1
|
Yi W, Tran-Nguyen VK, Boumendjel A. One-step synthesis of diaryloxadiazoles as potent inhibitors of BCRP. Future Med Chem 2024; 16:723-735. [PMID: 38573062 PMCID: PMC11157995 DOI: 10.4155/fmc-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Aim: BCRP plays a major role in the efflux of cytotoxic molecules, limiting their antiproliferative activity. We aimed to design and synthesize new BCRP inhibitors to render cancerous tumors more sensitive toward anticancer agents. Materials & methods: Based on our previous work, we conceived potential BCRP inhibitors derived from 1,3,4-oxadiazoles bearing two substituted phenyl rings. Results: Evaluating 19 derivatives, we found that 2,5-diaryl-1,3,4-oxadiazoles possessing methoxy groups were the most active. The highest activity was recorded with derivatives bearing three methoxy groups. The most active compound (3j) was selective in inhibiting BCRP and nontoxic as evidenced by cellular tests. Conclusion: 3j is a promising BCRP inhibitor thanks to its synthetic accessibility and biological profile.
Collapse
Affiliation(s)
- Wei Yi
- Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, Paris, 75013, France
| | | |
Collapse
|
2
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
3
|
Make azoles active again: chalcones as potent reversal agents of transporters-mediated resistance in Candida albicans. Future Med Chem 2018; 10:2177-2186. [PMID: 30043631 DOI: 10.4155/fmc-2018-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Resistance against antifungals used for Candida albicans (Ca) treatment is mediated by two multidrug transporters, Mdr1p and Cdr1p, which are of enormous interest to the development of modulators combined with antifungals. EXPERIMENTAL A set of chalcones was synthesized by condensation reactions in laboratory and was then subject to biological assays to evaluate the effects on different yeast strains. Results: The obtained chalcones were screened using the checkerboard liquid chemosensitization assays. Compounds 4, 10, 12 and 18, when combined with fluconazole, triggered strong sensitization on yeast strains overexpressing CaMdr1p and CaCdr1p, whereas displaying no cytotoxicity by themselves towards control strains and transporter-expressing yeast cells. In the Nile Red transport assay, the two most active compounds, 12 and 18 showed moderate-to-high accumulation of Nile Red with different behaviors towards the two transporters. CONCLUSION Chalcones are promising drug candidates for further development to make azole antifungals active again.
Collapse
|
4
|
High-content imaging assay to evaluate Toxoplasma gondii infection and proliferation: A multiparametric assay to screen new compounds. PLoS One 2018; 13:e0201678. [PMID: 30157171 PMCID: PMC6115017 DOI: 10.1371/journal.pone.0201678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite widely distributed in animals and humans. Infection of host cells and parasite proliferation are essential steps in Toxoplasma pathology. The objective of this study was to develop and validate a novel automatic High Content Imaging (HCI) assay to study T. gondii infection and proliferation. We tested various fluorescent markers and strategies of image analysis to obtain an automated method providing results comparable to those from gold standard infection and proliferation assays. No significant difference was observed between the results obtained from the HCI assay and the standard assays (manual fluorescence microscopy and incorporation of [3H]-uracil). We developed here a robust and time-saving assay. This automated technology was then used to screen a library of compounds belonging to four classes of either natural compounds or synthetic derivatives. Inhibition of parasite proliferation and host cell toxicity were measured in the same assay and led to the identification of one hit, a thiosemicarbazone that allows important inhibition of Toxoplasma proliferation while being relatively safe for the host cells.
