1
|
Khwaza V, Aderibigbe BA. Potential Pharmacological Properties of Triterpene Derivatives of Ursolic Acid. Molecules 2024; 29:3884. [PMID: 39202963 PMCID: PMC11356970 DOI: 10.3390/molecules29163884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
2
|
Fernandes LDR, Lopes JR, Bonjorno AF, Prates JLB, Scarim CB, Dos Santos JL. The Application of Prodrugs as a Tool to Enhance the Properties of Nucleoside Reverse Transcriptase Inhibitors. Viruses 2023; 15:2234. [PMID: 38005911 PMCID: PMC10675571 DOI: 10.3390/v15112234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.d.R.F.); (J.R.L.); (A.F.B.); (J.L.B.P.); (C.B.S.)
| |
Collapse
|
3
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
4
|
Liu G, Li J, Shi L, Liu M, Cai B. Advances in the Study of Structural Modification and Biological Activities of Ursolic Acid. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Akhtar R, Yousaf M, Zahoor AF, Naqvi SAR, Abbas N. Synthesis of lamivudine (3TC) and its derivatives. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1321648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yousaf
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Najum Abbas
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Zhou M, Zhang RH, Wang M, Xu GB, Liao SG. Prodrugs of triterpenoids and their derivatives. Eur J Med Chem 2017; 131:222-236. [DOI: 10.1016/j.ejmech.2017.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
|
7
|
Huang Q, Chen H, Ren Y, Wang Z, Zeng P, Li X, Wang J, Zheng X. Anti-hepatocellular carcinoma activity and mechanism of chemopreventive compounds: ursolic acid derivatives. PHARMACEUTICAL BIOLOGY 2016; 54:3189-3196. [PMID: 27564455 DOI: 10.1080/13880209.2016.1214742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hepatocellular carcinoma (HCC) is a common cancer around the world, with high mortality rate. Currently, there is no effective drug for the therapy of HCC. Ursolic acid (UA) is a natural product which exists in various medicinal herbs and fruits, exhibiting multiple biological effects such as its outstanding anticancer and hepatoprotective activity, which has drawn many pharmacists' attention. OBJECTIVE This paper summarizes the current status of the hepatoprotective activity of UA analogues and explains the related mechanism, providing a clear direction for the development of novel anti-HCC drugs. METHODS All of the data resources were derived from PubMed. By comparing the IC50 values and analyzing the structure-activity relationships, we listed compounds with good pharmacological activity from the relevant literature, and summarized their anti-HCC mechanism. RESULTS From the database, 58 new UA derivatives possessing wonderful anticancer and hepatoprotective effects were listed, and the relevant anti-HCC mechanism were discussed. CONCLUSION UA's anti-HCC effect is the result of combined action of many mechanisms. These 58 new UA derivatives, particularly compounds 45 and 53, can be used as potential drugs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qiuxia Huang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Hongfei Chen
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Yuyan Ren
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Zhe Wang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Peiyu Zeng
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang , China
| | - Xuan Li
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang , China
| | - Juan Wang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Xing Zheng
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| |
Collapse
|
8
|
Aljuffali IA, Lin CF, Chen CH, Fang JY. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin Drug Deliv 2016; 13:1311-25. [DOI: 10.1080/17425247.2016.1187598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Chen H, Gao Y, Wang A, Zhou X, Zheng Y, Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem 2015; 92:648-55. [PMID: 25617694 PMCID: PMC4336574 DOI: 10.1016/j.ejmech.2015.01.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA.
Collapse
Affiliation(s)
- Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Basic Science Building 3.314, Galveston, TX 77555, United States
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ailan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaobin Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Basic Science Building 3.314, Galveston, TX 77555, United States.
| |
Collapse
|
10
|
Huang T, Wu P, Cheng A, Qin J, Zhang K, Zhao S. A hydrophilic conjugate approach toward the design and synthesis of ursolic acid derivatives as potential antidiabetic agent. RSC Adv 2015. [DOI: 10.1039/c5ra05450h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study, a series of novel ursolic acid (UA) derivatives were designed and synthesized successfully via conjugation of hydrophilic and polar groups at 3-OH and/or 17-COOH position.
