST-VII administration both in live/inactivated LaSota vaccines induced neutralizing and NDV specific IgG, IgG1 and IgG2b antibodies response as well as IL-2 and IL-4 production. APS based delivery systems enhanced the production of neutralizing antibody and the minor augmentation of IFN-γ and IL-2 levels. Squalene emulsion (SE) alone or combined with AST-VII were effective in NDV restimulated splenocyte proliferation. As a conclusion, AST-VII and AST-VII containing adjuvant systems demonstrated Th1/Th2 balanced antibody and cellular immune responses in NDV vaccines. Thus, these systems could be developed as vaccine adjuvants in viral vaccines as alternative to saponin-based adjuvants.
Collapse
|
5
|
Briquez PS, Hauert S, de Titta A, Gray LT, Alpar AT, Swartz MA, Hubbell JA. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol 2020; 8:19. [PMID: 32117911 PMCID: PMC7026271 DOI: 10.3389/fbioe.2020.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile. Moreover, vaccine efficacy and safety can be substantially modulated through selection of the site at which they are delivered, which fosters the engineering of materials capable of targeting cancer vaccines to specific relevant sites, such as within the tumor or within lymphoid organs, to further optimize their immunotherapeutic effects. In this review, we aim to give the reader an overview of principles and current strategies to engineer therapeutic cancer vaccines, with a particular focus on the use of site-specific targeting materials. We will first recall the goal of therapeutic cancer vaccination and the type of immune responses sought upon vaccination, before detailing key components of cancer vaccines. We will then present how materials can be engineered to enhance the vaccine's pharmacokinetic and pharmacodynamic properties. Finally, we will discuss the rationale for site-specific targeting of cancer vaccines and provide examples of current targeting technologies.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Sylvie Hauert
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | | | - Laura T. Gray
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr Polym 2019; 229:115423. [PMID: 31826462 DOI: 10.1016/j.carbpol.2019.115423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) and its water-soluble derivatives, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and sulfated chitosan (SCS), were used as adjuvants of inactivated Newcastle disease (ND) vaccine. First, NDV-loaded and blank CS, HACC/CS and SCS nanoparticles were prepared. The particle sizes were respectively 343.43 ± 4.12, 320.03 ± 0.84, 156.2 ± 9.29 nm and the zeta potentials were respectively +19.67 ± 0.58, +18.3 ± 0.5, -17.8 ± 2.65 mV under the optimal conditions. Then chickens were immunized with nanoparticles or commercial inactivated oil emulsion vaccine. After immunization, the humoral immunity levels of the chickens were evaluated. The cellular immunity levels were determined by the quantification of cytokines, lymphocyte proliferation assay, the percentages of CD4+ and CD8+ T lymphocytes. Finally, the chickens were challenged with highly virulent virus. The results demonstrated that the humoral immunity levels in NDV-loaded CS and HACC/CS nanoparticles groups were lower than commercial vaccine but the cellular immunity levels are better. Moreover, the prevention effects of NDV-loaded CS and HACC/CS nanoparticles against highly virulent NDV are comparable to commercial vaccine. Our study provides the basis of developing HACC and CS as effective vaccine adjuvants.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
7
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
8
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
9
|
Mosafer J, Badiee A, Mohammadamini Z, Komeilinezhad A, Tafaghodi M. Immunization against PR8 influenza virus with chitosan-coated ISCOMATRIX nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:587-593. [DOI: 10.1080/21691401.2018.1464460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Shen Y, Hao T, Ou S, Hu C, Chen L. Applications and perspectives of nanomaterials in novel vaccine development. MEDCHEMCOMM 2018; 9:226-238. [PMID: 30108916 PMCID: PMC6083789 DOI: 10.1039/c7md00158d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023]
Abstract
Vaccines show great potential for both prophylactic and therapeutic use in infections, cancer, and other diseases. With the rapid development of bio-technologies and materials sciences, nanomaterials are playing essential roles in novel vaccine formulations and can boost antigen effectiveness by operating as delivery systems to enhance antigen processing and/or as immune-potentiating adjuvants to induce or potentiate immune responses. The effect of nanoparticles in vaccinology showed enhanced antigen stability and immunogenicity as well as targeted delivery and slow release. However, obstacles remain due to the lack of fundamental knowledge on the detailed molecular working mechanism and in vivo bio-effects of nanoparticles. This review provides a broad overview of the current improvements in nanoparticles in vaccinology. Modern nanoparticle vaccines are classified by the nanoparticles' action based on either delivery system or immune potentiator approaches. The mechanisms of interaction of nanoparticles with the antigens and the immune system are discussed. Nanoparticle vaccines approved for use are also listed. A fundamental understanding of the in vivo bio-distribution and the fate of nanoparticles will accelerate the rational design of new nanoparticles comprising vaccines in the future.