Collapse
|
5
|
Cui Y, Chen Q, Li Y, Tang L. A new model of flavonoids affinity towards P-glycoprotein: genetic algorithm-support vector machine with features selected by a modified particle swarm optimization algorithm. Arch Pharm Res 2016; 40:214-230. [DOI: 10.1007/s12272-016-0876-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
|
6
|
Kraege S, Stefan K, Köhler SC, Wiese M. Optimization of Acryloylphenylcarboxamides as Inhibitors of ABCG2 and Comparison with Acryloylphenylcarboxylates. ChemMedChem 2016; 11:2547-2558. [PMID: 27785905 DOI: 10.1002/cmdc.201600455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/05/2016] [Indexed: 11/08/2022]
Abstract
ABCG2 belongs to the superfamily of ATP binding cassette (ABC) proteins and is associated with the limited success of anticancer chemotherapy, given its responsibility for the cross-resistance of tumor cells, known as multidrug resistance (MDR). Several classes of ABCG2 inhibitors were developed for increasing the efficacy of chemotherapy. A series of chalcones coupled to an additional aromatic residue was synthesized and investigated for their inhibition of ABC transporters. In our previous work we determined the preferred position of the linker on the A-ring to be ortho, and found several substitution patterns at the additional ring that improved potency. In this study we investigated whether a methoxy group that improved the inhibitory activity of chalcones would also be beneficial for the acryloylphenylcarboxamide scaffold. Indeed, this modification led to highly potent ABCG2 inhibitors. To support the hypothesis of a beneficial effect of the amide linker, six acryloylphenylcarboxylates were synthesized and investigated for their inhibitory activity. Replacement of the amide linker with an ester group resulted in decreased inhibition. Molecular modeling showed that the conformational preference of both series differs, thereby explaining the positive effect of the amide linker. Several compounds were characterized in detail by investigating their intrinsic cytotoxicity and capacity to reverse MDR in MTT assays and their effect on vanadate-sensitive ATPase activity.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sebastian C Köhler
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
7
|
Mohana S, Ganesan M, Agilan B, Karthikeyan R, Srithar G, Beaulah Mary R, Ananthakrishnan D, Velmurugan D, Rajendra Prasad N, Ambudkar SV. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer. MOLECULAR BIOSYSTEMS 2016; 12:2458-70. [PMID: 27216424 PMCID: PMC4955727 DOI: 10.1039/c6mb00187d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and they significantly reduced resistance in cytotoxicity assays to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Catalytic Domain
- Cell Line, Tumor
- Computer Simulation
- Dietary Supplements
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Humans
- Ligands
- Models, Molecular
- Molecular Docking Simulation
- Protein Binding
- Protein Conformation
- Structure-Activity Relationship
Collapse
Affiliation(s)
- S Mohana
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - M Ganesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - B Agilan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - R Karthikeyan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - G Srithar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - R Beaulah Mary
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - D Ananthakrishnan
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - D Velmurugan
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India and CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256, USA.
| |
Collapse
|
8
|
Kraege S, Stefan K, Juvale K, Ross T, Willmes T, Wiese M. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). Eur J Med Chem 2016; 117:212-29. [PMID: 27100033 DOI: 10.1016/j.ejmech.2016.03.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022]
Abstract
During the last decade it has been found that chalcones and quinazolines are promising inhibitors of ABCG2. The combination of these two scaffolds offers a new class of heterocyclic compounds with potentially high inhibitory activity against ABCG2. For this purpose we investigated 22 different heterodimeric derivatives. In this series only methoxy groups were used as substituents as these had been proven superior for inhibitory activity of chalcones. All compounds were tested for their inhibitory activity, specificity and cytotoxicity. The most potent ABCG2 inhibitor in this series showed an IC50 value of 0.19 μM. It possesses low cytotoxicity (GI50 = 93 μM), the ability to reverse MDR and is nearly selective toward ABCG2. Most compounds containing dimethoxy groups showed slight activity against ABCB1 too. Among these three compounds (17, 19 and 24) showed even higher activity toward ABCB1 than ABCG2. All inhibitors were further screened for their effect on basal ATPase activity. Although the basal ATPase activity was partially stimulated, the compounds were not transported by ABCG2. Thus, quinazoline-chalcones are a new class of effective ABCG2 inhibitors.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Kapil Juvale
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Thomas Ross
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Thomas Willmes
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
9
|
Riley RJ, Foley SA, Barton P, Soars MG, Williamson B. Hepatic drug transporters: the journey so far. Expert Opin Drug Metab Toxicol 2016; 12:201-16. [PMID: 26670591 DOI: 10.1517/17425255.2016.1132308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The key role of transporter biology in both the manifestation and treatment of disease is now firmly established. Experiences of sub-optimal drug exposure due to drug-transporter interplay have supported incorporation of studies aimed at understanding the interactions between compounds and drug transporters much earlier in drug discovery. While drug transporters can impact the most pivotal pharmacokinetic parameter with respect to human dose and exposure projections, clearance, at a renal or hepatobiliary level, the latter will form the focus of this perspective. AREAS COVERED A synopsis of guidelines on which transporters to study together with an overview of the currently available toolkit is presented. A perspective on when to conduct studies with various hepatic transporters is also provided together with structural "alerts" which should prompt early investigation. EXPERT OPINION Great progress has been made in individual laboratories and via consortia to understand the role of drug transporters in disease, drug disposition, drug-drug interactions and toxicity. A systematic analysis of the value posed by the available approaches and an inter-lab comparison now seems warranted. The emerging ability to use physico-chemical properties to guide future screening cascades promises to revolutionise the efficiency of early drug discovery.
