1
|
Santos RMG, Lima R, Cravo S, Fernandes PA, Remião F, Fernandes C. Binding Affinity of Synthetic Cannabinoids to Human Serum Albumin: Site Characterization and Interaction Insights. Pharmaceuticals (Basel) 2025; 18:581. [PMID: 40284016 PMCID: PMC12030568 DOI: 10.3390/ph18040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: High-performance affinity chromatography (HPAC) was used to investigate the binding affinity of a series of synthetic cannabinoids, a widely abused class of new psychoactive substances, to human serum albumin (HSA) and obtain insights into the binding sites. To better understand the recognition mechanisms, molecular docking studies were conducted. Methods: Binding affinity was assessed through zonal elution approach Additionally, displacement chromatography with site-specific probes provided insights into the HSA binding sites of five synthetic cannabinoids. Results: That these drugs exhibit extensive binding to HSA, with values ranging from 98.7% to 99.9%. Competition for site I was observed between warfarin and four synthetic cannabinoids (5F-AMB, AB-PINACA, AMB-FUBINACA, and AB-CHMINACA). Furthermore, AB-CHMINACA also competed with L-tryptophan for site II. The binding affinity of all synthetic cannabinoids increased in the presence of (S)-ibuprofen. Molecular docking studies supported the experimental findings, reinforcing the insights gained. Conclusions: The key novelty of this study lies in analyzing, for the first time, the binding affinity of synthetic cannabinoids to HSA through HPAC and molecular docking. These results may improve our understanding of their toxicokinetic behavior and help in predicting possible competitive interactions that could influence HSA binding and, consequently, their activity and toxicity. This study is the first to describe the binding affinity of synthetic cannabinoids to HSA, elucidate their recognition mechanisms, identify binding sites, and characterize their interactions with the protein.
Collapse
Affiliation(s)
- Rita M. G. Santos
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.M.G.S.); (R.L.); (S.C.)
| | - Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.M.G.S.); (R.L.); (S.C.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.M.G.S.); (R.L.); (S.C.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.M.G.S.); (R.L.); (S.C.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Coelho MM, Lima R, Almeida AS, Fernandes PA, Remião F, Fernandes C, Tiritan ME. Binding studies of promethazine and its metabolites with human serum albumin by high-performance affinity chromatography and molecular docking in the presence of codeine. Anal Bioanal Chem 2024; 416:4605-4618. [PMID: 38965103 PMCID: PMC11294390 DOI: 10.1007/s00216-024-05409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
"Purple Drank", a soft drink containing promethazine (PMZ) and codeine (COD), has gained global popularity for its hallucinogenic effects. Consuming large amounts of this combination can lead to potentially fatal events. The binding of these drugs to plasma proteins can exacerbate the issue by increasing the risk of drug interactions, side effects, and/or toxicity. Herein, the binding affinity to human serum albumin (HSA) of PMZ and its primary metabolites [N-desmethyl promethazine (DMPMZ) and promethazine sulphoxide (PMZSO)], along with COD, was investigated by high-performance affinity chromatography (HPAC) though zonal approach. PMZ and its metabolites exhibited a notable binding affinity for HSA (%b values higher than 80%), while COD exhibited a %b value of 65%. To discern the specific sites of HSA to which these compounds were bound, displacement experiments were performed using warfarin and (S)-ibuprofen as probes for sites I and II, respectively, which revealed that all analytes were bound to both sites. Molecular docking studies corroborated the experimental results, reinforcing the insights gained from the empirical data. The in silico data also suggested that competition between PMZ and its metabolites with COD can occur in both sites of HSA, but mainly in site II. As the target compounds are chiral, the enantioselectivity for HSA binding was also explored, showing that the binding for these compounds was not enantioselective.
Collapse
Affiliation(s)
- Maria Miguel Coelho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Rita Lima
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal
| | - Ana Sofia Almeida
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV, REQUIMTE, Departamento de Química E Bioquímica, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre, S/N, 4169-007, Porto, Portugal
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Carla Fernandes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal.