Collapse
Affiliation(s)
- Yingbin Shen
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Tianyao Hao
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Shiyi Ou
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Churan Hu
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Long Chen
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| |
Collapse
|
11
|
Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:7-20. [PMID: 24757512 DOI: 10.1177/2051013613480144] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of vaccines containing adjuvants has the potential to enhance antibody and cellular immune responses, broaden protective immunity against heterogeneous pathogen strains, enable antigen dose sparing, and facilitate efficacy in immunocompromised populations. Nevertheless, the structural interplay between antigen and adjuvant components is often not taken into account in the published literature. Interactions between antigen and adjuvant formulations should be well characterized to enable optimum vaccine stability and efficacy. This review focuses on the importance of characterizing antigen-adjuvant interactions by summarizing findings involving widely used adjuvant formulation platforms, such as aluminum salts, emulsions, lipid vesicles, and polymer-based particles. Emphasis is placed on the physicochemical basis of antigen-adjuvant associations and the appropriate analytical tools for their characterization, as well as discussing the effects of these interactions on vaccine potency.
Collapse
|
12
|
|
13
|
Azmi F, Ahmad Fuaad AAH, Skwarczynski M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 2013; 10:778-96. [PMID: 24300669 DOI: 10.4161/hv.27332] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peptide-based subunit vaccines are of great interest in modern immunotherapy as they are safe, easy to produce and well defined. However, peptide antigens produce a relatively weak immune response, and thus require the use of immunostimulants (adjuvants) for optimal efficacy. Developing a safe and effective adjuvant remains a challenge for peptide-based vaccine design. Recent advances in immunology have allowed researchers to have a better understanding of the immunological implication of related diseases, which facilitates more rational design of adjuvant systems. Understanding the molecular structure of the adjuvants allows the establishment of their structure-activity relationships which is useful for the development of next-generation adjuvants. This review summarizes the current state of adjuvants development in the field of synthetic peptide-based vaccines. The structural, chemical and biological properties of adjuvants associated with their immunomodulatory effects are discussed.
Collapse
Affiliation(s)
- Fazren Azmi
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane, QLD Australia; Faculty of Pharmacy; National University Malaysia; Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
14
|
Xiong Q, Wei Y, Feng Z, Gan Y, Liu Z, Liu M, Bai F, Shao G. Protective efficacy of a live attenuated Mycoplasma hyopneumoniae vaccine with an ISCOM-matrix adjuvant in pigs. Vet J 2013; 199:268-74. [PMID: 24314715 DOI: 10.1016/j.tvjl.2013.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022]
Abstract
An attenuated Mycoplasma hyopneumoniae vaccine that requires intrathoracic administration is commercially available for use against mycoplasmal pneumonia in China. Given the limitations of such a route of administration, this study was undertaken to assess the capacity of an ISCOM-matrix adjuvant to enhance immunogenicity following intramuscular use. Immune responses in pigs following vaccination and subsequent intra-tracheal bacterial inoculation were examined using lymphocyte proliferation, serology and mucosal IgA in both nasal and saliva swabs. Vaccination induced clear lymphocyte proliferation, but only slight serum antibody responses although these were significantly increased following experimental infection. Mucosal IgA was not detected in either nasal or salivary secretions. Following bacterial challenge, animals vaccinated with the adjuvant-containing live vaccine exhibited less severe pulmonary lesions (median score 3.67) than unvaccinated pigs (median score 13.58). The degree of ciliary loss on the respiratory tract surface was reduced in vaccinated pigs compared with experimentally infected controls. The findings indicated that the adjuvant vaccine administered IM provided protection against experimentally induced mycoplasmal pneumonia and could have commercial potential.
Collapse
Affiliation(s)
- Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Zhanjun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Fangfang Bai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Centre for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| |
Collapse
|
15
|
Micro/nanoparticle adjuvants for antileishmanial vaccines: Present and future trends. Vaccine 2013; 31:735-49. [DOI: 10.1016/j.vaccine.2012.11.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 01/04/2023]
|
16
|
An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines. JOURNAL OF DRUG DELIVERY 2011; 2011:181646. [PMID: 21773041 PMCID: PMC3134826 DOI: 10.1155/2011/181646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.
Collapse
|
17
|
Mallick AI, Parvizi P, Read LR, Nagy E, Behboudi S, Sharif S. Enhancement of immunogenicity of a virosome-based avian influenza vaccine in chickens by incorporating CpG-ODN. Vaccine 2010; 29:1657-65. [PMID: 21195078 DOI: 10.1016/j.vaccine.2010.12.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/21/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022]
Abstract
Influenza virosomes are virus-like particles, representing a platform for vaccine development. In this study, we examined the immunogenicity of avian influenza virosomes with or without inclusion of recombinant chicken interferon-gamma (rChIFN-γ) or CpG-ODN in chickens. Immunization with virosomes adjuvanted with CpG-ODN elicited the highest haemagglutination inhibition antibody titres, as well as IgG and IgA serum antibody responses. Moreover, Virosomes+CpG-ODN formulation induced an antigen-specific spleen cell proliferation and IFN-γ expression. In conclusion, our results demonstrated that virus-specific antibody- and cell-mediated responses may be induced in chickens immunized with virosomes and these responses can be enhanced by incorporating CpG-ODN in the virosome vaccine formulation.