Collapse
Affiliation(s)
| | | | - P Barton
- b School of Life Sciences , University of Nottingham , Nottingham , UK
| | - M G Soars
- c Drug Metabolism and Pharmacokinetics , Bristol-Myers Squibb , Wallingford , CT , USA
| | | |
Collapse
|
10
|
Matsson P, Bergström CAS. Computational modeling to predict the functions and impact of drug transporters. In Silico Pharmacol 2015; 3:8. [PMID: 26820893 PMCID: PMC4559557 DOI: 10.1186/s40203-015-0012-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/14/2015] [Indexed: 02/04/2023] Open
Abstract
Transport proteins are important mediators of cellular drug influx and efflux and play crucial roles in drug distribution, disposition and clearance. Drug-drug interactions have increasingly been found to occur at the transporter level and, hence, computational tools for studying drug-transporter interactions have gained in interest. In this short review, we present the most important transport proteins for drug influx and efflux. Computational tools for predicting and understanding the substrate and inhibitor interactions with these membrane-bound proteins are discussed. We have primarily focused on ligand-based and structure-based modeling, for which the state-of-the-art and future challenges are also discussed.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden. .,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - a node of the Chemical Biology Consortium Sweden, Uppsala, Sweden.
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden. .,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - a node of the Chemical Biology Consortium Sweden, Uppsala, Sweden.
| |
Collapse
|
11
|
Parveen Z, Brunhofer G, Jabeen I, Erker T, Chiba P, Ecker GF. Synthesis, biological evaluation and 3D-QSAR studies of new chalcone derivatives as inhibitors of human P-glycoprotein. Bioorg Med Chem 2014; 22:2311-9. [PMID: 24613626 DOI: 10.1016/j.bmc.2014.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/06/2014] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent multidrug resistance efflux transporter that plays an important role in anticancer drug resistance and in pharmacokinetics of medicines. Despite a large number of structurally and functionally diverse compounds, also flavonoids and chalcones have been reported as inhibitors of P-gp. The latter share some similarity with the well studied class of propafenones, but do not contain a basic nitrogen atom. Furthermore, due to their rigidity, they are suitable candidates for 3D-QSAR studies. In this study, a set of 22 new chalcone derivatives were synthesized and evaluated in a daunomycin efflux inhibition assay using the CCRF.CEM.VCR1000 cell line. The compound 10 showed the highest activity (IC50=42nM), which is one order of magnitude higher than the activity for an equilipohillic propafenone analogue. 2D- and 3D-QSAR studies indicate the importance of H-bond acceptors, methoxy groups, hydrophobic groups as well as the number of rotatable bonds as pharmacophoric features influencing P-gp inhibitory activity.
Collapse
Affiliation(s)
- Zahida Parveen
- Institute of Medical Chemistry, Medical University Vienna, Waehringer Strasse 10, 1090 Vienna, Austria; Abdul Wali Khan University Mardan, Malakand Mardan Rd, Mardan, Pakistan
| | - Gerda Brunhofer
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Ishrat Jabeen
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas Erker
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Iterative weighting of multiblock data in the orthogonal partial least squares framework. Anal Chim Acta 2014; 813:25-34. [PMID: 24528656 DOI: 10.1016/j.aca.2014.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022]
Abstract
The integration of multiple data sources has emerged as a pivotal aspect to assess complex systems comprehensively. This new paradigm requires the ability to separate common and redundant from specific and complementary information during the joint analysis of several data blocks. However, inherent problems encountered when analysing single tables are amplified with the generation of multiblock datasets. Finding the relationships between data layers of increasing complexity constitutes therefore a challenging task. In the present work, an algorithm is proposed for the supervised analysis of multiblock data structures. It associates the advantages of interpretability from the orthogonal partial least squares (OPLS) framework and the ability of common component and specific weights analysis (CCSWA) to weight each data table individually in order to grasp its specificities and handle efficiently the different sources of Y-orthogonal variation. Three applications are proposed for illustration purposes. A first example refers to a quantitative structure-activity relationship study aiming to predict the binding affinity of flavonoids toward the P-glycoprotein based on physicochemical properties. A second application concerns the integration of several groups of sensory attributes for overall quality assessment of a series of red wines. A third case study highlights the ability of the method to combine very large heterogeneous data blocks from Omics experiments in systems biology. Results were compared to the reference multiblock partial least squares (MBPLS) method to assess the performance of the proposed algorithm in terms of predictive ability and model interpretability. In all cases, ComDim-OPLS was demonstrated as a relevant data mining strategy for the simultaneous analysis of multiblock structures by accounting for specific variation sources in each dataset and providing a balance between predictive and descriptive purpose.