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116, Gandra, Portugal.
| |
Collapse
|
3
|
Sofia Almeida A, Cardoso T, Cravo S, Elizabeth Tiritan M, Remião F, Fernandes C. Binding studies of synthetic cathinones to human serum albumin by high-performance affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123836. [PMID: 37494753 DOI: 10.1016/j.jchromb.2023.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
The binding affinity to human serum albumin (HSA) of a series of fourteen synthetic cathinones, new psychoactive substances widely abused, was investigated by high-performance affinity chromatography (HPAC). Zonal elution experiments were conducted to measure the retention times of each synthetic cathinone on an HSA column, which enabled the calculation of the percentage of the drug bound. For some synthetic cathinones, enantioselectivity on HSA was found. To gather information on the HSA binding sites and better understand the chiral recognition mechanisms, enantioresolution of selected cathinones was carried out at a milligram scale through liquid chromatography (LC) with carbamate polysaccharide-based columns. This work was followed by zonal displacement chromatography using known competitors with specific binding sites on HSA, namely (S)-ibuprofen and warfarin. Competition was observed between the tested drugs and both competitors (except for pentedrone with warfarin), which is consistent with an allosteric competition involving a non-cooperative binding mechanism.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Tony Cardoso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra 4585-116, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
4
|
Zorn A, Baillie G. Phosphodiesterase 7 as a therapeutic target - Where are we now? Cell Signal 2023; 108:110689. [PMID: 37120115 DOI: 10.1016/j.cellsig.2023.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyse the intracellular second messengers cAMP and cGMP to their inactive forms 5'AMP and 5'GMP. Some members of the PDE family display specificity towards a single cyclic nucleotide messenger, and PDE4, PDE7, and PDE8 specifically hydrolyse cAMP. While the role of PDE4 and its use as a therapeutic target have been well studied, less is known about PDE7 and PDE8. This review aims to collate the present knowledge on human PDE7 and outline its potential use as a therapeutic target. Human PDE7 exists as two isoforms PDE7A and PDE7B that display different expression patterns but are predominantly found in the central nervous system, immune cells, and lymphoid tissue. As a result, PDE7 is thought to play a role in T cell activation and proliferation, inflammation, and regulate several physiological processes in the central nervous system, such as neurogenesis, synaptogenesis, and long-term memory formation. Increased expression and activity of PDE7 has been detected in several disease states, including neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's disease, autoimmune diseases such as multiple sclerosis and COPD, and several types of cancer. Early studies have shown that administration of PDE7 inhibitors may ameliorate the clinical state of these diseases. Targeting PDE7 may therefore provide a novel therapeutic strategy for targeting a broad range of disease and possibly provide a complementary alternative to inhibitors of other cAMP-selective PDEs, such as PDE4, which are severely limited by their side-effects.
Collapse
Affiliation(s)
- Alina Zorn
- University of Glasgow, 535 Wolfson Link Building, G12 8QQ Glasgow, United Kingdom.
| | - George Baillie
- University of Glasgow, 535 Wolfson Link Building, G12 8QQ Glasgow, United Kingdom.
| |
Collapse
|
5
|
Huang JX, Zhu BL, Xu JP, Zhou ZZ. Advances in the development of phosphodiesterase 7 inhibitors. Eur J Med Chem 2023; 250:115194. [PMID: 36796299 DOI: 10.1016/j.ejmech.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 7 (PDE7) specifically hydrolyzes cyclic adenosine monophosphate (cAMP), a second messenger that plays essential roles in cell signaling and physiological processes. Many PDE7 inhibitors used to investigate the role of PDE7 have displayed efficacy in the treatment of a wide range of diseases, such as asthma and central nervous system (CNS) disorders. Although PDE7 inhibitors are developed more slowly than PDE4 inhibitors, there is increasing recognition of PDE7 inhibitors as potential therapeutics for no nausea and vomiting secondary. Herein, we summarized the advances in PDE7 inhibitors over the past decade, focusing on their crystal structures, key pharmacophores, subfamily selectivity, and therapeutic potential. Hopefully, this summary will lead to a better understanding of PDE7 inhibitors and provide strategies for developing novel therapies targeting PDE7.
