1
|
Dubkara H, Lal J, Saxena D, Akhir A, Maitra R, Chopra S, Reddy DN. Discovery of a potent ornithine-modified gramicidin S analogue against drug-resistant Staphylococcus aureus and Enterococcus faecalis with minimal red blood cell toxicity. Eur J Med Chem 2025; 292:117654. [PMID: 40288118 DOI: 10.1016/j.ejmech.2025.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The high haemolytic toxicity of Gramicidin S restricts its therapeutic use to topical applications. Given the growing need for new antibiotics and drawing inspiration from the cyclic structure and druggable characteristics of Gramicidin S, we have synthesized 15 ornithine (Orn) modified analogous peptides systematically and investigated their antimicrobial activity and cytotoxicity. Results revealed that mono- ornithine residue replaced with tryptophan (11) and arginine (12) peptides showed improved activity against multidrug resistant bacterial strains of Staphylococcus aureus and Enterococcus faecalis (MIC 4-8 μg/mL) compared with comparators vancomycin (MIC >64 μg/mL), levofloxacin (MIC 32-64 μg/mL) and meropenem (MIC 8-64 μg/mL). Cytotoxicity data demonstrated that peptide 11 (HC50 = 112.1 μg/mL) and 12 (HC50 = 186 μg/mL) exhibited greatly reduced haemolytic activity, as compared with Gramicidin S (HC50 = 35.13 μg/mL). The concentration-dependent time-kill kinetic assay resulted the active peptide 12 represents better bactericidal effect compared with 11 and vancomycin. Scanning electron microscope analysis shows that GS and the modified peptide 12 disrupt the bacterial cell surface, causing damage and leading to bacterial cell death. 2D NOESY data of 12 showed that the arginine residue side-chain guanidinium ion and tryptophan indole form a cation-π interaction. This interaction between arginine and tryptophan stabilizes the β-sheet conformation, selectively targets bacterial membranes, hence exhibiting reduced red blood cell toxicity. The overall study suggests that the peptide 12 may be further developed as an antibiotic for systematic use against infections caused due to S. aureus.
Collapse
Affiliation(s)
- Harshita Dubkara
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rahul Maitra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
2
|
Lal J, Kaul G, Akhir A, Saxena D, Dubkara H, Shekhar S, Chopra S, Reddy DN. β-Turn editing in Gramicidin S: Activity impact on replacing proline α-carbon with stereodynamic nitrogen. Bioorg Chem 2023; 138:106641. [PMID: 37300963 DOI: 10.1016/j.bioorg.2023.106641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Gramicidin S, natural antimicrobial peptide is used commercially in medicinal lozenges for sore throat and Gram-negative and Gram-positive bacterial infections. However, its clinical potential is limited to topical applications because of its high red blood cells (RBC) cytotoxicity. Given the importance of developing potential antibiotics and inspired by the cyclic structure and druggable features of Gramicidin S, we edited proline α-carbon with stereodynamic nitrogen to examine the direct impact on biological activity and cytotoxicity with respect to prolyl counterpart. Natural Gramicidin S (12), proline-edited peptides 13-16 and wild-type d-Phe-d-Pro β-turn mimetics (17 and 18) were synthesized using solid phase peptide synthesis and investigated their activity against clinically relevant bacterial pathogens. Interestingly, mono-proline edited analogous peptide 13 showed moderate improvement in antimicrobial activity against E. coli ATCC 25922 and K.pneumoniae BAA 1705 as compared to Gramicidin S. Furthermore, proline edited peptide 13 exhibited equipotent antimicrobial effect against MDR S. aureus and Enterococcus spp. Analysis of cytotoxicity against VERO cells and RBC, reveals that proline edited peptides showed two-fivefold lesser cytotoxicity than the counterpart Gramicidin S. Our study suggests that introducing single azPro/Pro mutation in Gramicidin S marginally improved the activity and lessens the cytotoxicity as compared with the parent peptide.