Collapse
|
13
|
Manzano JI, Lecerf-Schmidt F, Lespinasse MA, Di Pietro A, Castanys S, Boumendjel A, Gamarro F. Identification of specific reversal agents for Leishmania ABCI4-mediated antimony resistance by flavonoid and trolox derivative screening. J Antimicrob Chemother 2013; 69:664-72. [PMID: 24126793 DOI: 10.1093/jac/dkt407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES To identify reversal agents for the Leishmania ABCI4 transporter that confers resistance to antimony. METHODS Selective ABCI4 inhibitors among a series of 15 flavonoid and trolox derivatives or analogues were investigated by evaluating their ability to reverse antimony resistance in Leishmania parasites overexpressing ABCI4. Among the compounds screened, N-ethyltrolox carboxamide (compound D2) produced the highest reversal activity. In order to optimize the activity of D2, we synthesized a series of 10 derivatives by condensation of various amines with trolox. RESULTS Analysis of antimony resistance reversal activity showed that N-propyltrolox carboxamide (compound D4) was the most potent ABCI4 inhibitor, with reversal activity being maintained in the intracellular amastigote stage. In addition, trolox derivatives significantly reverted the resistance to zinc protoporphyrin. The mechanism of action of these active derivatives was found to be related to significant reversion of Sb(III) and zinc protoporphyrin accumulation and to a decrease in drug efflux. CONCLUSIONS Our findings suggest that trolox derivatives D2 and D4 could be considered to be specific reversal agents targeting the Leishmania ABCI4 transporter. The structure-activity relationship obtained in the present study highlights the importance of the size and length of the alkyl substituent linked to trolox. Furthermore, the structural data obtained provide valuable information for the further development of new, even more specific and potent Leishmania ABCI4 reversal agents.
Collapse
Affiliation(s)
- José Ignacio Manzano
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Jabeen I, Wetwitayaklung P, Chiba P, Pastor M, Ecker GF. 2D- and 3D-QSAR studies of a series of benzopyranes and benzopyrano[3,4b][1,4]-oxazines as inhibitors of the multidrug transporter P-glycoprotein. J Comput Aided Mol Des 2013; 27:161-71. [PMID: 23400406 PMCID: PMC3589648 DOI: 10.1007/s10822-013-9635-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 01/24/2013] [Indexed: 01/09/2023]
Abstract
The ATP-binding cassette efflux transporter P-glycoprotein (P-gp) is notorious for contributing to multidrug resistance in antitumor therapy. Due to its expression in many blood-organ barriers, it also influences the pharmacokinetics of drugs and drug candidates and is involved in drug/drug- and drug/nutrient interactions. However, due to lack of structural information the molecular basis of ligand/transporter interaction still needs to be elucidated. Towards this goal, a series of Benzopyranes and Benzopyrano[3,4b][1,4]oxazines have been synthesized and pharmacologically tested for their ability to inhibit P-gp mediated daunomycin efflux. Both quantitative structure–activity relationship (QSAR) models using simple physicochemical and novel GRID-independent molecular descriptors (GRIND) were established to shed light on the structural requirements for high P-gp inhibitory activity. The results from 2D-QSAR showed a linear correlation of vdW surface area (Å2) of hydrophobic atoms with the pharmacological activity. GRIND (3D-QSAR) studies allowed to identify important mutual distances between pharmacophoric features, which include one H-bond donor, two H-bond acceptors and two hydrophobic groups as well as their distances from different steric hot spots of the molecules. Activity of the compounds particularly increases with increase of the distance of an H-bond donor or a hydrophobic feature from a particular steric hot spot of the benzopyrane analogs.