Collapse
Affiliation(s)
- Amirul Islam Mallick
- Department of Pathobiology, Ontario, Veterinary College, University of Guelph, Guelph, N1G 2W1 Canada
| | | | | | | | | | | |
Collapse
|
18
|
Singh R, Verma PC, Singh S. Immunogenicity and protective efficacy of virosome based vaccines against Newcastle disease. Trop Anim Health Prod 2009; 42:465-71. [PMID: 19728133 DOI: 10.1007/s11250-009-9444-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/14/2009] [Indexed: 11/28/2022]
Abstract
Virosome based vaccines against Newcastle disease (ND) were prepared and evaluated for their immunogenicity and protective efficacy in chickens. Envelop of Newcastle disease virus (NDV) was solubilised with Triton X-100 to yield virosomes which were later on encapsulated in poly-lactide-co-glycolide (PLG) microspheres. The birds were immunized intranasally with virosomes or PLG microspheres encapsulated virosomes, and efficacy of these preparations was compared with commercial LaSota vaccine. The preparations protected the chickens against virulent virus challenge infection, however the microencapsulated virosome vaccine gave slightly lesser degree of protection than non encapsulated counterpart. The humoral and cell mediated immune response generated as well as the protection afforded by virosome preparations were found to be comparable with LaSota vaccine. The results substantiate the potential of virosome based vaccines to provide high level of immunity and protection against Newcastle disease.
Collapse
Affiliation(s)
- Rajinder Singh
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | | | | |
Collapse
|
19
|
Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 2009; 27:4388-401. [PMID: 19450632 DOI: 10.1016/j.vaccine.2009.05.032] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 02/22/2009] [Accepted: 05/09/2009] [Indexed: 10/25/2022]
Abstract
Immunostimulatory complexes (ISCOMs) are particulate antigen delivery systems composed of antigen, cholesterol, phospholipid and saponin, while ISCOMATRIX is a particulate adjuvant comprising cholesterol, phospholipid and saponin but without antigen. The combination of an antigen with ISCOMATRIX is called an ISCOMATRIX vaccine. ISCOMs and ISCOMATRIX combine the advantages of a particulate carrier system with the presence of an in-built adjuvant (Quil A) and consequently have been found to be more immunogenic, while removing its haemolytic activity of the saponin, producing less toxicity. ISCOMs and ISCOMATRIX vaccines have now been shown to induce strong antigen-specific cellular or humoral immune responses to a broad range of antigens of viral, bacterial, parasite origin or tumor in a number of animal species including non-human primates and humans. These vaccines produced by well controlled and reproducible processes have also been evaluated in human clinical trials. In this review, we summarize the recent progress of ISCOMs and ISCOMATRIX, including preparation technology as well as their application in humans and veterinary vaccine designs with particular emphasis on the current understanding of the properties and features of ISCOMs and ISCOMATRIX vaccines to induce immune responses. The mechanisms of adjuvanticity are also discussed in the light of recent findings.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, Zhejiang, China.
| | | | | |
Collapse
|
20
|
Abstract
As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Compounding
- Gastrointestinal Tract/immunology
- Humans
- Immune Tolerance
- Immunity, Mucosal
- Vaccination/methods
- Vaccination/trends
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/chemistry
- Vaccines, Edible/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/chemistry
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Dmytro S Silin
- Queen's University Belfast, Laboratory of Molecular Virology, Medical and Biology Center, School of Biomedical Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | | |
Collapse
|
21
|
Scheerlinck JPY, Greenwood DLV. Particulate delivery systems for animal vaccines. Methods 2007; 40:118-24. [PMID: 16997719 DOI: 10.1016/j.ymeth.2006.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 05/05/2006] [Indexed: 11/28/2022] Open
Abstract
The requirements for veterinary vaccines are different to those of human vaccines. Indeed, while more side effects can be tolerated in animals than in humans; there are stricter requirements in terms of cost, ease of delivery (including to wildlife), and a need to develop vaccines in species for which relatively little is known in terms of molecular immunology. By their nature particulate vaccine delivery systems are well suited to address these challenges. Here, we review particulate vaccine delivery systems, ranging from cm-sized long-distance ballistic devices to nano-bead technology for veterinary species and wildlife.
Collapse
|