Collapse
Affiliation(s)
- Jia-Xi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Lin Zhu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
2-Arylpropionic Acid Pyrazolamides as Cannabinoid CB2 Receptor Inverse Agonists Endowed with Anti-Inflammatory Properties. Pharmaceuticals (Basel) 2022; 15:ph15121519. [PMID: 36558970 PMCID: PMC9781268 DOI: 10.3390/ph15121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Among the most recent proposals regarding the mechanism of action of dipyrone, the modulation of cannabinoid receptors CB1 and CB2 appears to be a promising hypothesis. In this context, the present work describes a series of five novel pyrazolamides (7-11) designed as molecular hybrids of dipyrone metabolites and NSAIDs, such as ibuprofen and flurbiprofen. Target compounds were obtained in good overall yields (50-80%) by classical amide coupling between 4-aminoantipyrine and arylacetic or arylpropionic acids, followed in some cases by N-methylation of the amide group. The compounds presented good physicochemical properties in addition to stability to chemical (pH 2 and 7.4) and enzymatic (plasma esterases) hydrolysis and showed medium to high gastrointestinal and BBB permeabilities in the PAMPA assay. When subjected to functional testing on CB1- or CB2-transfected cells, compounds demonstrated an inverse agonist profile on CB2 receptors and the further characterization of compound LASSBio-2265 (11) revealed moderate binding affinity to CB2 receptor (Ki = 16 µM) with an EC50 = 0.36 µM (Emax = 63%). LASSBio-2265 (11) (at 1, 3, and 10 mg/kg p.o.) was investigated in the formalin test in mice and a remarkable analgesic activity in the late inflammatory phase was observed, suggesting it could be promising for the treatment of pain syndromes associated with chronic inflammatory diseases.
Collapse
|
7
|
Guedes JS, Carneiro TR, Pinheiro PDSM, Fraga CA, Sant′Anna CM, Barreiro EJ, Lima LM. Methyl Effect on the Metabolism, Chemical Stability, and Permeability Profile of Bioactive N-Sulfonylhydrazones. ACS OMEGA 2022; 7:38752-38765. [PMID: 36340078 PMCID: PMC9631887 DOI: 10.1021/acsomega.2c04368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood-brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis.
Collapse
Affiliation(s)
- Jéssica
de Siqueira Guedes
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Teiliane Rodrigues Carneiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
| | - Pedro de Sena Murteira Pinheiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
| | - Carlos Alberto
Manssour Fraga
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Carlos Mauricio
R. Sant′Anna
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica 23970-000, Brazil
| | - Eliezer J. Barreiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Lídia Moreira Lima
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| |
Collapse
|
8
|
de Queiroz AC, Barbosa G, de Oliveira VRT, de Mattos Alves H, Alves MA, Carregaro V, Santana da Silva J, Barreiro EJ, Alexandre-Moreira MS, Lima LM. Pre-clinical evaluation of LASSBio-1491: From in vitro pharmacokinetic study to in vivo leishmanicidal activity. PLoS One 2022; 17:e0269447. [PMID: 35666748 PMCID: PMC9170106 DOI: 10.1371/journal.pone.0269447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/21/2022] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a public health issue. It is among the top five parasitic illnesses worldwide and is one of the most neglected diseases. The current treatment disease includes limitations of toxicity, variable efficacy, high costs and inconvenient doses and treatment schedules. LASSBio-1736 was described as antileishmanial drug-candidate to cutaneous leishmaniasis, displaying plasma stability and with no preliminary signals of hepatic or renal toxicity. In this paper, we described the in vitro pharmacokinetic study of LASSBio-1491 (a less lipophilic isostere of LASSBio-1736) and it is in vitro and in vivo leishmanicidal activities. Our results demonstrated that LASSBio-1491 has high permeability, satisfactory aqueous solubility, long plasma and microsomal half-lives and low in vitro systemic clearance, suggesting a pharmacokinetic profile suitable for its use in a single daily dose. The antileishmanial effect of LASSBio-1491 was confirmed in vitro and in vivo. It exhibited no cytotoxic effect to mammalian cells and displayed good in –vivo effect against BALB/c mice infected with Leishmania major LV39 substrain, being 3 times more efficient than glucantime.