Collapse
Affiliation(s)
- Ishrat Jabeen
- Department of Medicinal Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
15
|
Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Adv 2012; 2:7948-7963. [PMID: 25400909 PMCID: PMC4228968 DOI: 10.1039/c2ra01369j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, existing mainly as glycosides in nature, have multiple "claimed" beneficial effects in humans. Flavonoids are extensively metabolized in enterocytes and hepatocytes by phase II enzymes such as UGTs and SULTs to form glucuronides and sulfates, respectively. These glucuronides and sulfates are subsequently excreted via ABC transporters (e.g., MRP2 or BCRP). Therefore, it is the interplay between phase II enzymes and efflux transporters that affects the disposition of flavonoids and leads to the low bioavailability of flavonoid aglycones. Flavonoids can also serve as chemical regulators that affect the activity or expression levels of phase II enzymes including UGTs, SULTs and GSTs, and transporters including P-gp, MRP2, BCRP, OATP and OAT. In general, flavonoids may exert the inhibitory or inductive effects on the phase II enzymes and transporters via multiple mechanisms that may involve different nuclear receptors. Since flavonoids may affect the metabolic pathways shared by many important clinical drugs, drug-flavonoid interaction is becoming an increasingly important concern. This review article focused on the disposition of flavonoids and effects of flavonoids on relevant enzymes (e.g. UGTs and SULTs) and transporters (e.g. MRP2 and BCRP) involved in the interplay between phase II enzymes and efflux transporters. The effects of flavonoids on other metabolic enzymes (e.g. GSTs) or transporters (e.g. P-gp, OATP and OAT) are also addressed but that is not the emphasis of this review.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA ; Pharmaceutics Graduate Program, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Synthesis and anti Methicillin resistant Staphylococcus aureus activity of substituted chalcones alone and in combination with non-beta-lactam antibiotics. Bioorg Med Chem Lett 2012; 22:4555-60. [DOI: 10.1016/j.bmcl.2012.05.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/23/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
|
17
|
Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. ACTA CHIMICA SLOVACA 2012. [DOI: 10.2478/v10188-012-0010-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipophilization of flavonoids for their food, therapeutic and cosmetic applicationsFlavonoids represent large group of plant pigments. These polyphenolic compounds may be found in the nature as active components of fruits, vegetables and other plants and derived products. Due to established biological effects they are attractive substances for many areas of human life. Many flavonoids are nowadays used in pharmaceutical, cosmetic and food preparations. Their practical applications are in most cases limited by low solubility and stability in lipophilic media. Chemical or enzymatic lipophilization of flavonoid skeleton may not only increase their solubility and stability in lipophilic environment but also their biological properties. This review summarizes current knowledge in this field.
Collapse
|
18
|
Kothandan G, Gadhe CG, Madhavan T, Choi CH, Cho SJ. Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain. Eur J Med Chem 2011; 46:4078-88. [PMID: 21723648 DOI: 10.1016/j.ejmech.2011.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
In order to explore the interactions between flavones and P-gp, in silico methodologies such as docking and 3D-QSAR were performed. CoMFA and CoMSIA analyses were done using ligand based and receptor guided alignment schemes. Validation statistics include leave-one-out cross-validated R(2) (q(2)), internal prediction parameter by progressive scrambling (Q(*2)), external prediction with test set. They show that models derived from this study are quite robust. Ligand based CoMFA (q(2) = 0.747, Q(*2) = 0.639, r(pred)(2)=0.802) and CoMSIA model (q(2) = 0.810, Q(*2) = 0.676, r(pred)(2)=0.785) were developed using atom by atom matching. Receptor guided CoMFA (q(2) = 0.712, Q(*2) = 0.497, r(pred)(2) = 0.841) and for CoMSIA (q(2) = 0.805, Q(*2) = 0.589, r(pred)(2) = 0.937) models were developed by docking of highly active flavone into the proposed NBD (nucleotide binding domain) of P-gp. The 3D-QSAR models generated here predicted that hydrophobic and steric parameters are important for activity toward P-gp. Our studies indicate the important amino acid in NBD crucial for binding in accordance with the previous results. This site forms a hydrophobic site. Since flavonoids have potential without toxicity, we propose to inspect this hydrophobic site including Asn1043 and Asp1049 should be considered for future inhibitor design.