Collapse
Affiliation(s)
- TianMing Huang
- Department of Pharmaceutical Engineering
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology Guangzhou
- P. R. China
| | - PanPan Wu
- Department of Pharmaceutical Engineering
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology Guangzhou
- P. R. China
| | - AnMing Cheng
- Department of Pharmaceutical Engineering
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology Guangzhou
- P. R. China
| | - Jing Qin
- Department of Pharmaceutical Engineering
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology Guangzhou
- P. R. China
| | - Kun Zhang
- Department of Pharmaceutical Engineering
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology Guangzhou
- P. R. China
| | - SuQing Zhao
- Department of Pharmaceutical Engineering
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology Guangzhou
- P. R. China
| |
Collapse
|
11
|
Zhong Y, Wang J, Wang Y, Wu B. Preparation and evaluation of liposome-encapsulated codrug LMX. Int J Pharm 2012; 438:240-8. [PMID: 22981689 DOI: 10.1016/j.ijpharm.2012.08.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/01/2012] [Accepted: 08/29/2012] [Indexed: 02/07/2023]
Abstract
A novel codrug (LMX) consisting of Lamivudine and Ursolic acid has been shown to possess the dual action of anti-hepatitis B virus activity and hepatoprotective effects against acute liver injury in vivo. Because of the limited water solubility of LMX, our aims were to design and optimize a liposomal formulation that could facilitate its in vivo administration, and to estimate the potential of LMX-loaded liposomes as oral or intravenous delivery system. In this work, LMX-loaded liposomes were prepared by the thin film hydration method coupled with sonication. LMX-loaded liposomes showed spherical morphology under transmission electron microscope (TEM) analysis. The mean particle size of liposomes was about 210 nm, and the drug entrapment efficiency was more than 90%. Stability data indicated that lyophilized liposomes were stable for at least 6 months at 4 °C. In vitro drug release profile of LMX-loaded liposomes showed a sustained release profile of LMX and an initial mild burst was observed. The relative bioavailability of LMX-loaded liposomes was 1074.8% compared with LMX suspension after oral administration, and 135.2% relative to 50% alcohol solution after intravenous (i.v.) administration. These results indicated that LMX-loaded liposomes were valued to develop as a practical preparation for oral or i.v. administration.
Collapse
Affiliation(s)
- Yan Zhong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, PR China
| | | | | | | |
Collapse
|
12
|
Gualdesi MS, Briñón MC, Quevedo MA. Intestinal permeability of lamivudine (3TC) and two novel 3TC prodrugs. Experimental and theoretical analyses. Eur J Pharm Sci 2012; 47:965-78. [PMID: 23072916 DOI: 10.1016/j.ejps.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 01/05/2023]
Abstract
Lamivudine (3TC) is an antiviral drug with a widely demonstrated clinical efficacy used to treat Acquired Immunodeficiency Syndrome (AIDS) in humans. However, since the rapid emergence of resistant viral strains has limited its effect, several new strategies such as the design of prodrugs have been applied to try to optimize its pharmacotherapeutic properties. The present study deals with the intestinal permeation of 3TC and two novel prodrugs of 3TC, namely 3TC-Etha and 3TC-Buta, by using rat intestinal segments and applying the gut sac in vitro technique. An adequate bioanalytical method (sample preparation and quantitative analysis) was fully developed and validated for the quantitation of these three compounds. A low permeability coefficient (P(app) 0.408 ± 0.049 × 10(-4) cm/min) was found for 3TC if compared to that previously reported for zidovudine (2.38 ± 0.12 × 10(-4) cm/min), while no statistically significant differences were observed in its apical-to-basal or basal-to-apical permeabilities. Our data suggests that 3TC permeates through the intestinal tissue by passive diffusion, with no intervention of efflux mechanism during this process as determined applying the gut sac technique. Regarding the prodrugs, both 3TC-Etha and 3TC-Buta were able to increase 3TC permeability (2 and 10 times, respectively), but none of these compounds were capable of crossing the intestinal tissue in their intact forms. In the case of 3TC-Etha, the permeability of the intact compound (P(app) 0.093 ± 0.010 × 10(-4) cm/min) was impaired by a P-glycoprotein (P-gp) mediated efflux, evidenced by the higher permeability coefficient (6.933 ± 0.586 × 10(-4) cm/min) determined in the presence of verapamil on the apical side of the enterocyte. In contrast, 3TC-Buta was not subjected to efflux mechanisms on the apical side of the enterocyte, but was efficiently converted to 3TC by enzymatic hydrolysis during the permeation process. In the light of these results, molecular modeling (docking and molecular dynamics) techniques were applied to study further the structural features that may confer the different behaviors of these two compounds with respect to P-gp mediated efflux. The results also highlight the potential of combining experimental and theoretical studies in the design of 3TC prodrugs with enhanced intestinal permeation properties.
Collapse
Affiliation(s)
- María S Gualdesi
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Argentina
| | | | | |
Collapse
|