Collapse
Affiliation(s)
- Aline Cavalcanti de Queiroz
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pharmacology and Immunity (LaFI), Sector of Physiology and Pharmacology, ICBS, UFAL, Maceió, Alagoas, Brazil
- Laboratory of Microbiology, Immunology and Parasitology, Center for Medical Sciences, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Alagoas, Brazil
| | - Gisele Barbosa
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victória Regina Thomaz de Oliveira
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hélio de Mattos Alves
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Amaral Alves
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eliezer Jesus Barreiro
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magna Suzana Alexandre-Moreira
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pharmacology and Immunity (LaFI), Sector of Physiology and Pharmacology, ICBS, UFAL, Maceió, Alagoas, Brazil
- * E-mail: (LML); (MSAM)
| | - Lidia Moreira Lima
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (LML); (MSAM)
| |
Collapse
|
9
|
Cristancho Ortiz CJ, de Freitas Silva M, Pruccoli L, Fonseca Nadur N, de Azevedo LL, Kümmerle AE, Guedes IA, Dardenne LE, Leomil Coelho LF, Guimarães MJ, da Silva FMR, Castro N, Gontijo VS, Rojas VCT, de Oliveira MK, Vilela FC, Giusti-Paiva A, Barbosa G, Lima LM, Pinheiro GB, Veras LG, Mortari MR, Tarozzi A, Viegas C. Design, synthesis, and biological evaluation of new thalidomide-donepezil hybrids as neuroprotective agents targeting cholinesterases and neuroinflammation. RSC Med Chem 2022; 13:568-584. [PMID: 35694691 PMCID: PMC9132228 DOI: 10.1039/d1md00374g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
A new series of eight multifunctional thalidomide-donepezil hybrids were synthesized based on the multi-target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti-neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the N-benzylpiperidine pharmacophore of donepezil and the isoindoline-1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC50 value of 3.15 μM, which was predicted by docking studies as interacting with the enzyme in the same orientation observed in the AChE-donepezil complex and a similar profile of interaction. Additionally, compound 3g significantly decreased iNOS and IL-1β levels by 43% and 39%, respectively, after 24 h of incubation with lipopolysaccharide. In vivo data confirmed the ability of 3g to prevent locomotor impairment and changes in feeding behavior elicited by lipopolysaccharide. Moreover, the PAMPA assay evidenced adequate blood-brain barrier and gastrointestinal tract permeabilities with an Fa value of 69.8%. Altogether, these biological data suggest that compound 3g can treat the inflammatory process and oxidative stress resulting from the overexpression of iNOS and therefore the increase in reactive nitrogen species, and regulate the release of pro-inflammatory cytokines such as IL-1β. In this regard, compound PQM-189 (3g) was revealed to be a promising neuroprotective and anti-neuroinflammatory agent with an innovative thalidomide-donepezil-based hybrid molecular architecture.
Collapse
Affiliation(s)
- Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| | - Matheus de Freitas Silva
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies, University of Bologna'Alma Mater Studiorum' 237 Corso d'Augusto St. 47921 Rimini Italy
| | - Nathália Fonseca Nadur
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Seropédica RJ Brazil
| | - Luciana Luíza de Azevedo
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Seropédica RJ Brazil
| | - Arthur Eugen Kümmerle
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Seropédica RJ Brazil
| | | | | | - Luiz Felipe Leomil Coelho
- Institute of Biomedical Sciences, Federal University of Alfenas 700 Gabriel Monteiro da Silva St Alfenas MG 37130-840 Brazil
| | - Marcos J Guimarães
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Fernanda M R da Silva
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Newton Castro
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Vanessa Silva Gontijo
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| | - Viviana C T Rojas
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Merelym Ketterym de Oliveira
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Fabiana Cardoso Vilela
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Alexandre Giusti-Paiva
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Gisele Barbosa
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Health Sciences Center, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Lídia Moreira Lima
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Health Sciences Center, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Gabriela Beserra Pinheiro
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasília Brasilia DF 70910-900 Brazil
| | - Letícia Germino Veras
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasília Brasilia DF 70910-900 Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasília Brasilia DF 70910-900 Brazil
| | - Andrea Tarozzi
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil .,Department for Life Quality Studies, University of Bologna'Alma Mater Studiorum' 237 Corso d'Augusto St. 47921 Rimini Italy
| | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| |
Collapse
|
10
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Phosphodiesterase 7(PDE7): A unique drug target for central nervous system diseases. Neuropharmacology 2021; 196:108694. [PMID: 34245775 DOI: 10.1016/j.neuropharm.2021.108694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase 7 (PDE7), one of the 11 phosphodiesterase (PDE) families, specifically hydrolyzes cyclic 3', 5'-adenosine monophosphate (cAMP). PDE7 is involved in many important functional processes in physiology and pathology by regulating intracellular cAMP signaling. Studies have demonstrated that PDE7 is widely expressed in the central nervous system (CNS) and potentially related to pathogenesis of many CNS diseases. Here, we summarized the classification and distribution of PDE7 in the brain and its functional roles in the mediation of CNS diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), and schizophrenia. It is expected that the findings collected here will not only lead to a better understanding of the mechanisms by which PDE7 mediates CNS function and diseases, but also aid in the development of novel drugs targeting PDE7 for treatment of CNS diseases.