Collapse
Affiliation(s)
- Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Harshita Dubkara
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Shashank Shekhar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
3
|
Wesgate R, Evangelista C, Atkinson R, Shepard A, Adegoke O, Maillard JY. Understanding the risk of emerging bacterial resistance to over the counter antibiotics in topical sore throat medicines. J Appl Microbiol 2020; 129:916-925. [PMID: 32352619 DOI: 10.1111/jam.14682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/26/2020] [Indexed: 11/27/2022]
Abstract
AIMS The aims of this study were to explore the development of bacterial resistance and cross-resistance in four common human pathogens following realistic exposure to antibiotics found in over-the-counter (OTC) sore throat medicines: gramicidin, neomycin, bacitracin and tyrothricin. METHODS AND RESULTS Bacterial exposure to in-use (concentration in the product before use) and diluted concentration (i.e. during use) of antibiotic where conducted in broth for 24 h or until growth was visible. The changes in bacterial susceptibility profile before and after exposure was determined using standardized ISO microdilution broth. Antibiotic testing was performed according to EUCAST guidelines. We demonstrated that test bacteria were able to survive exposure to the in-use concentrations of some antibiotics used in OTC medicines. Exposure to during use concentrations of bacitracin resulted in stable increase in minimal inhibitory concentration (MIC) (>8-fold) in Staphylococcus aureus and Acinetobacter baumannii. Exposure to tyrothricin resulted in a stable increase in MIC (2·4-fold) in Klebsiella pneumoniae, and exposure to neomycin resulted in a stable increase MIC (5000-fold higher than the baseline) in Streptococcus pyogenes. Clinical cross-resistance to other antibiotics (ciprofloxacin, fusidic acid, gentamicin, cefpodoxime, amoxicillin/clavulanic acid and cefotaxime) was also demonstrated following exposure to bacitracin or tyrothricin. Bacitracin exposure lead to a stable bacterial resistance after 10 passages. CONCLUSIONS Our results indicate that OTC antibiotic medicines have the potential to drive resistance and cross-resistance in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY Tackling antibiotic resistance is a high worldwide priority. It is widely accepted that the overuse and misuse of antibiotics increase the risk of the development and spread of antibiotic resistance within communities. A number of OTC sore throat products, widely available across the world for topical use in respiratory indications, contain locally delivered antibiotics. Our findings showed that these antibiotics in OTC medicines present a risk for emerging cross-resistance in a number of bacterial respiratory pathogens.
Collapse
Affiliation(s)
- R Wesgate
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - C Evangelista
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | - J-Y Maillard
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Guan Q, Huang S, Jin Y, Campagne R, Alezra V, Wan Y. Recent Advances in the Exploration of Therapeutic Analogues of Gramicidin S, an Old but Still Potent Antimicrobial Peptide. J Med Chem 2019; 62:7603-7617. [DOI: 10.1021/acs.jmedchem.9b00156] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qinkun Guan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Shuhui Huang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
- Jiangxi Maternal and Child Hospital, Nanchang 330006, P. R. China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Rémy Campagne
- Faculté des Sciences d’Orsay, Université Paris-Sud, Laboratoire de Méthodologie, Synthèse
et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS,
Université Paris-Saclay, Bât 410, 91405 Orsay, France
| | - Valérie Alezra
- Faculté des Sciences d’Orsay, Université Paris-Sud, Laboratoire de Méthodologie, Synthèse
et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS,
Université Paris-Saclay, Bât 410, 91405 Orsay, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
- Faculté des Sciences d’Orsay, Université Paris-Sud, Laboratoire de Méthodologie, Synthèse
et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS,
Université Paris-Saclay, Bât 410, 91405 Orsay, France
| |
Collapse
|
6
|
Brady JJ, Judge EJ, Levis RJ. Analysis of amphiphilic lipids and hydrophobic proteins using nonresonant femtosecond laser vaporization with electrospray post-ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:762-772. [PMID: 21472613 DOI: 10.1007/s13361-010-0066-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Amphiphilic lipids and hydrophobic proteins are vaporized at atmospheric pressure using nonresonant 70 femtosecond (fs) laser pulses followed by electrospray post-ionization prior to being transferred into a time-of-flight mass spectrometer for mass analysis. Measurements of molecules on metal and transparent dielectric surfaces indicate that vaporization occurs through a nonthermal mechanism. The molecules analyzed include the lipids 1-monooleoyl-rac-glycerol, 1,2-dihexanoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, and the hydrophobic proteins gramicidin A, B, and C. Vaporization of lipids from blood and milk are also presented to demonstrate that lipids in complex systems can be transferred intact into the gas phase for mass analysis.
Collapse
Affiliation(s)
- John J Brady
- Center for Advanced Photonics Research, Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
7
|
Gizzatkulov NM, Goryanin II, Metelkin EA, Mogilevskaya EA, Peskov KV, Demin OV. DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results. BMC SYSTEMS BIOLOGY 2010; 4:109. [PMID: 20698988 PMCID: PMC2925829 DOI: 10.1186/1752-0509-4-109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
Background Systems biology research and applications require creation, validation, extensive usage of mathematical models and visualization of simulation results by end-users. Our goal is to develop novel method for visualization of simulation results and implement it in simulation software package equipped with the sophisticated mathematical and computational techniques for model development, verification and parameter fitting. Results We present mathematical simulation workbench DBSolve Optimum which is significantly improved and extended successor of well known simulation software DBSolve5. Concept of "dynamic visualization" of simulation results has been developed and implemented in DBSolve Optimum. In framework of the concept graphical objects representing metabolite concentrations and reactions change their volume and shape in accordance to simulation results. This technique is applied to visualize both kinetic response of the model and dependence of its steady state on parameter. The use of the dynamic visualization is illustrated with kinetic model of the Krebs cycle. Conclusion DBSolve Optimum is a user friendly simulation software package that enables to simplify the construction, verification, analysis and visualization of kinetic models. Dynamic visualization tool implemented in the software allows user to animate simulation results and, thereby, present them in more comprehensible mode. DBSolve Optimum and built-in dynamic visualization module is free for both academic and commercial use. It can be downloaded directly from http://www.insysbio.ru.
Collapse
|