Collapse
Affiliation(s)
- Gugan Kothandan
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Palmeira A, Rodrigues F, Sousa E, Pinto M, Vasconcelos MH, Fernandes MX. New Uses for Old Drugs: Pharmacophore-Based Screening for the Discovery of P-Glycoprotein Inhibitors. Chem Biol Drug Des 2011; 78:57-72. [DOI: 10.1111/j.1747-0285.2011.01089.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, Cruciani G. A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. J Med Chem 2011; 54:1740-51. [PMID: 21341745 PMCID: PMC3069647 DOI: 10.1021/jm101421d] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (Pgp or ABCB1) is an ABC transporter protein involved in intestinal absorption, drug metabolism, and brain penetration, and its inhibition can seriously alter a drug's bioavailability and safety. In addition, inhibitors of Pgp can be used to overcome multidrug resistance. Given this dual purpose, reliable in silico procedures to predict Pgp inhibition are of great interest. A large and accurate literature collection yielded more than 1200 structures; a model was then constructed using various molecular interaction field-based technologies, considering pharmacophoric features and those physicochemical properties related to membrane partitioning. High accuracy was demonstrated internally with two different validation sets and, moreover, using a number of molecules, for which Pgp inhibition was not experimentally available but was evaluated in-house. All of the validations confirmed the robustness of the model and its suitability to help medicinal chemists in drug discovery. The information derived from the model was rationalized as a pharmacophore for competitive Pgp inhibition.
Collapse
Affiliation(s)
- Fabio Broccatelli
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, I-06123 Perugia, Italy
| | - Emanuele Carosati
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, I-06123 Perugia, Italy
| | - Annalisa Neri
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy
| | - Maria Frosini
- Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy
| | - Laura Goracci
- Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, United Kingdom
| | - Tudor I. Oprea
- Division of Biocomputing, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC11 6145, Albuquerque, NM 87131, USA
| | - Gabriele Cruciani
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, I-06123 Perugia, Italy
| |
Collapse
|
21
|
Choong E, Dobrinas M, Carrupt PA, Eap CB. The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution. Expert Opin Drug Metab Toxicol 2010; 6:953-65. [DOI: 10.1517/17425251003789394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Sheu MT, Liou YB, Kao YH, Lin YK, Ho HO. A Quantitative Structure-Activity Relationship for the Modulation Effects of Flavonoids on P-Glycoprotein-Mediated Transport. Chem Pharm Bull (Tokyo) 2010; 58:1187-94. [DOI: 10.1248/cpb.58.1187] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yi-Bo Liou
- College of Pharmacy, Taipei Medical University
| | - Yu-Han Kao
- College of Pharmacy, Taipei Medical University
| | - Ying-Ku Lin
- College of Pharmacy, Taipei Medical University
| | - Hsiu-O Ho
- College of Pharmacy, Taipei Medical University
| |
Collapse
|
23
|
Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis. J Mol Model 2009; 16:311-26. [DOI: 10.1007/s00894-009-0547-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
|
24
|
Nicolle E, Boccard J, Guilet D, Dijoux-Franca MG, Zelefac F, Macalou S, Grosselin J, Schmidt J, Carrupt PA, Di Pietro A, Boumendjel A. Breast cancer resistance protein (BCRP/ABCG2): new inhibitors and QSAR studies by a 3D linear solvation energy approach. Eur J Pharm Sci 2009; 38:39-46. [PMID: 19501160 DOI: 10.1016/j.ejps.2009.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 03/10/2009] [Accepted: 05/25/2009] [Indexed: 11/16/2022]
Abstract
A series of compounds derived from naturally occurring flavonoids and synthetic analogs have been evaluated on cell lines overexpressing the wild-type breast cancer resistance protein (BCRP/ABCG2) half-transporter. Human ABCG2-transfected cells were used for screening their inhibitory activity. Five new natural compounds obtained from Morus mesozygia Stapf and one synthetic chromone, comprising a flavonoidic scaffold, were also evaluated. Based on the results obtained with a total of 34 compounds, a 3D linear solvation energy QSAR was investigated by VolSurf descriptors of molecular-interaction fields (MIFs) related to hydrophobic-interaction forces, polarisability and hydrogen-bonding capacity. Accuracy of the constructed 3D-QSAR model was attested by a correlation coefficient r(2) of 0.77. Shape parameters and hydrophobicity were revealed to be major physicochemical parameters responsible for the inhibition activity of flavonoid derivatives and synthetic analogs towards ABCG2, whereas hydrogen-bond donor capacity appeared highly unfavorable.
Collapse
Affiliation(s)
- Edwige Nicolle
- Département de Pharmacochimie Moléculaire, UMR 5063, ICMG-FR 2607-Université Joseph Fourier Grenoble I, St Martin d'Hères, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|