Collapse
|
13
|
Increasing Brain Permeability of PHA-767491, a Cell Division Cycle 7 Kinase Inhibitor, with Biodegradable Polymeric Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13020180. [PMID: 33525757 PMCID: PMC7912371 DOI: 10.3390/pharmaceutics13020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
A potent cell division cycle 7 (CDC7) kinase inhibitor, known as PHA-767491, has been described to reduce the transactive response DNA binding protein of 43 KDa (TDP-43) phosphorylation in vitro and in vivo, which is one of the main proteins found to aggregate and accumulate in the cytoplasm of motoneurons in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. However, the main drawback of this compound is its low permeability to the central nervous system (CNS), limiting its use for the treatment of neurological conditions. In this context, the use of drug delivery systems like nanocarriers has become an interesting approach to improve drug release to the CNS. In this study, we prepared and characterized biodegradable nanoparticles in order to encapsulate PHA-767491 and improve its permeability to the CNS. Our results demonstrate that poly (lactic-co-glycolic acid) (PLGA) nanoparticles with an average radius between 145 and 155 nm could be used to entrap PHA-767491 and enhance the permeability of this compound through the blood–brain barrier (BBB), becoming a promising candidate for the treatment of TDP-43 proteinopathies such as ALS.
Collapse
|
14
|
Synthesis and biological evaluation of novel 1,3,4-thiadiazole derivatives as possible anticancer agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:499-513. [PMID: 32412436 DOI: 10.2478/acph-2020-0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
The synthesis of new N-(5-substituted-1,3,4-thiadiazol-2-yl)-2-[(5-(substituted amino)-1,3,4-thiadiazol-2-yl)thio]acetamide derivatives and investigation of their anticancer activities were the aims of this work. All the new compounds' structures were elucidated by elemental analyses, IR, 1H NMR, 13C NMR and MS spectral data. Anticancer activity studies of the compounds were evaluated against MCF-7 and A549 tumor cell lines. In addition, with the purpose of determining the selectivity of cytotoxic activities, the most active compound was screened against a noncancer NIH3T3 cell line (mouse embryonic fibroblast cells). Among the tested compounds, compound 4y (N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-((5-(p-tolylamino)-1,3,4-thiadiazol-2-yl)thio)acetamide), showed promising cytotoxic activity against MCF7 cancer cell with an IC 50value of 0.084 ± 0.020 mmol L-1 and against A549 cancer cell with IC 50 value of 0.034 ± 0.008 mmol L-1, compared with cisplatin. The aromatase inhibitory activity was evaluated for compound 4y on MCF-7 cell line showing promising activity with IC50 of 0.062 ± 0.004 mmol L-1.
Collapse
|
15
|
Sciú ML, Sebastián-Pérez V, Martinez-Gonzalez L, Benitez R, Perez DI, Pérez C, Campillo NE, Martinez A, Moyano EL. Computer-aided molecular design of pyrazolotriazines targeting glycogen synthase kinase 3. J Enzyme Inhib Med Chem 2018; 34:87-96. [PMID: 30362380 PMCID: PMC6211276 DOI: 10.1080/14756366.2018.1530223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Numerous studies have highlighted the implications of the glycogen synthase kinase 3 (GSK-3) in several processes associated with Alzheimer's disease (AD). Therefore, GSK-3 has become a crucial therapeutic target for the treatment of this neurodegenerative disorder. Hereby, we report the design and multistep synthesis of ethyl 4-oxo-pyrazolo[4,3-d][1-3]triazine-7-carboxylates and their biological evaluation as GSK-3 inhibitors. Molecular modelling studies allow us to develop this new scaffold optimising the chemical structure. Potential binding mode determination in the enzyme and the analysis of the key features in the catalytic site are also described. Furthermore, the ability of pyrazolotriazinones to cross the blood-brain barrier (BBB) was evaluated by passive diffusion and those who showed great GSK-3 inhibition and permeation to the central nervous system (CNS) showed neuroprotective properties against tau hyperphosphorylation in a cell-based model. These new brain permeable pyrazolotriazinones may be used for key in vivo studies and may be considered as new leads for further optimisation for the treatment of AD.
Collapse
Affiliation(s)
- M Lourdes Sciú
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain.,b INFIQC- Department of Organic Chemistry, School of Chemical Sciences , National University of Córdoba , Córdoba , Argentine
| | - Victor Sebastián-Pérez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Loreto Martinez-Gonzalez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Rocio Benitez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Daniel I Perez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | | | - Nuria E Campillo
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Ana Martinez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - E Laura Moyano
- b INFIQC- Department of Organic Chemistry, School of Chemical Sciences , National University of Córdoba , Córdoba , Argentine
| |
Collapse
|
16
|
Zhang W, Zhang X, Ma X, Zhang W. One-pot synthesis of dihydroquinazolinethione-based polycyclic system. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Comparative Interactions of Dihydroquinazolin Derivatives with Human Serum Albumin Observed via Multiple Spectroscopy. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Can Cyclic Nucleotide Phosphodiesterase Inhibitors Be Drugs for Parkinson's Disease? Mol Neurobiol 2017; 55:822-834. [PMID: 28062949 DOI: 10.1007/s12035-016-0355-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) has no known cure; available therapies are only capable of offering temporary, symptomatic relief to the patients. Varied therapeutic strategies that are clinically used for PD are pharmacological therapies including dopamine replacement therapies (with or without adjuvant), postsynaptic dopamine receptor stimulation, dopamine catabolism inhibitors and also anticholinergics. Surgical therapies like deep brain stimulation and ablative surgical techniques are also employed. Phosphodiesterases (PDEs) are enzymes that degrade the phosphodiester bond in the second messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). A number of PDE families are highly expressed in the striatum including PDE1-4, PDE7, PDE9 and PDE10. There are growing evidences to suggest that these enzymes play a critical role in modulating cAMP-mediated dopamine signalling at the postsynaptic region. Therefore, it is clear that PDEs, given the broad range of subtypes and their varied tissue- and region-specific distributions, will be able to provide a range of possibilities as drug targets. There is no phosphodiesterase inhibitor currently approved for use against PD. The development of small molecule inhibitors against cyclic nucleotide PDE is a particularly hot area of investigation, and a lot of research and development is geared in this direction with major players in the pharmaceutical industry investing heavily in developing such potential drug entities. This review, while critically assessing the existing body of literature on brain PDEs with particular interest in the striatum in the context of motor function regulation, indicates it is certainly likely that PDE inhibitors could be developed as therapeutic agents against PD.
Collapse
|
19
|
Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Am J Cancer Res 2016; 6:571-93. [PMID: 26941849 PMCID: PMC4775866 DOI: 10.7150/thno.14334] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed.
Collapse
|
20
|
Ding Q, Yao S, Yang Q, Sang X, Yu W, Peng Y. A Straightforward One-Pot Synthesis of 3,4-Dihydroquinazoline-2(1H)-thione Derivatives in Aqueous Organic Solvent. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang Jiangxi 330022 China
| | - Shujuan Yao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang Jiangxi 330022 China
| | - Qin Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang Jiangxi 330022 China
| | - Xiaoyan Sang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang Jiangxi 330022 China
| | - Weihua Yu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang Jiangxi 330022 China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang Jiangxi 330022 China
| |
Collapse
|
21
|
Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014; 87:409-32. [PMID: 24686194 DOI: 10.1016/j.ejpb.2014.03.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Kovalenko SI, Nosulenko IS, Voskoboynik AY, Berest GG, Antypenko LN, Antypenko AN, Katsev AM. Substituted 2-[(2-Oxo-2H-[1,2,4]triazino [2,3-c]quinazolin-6-yl)thio]acetamides with Thiazole and Thiadiazole Fragments: Synthesis, Physicochemical Properties, Cytotoxicity, and Anticancer Activity. Sci Pharm 2012; 80:837-65. [PMID: 23264935 PMCID: PMC3528059 DOI: 10.3797/scipharm.1208-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022] Open
Abstract
The series of novel N-R-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]acetamides with thiazole and thiadiazole fragments in a molecule were obtained by alkylation of potassium salts 1.1–1.4 by N-hetaryl-2-chloroacetamides and by aminolysis of activated acids 2.1–2.4 with N,N’-carbonyldiimidazole (CDI). The structures of compounds were determined by IR, 1H NMR, MS, and EI-MS analysis. The results of cytotoxicity evaluated by the bioluminescence inhibition of bacterium Photobacterium leiognathi, Sh1 showed that the compounds have considerable cytotoxicity. The synthesized compounds were tested for anticancer activity in NCI against 60 cell lines. Among the highly active compounds 3.1, 3.2, and 6.5, 2-[(3-methyl-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]-N-(1,3-thiazol-2-yl)acetamide (3.1) was found to be the most active anticancer agent against the cell lines of colon cancer (GI50 at 0.41–0.69 μM), melanoma (GI50 0.48–13.50 μM), and ovarian cancer (GI50 0.25–5.01 μM). The structure-activity relationship (SAR-analysis) was discussed.
Collapse
|
23
|
Lipina TV, Palomo V, Gil C, Martinez A, Roder JC. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology 2012; 64:205-14. [PMID: 22749842 DOI: 10.1016/j.neuropharm.2012.06.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Cognitive deficit is a core of schizophrenia and it is not effectively treated by the available antipsychotic drugs, hence new and more effective therapy is needed. Schizophrenia is considered as a pathway disorder where Disrupted-In-Schizophrenia-1 (DISC1) is important molecular player that regulates multiple cellular cascades. We recently reported synergistic action between phosphodiesterase-4 (PDE4) and glycogen synthase kinase-3 (GSK-3) as DISC1 interacting proteins. In the current study we characterized behavioural effects of a newly developed compound, VP1.15 that inhibits both PDE7 and GSK-3 with main focus on its antipsychotic and cognitive capacities. VP1.15 reduced ambulation in C57BL/6J mice in a dose-dependent manner (7.5 mg/kg and 3 mg/kg, respectively) and, hence, lower dose was chosen for the further analysis. VP1.1.5 facilitated pre-pulse inhibition (PPI), reversed amphetamine- but not MK-801-induced PPI deficit. The drug was able to ameliorate the disrupted latent inhibition (LI) induced by the increased number of conditioning trials and reversed amphetamine-induced LI deficit, supporting further its antipsychotic effects. The drug also significantly improved episodic memory in the spatial object recognition test, facilitated working memory in Y-maze and enhanced cued fear memory, but had no effect on executive function in the Puzzle box and contextual fear conditioning. Taken together, VP1.15 elicited antipsychotic effects and also facilitated cognitive domains in mice, suggesting that multitarget drugs, affecting molecular substrates from the same pathway, perhaps could be antipsychotics of new-generation that open a new possibilities in drug discoveries. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | | | |
Collapse
|
24
|
Palomo V, Perez DI, Perez C, Morales-Garcia JA, Soteras I, Alonso-Gil S, Encinas A, Castro A, Campillo NE, Perez-Castillo A, Gil C, Martinez A. 5-Imino-1,2,4-Thiadiazoles: First Small Molecules As Substrate Competitive Inhibitors of Glycogen Synthase Kinase 3. J Med Chem 2012; 55:1645-61. [DOI: 10.1021/jm201463v] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Valle Palomo
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel I. Perez
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Concepcion Perez
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jose A. Morales-Garcia
- Instituto de Investigaciones
Biomédicas (CSIC-UAM) and Centro de Investigación Biomédica
en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Arturo Duperier
4, 28029 Madrid, Spain
| | - Ignacio Soteras
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones
Biomédicas (CSIC-UAM) and Centro de Investigación Biomédica
en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Arturo Duperier
4, 28029 Madrid, Spain
| | - Arantxa Encinas
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Castro
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nuria E. Campillo
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones
Biomédicas (CSIC-UAM) and Centro de Investigación Biomédica
en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Arturo Duperier
4, 28029 Madrid, Spain
| | - Carmen Gil
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Martinez
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|