1
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Chai D, Qiu D, Shi X, Ding J, Jiang N, Zhang Z, Wang J, Yang J, Xiao P, Wang G, Zheng J. Dual-targeting vaccine of FGL1/CAIX exhibits potent anti-tumor activity by activating DC-mediated multi-functional CD8 T cell immunity. Mol Ther Oncolytics 2022; 24:1-13. [PMID: 34977338 PMCID: PMC8688948 DOI: 10.1016/j.omto.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor DNA vaccine as an effective therapeutic approach can induce systemic immunity against malignant tumors, but its therapeutic effect is still not satisfactory in advanced renal cancer. Herein, a novel DNA vaccine containing dual antigens of fibrinogen-like protein 1 (FGL1) and carbonic anhydrase IX (CAIX) was developed and intramuscularly delivered by PLGA/PEI nanoparticles for renal cancer therapy. Compared with PLGA/PEI-pCAIX immunization, PLGA/PEI-pFGL1/pCAIX co-immunization significantly inhibited the subcutaneous tumor growth and promoted the differentiation and maturation of CD11c+ DCs and CD11c+CD11b+ DCs subset. Likewise, the increased capabilities of CD8 T cell proliferation, CTL responses, and multi-functional CD8+ T cell immune responses were observed in PLGA/PEI-pFGL1/pCAIX vaccine group. Interestingly, depletion of CD8+ T cells by using CD8 mAb resulted in a loss of anti-tumor function of PLGA/PEI-pFGL1/pCAIX vaccine, suggesting that the anti-tumor activity of the vaccine was dependent on CD8+ T cell immune responses. Furthermore, PLGA/PEI-pFGL1/pCAIX co-immunization also suppressed the lung metastasis of tumor mice by enhancing the multi-functional CD8+ T cell responses. Therefore, these results indicate that PLGA/PEI-pFGL1/pCAIX vaccine could provide an effective protective effect for renal cancer by enhanced DC-mediated multi-functional CD8+ T cell immune responses. This vaccine strategy offers a potential approach for solid or metastatic tumor treatment.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoqing Shi
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengli Xiao
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Corresponding author Gang Wang, PhD, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China.
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Corresponding author Junnian Zheng, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
3
|
Ren S, Guo L, Wang C, Ru J, Yang Y, Wang Y, Sun C, Cui H, Zhao X, Guo H. Construction of an Effective Delivery System for DNA Vaccines Using Biodegradable Polylactic Acid Based Microspheres. J Biomed Nanotechnol 2021; 17:971-980. [PMID: 34082882 DOI: 10.1166/jbn.2021.3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanotechnology represents a new impetus for biomedical research applications, especially using nanotechnology to formulate microspheres or nanospheres based delivery system for treatment of infectious diseases in animals. In this work, polylactic acid (PLA) microspheres with an average size of 156 nm were prepared by combining emulsion polymerization coupled with emulsion-solvent evaporation. Coating with polyethylenimine (PEI) polymers increased the surface charges of the resulting PLA/PEI microspheres, thus enabled plasmid DNA to adsorb tightly to the microspheres. As expected, the plasmid DNA was successfully transferred into the pig kidney-15 cells with high transfection efficiency. In addition, the protection rate of PLA/PEI microspheres loaded with DNA vaccine against foot-and-mouth disease in guinea pigs reached 87.5%, which was significantly higher than that of the pure DNA vaccine group. These results indicated that PLA/PEI microspheres were expected to be an effective delivery system for DNA vaccines.
Collapse
Affiliation(s)
- Shuaikai Ren
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Liang Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jiaxi Ru
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China
| | - Yunqi Yang
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Huichen Guo
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, P. R. China
| |
Collapse
|
4
|
Tayama M, Inose T, Yamauchi N, Nakashima K, Tokunaga M, Kato C, Gonda K, Kobayashi Y. Fabrication and fluorescence imaging properties of indocyanine green-loaded poly(lactic-co-glycolic acid) nanoparticles. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04844-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Cavalcante RS, Ishikawa U, Silva ES, Silva-Júnior AA, Araújo AA, Cruz LJ, Chan AB, de Araújo Júnior RF. STAT3/NF-κB signalling disruption in M2 tumour-associated macrophages is a major target of PLGA nanocarriers/PD-L1 antibody immunomodulatory therapy in breast cancer. Br J Pharmacol 2021; 178:2284-2304. [PMID: 33434950 PMCID: PMC8251773 DOI: 10.1111/bph.15373] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Inflammation associated with the tumour microenvironment (TME) is critical for cancer development, and immunotherapeutic strategies modulating the immune response in cancer have been crucial. In this study, a methotrexate‐loaded (MTX) poly(lactic‐co‐glycolic acid)‐based (PLGA) drug nanocarrier covered with polyethyleneimine (Pei) and hyaluronic acid (HA) was developed and combined with an PD‐L1 antibody to investigate anti‐cancer and immunomodulatory effects in breast cancer TME. Experimental Approach Naked or HA‐coated PeiPLGA‐MTX nanoparticles (NPs) were assessed on 4T1 breast cancer cells grown in culture and in a mouse model of orthotopic tumour growth. Tumours were evaluated by qRT‐PCR and immunohistochemistry. The cell death profile and cell migration were analysed in vitro in 4T1 cells. Polarization of murine macrophages (RAW cells) was also carried out. Key Results Naked or HA‐coated PeiPLGA‐MTX NPs used alone or combined with PD‐L1 antibody modified the tumourigenic course by TME immunomodulation, leading to reduction of primary tumour size and metastases. STAT3 and NF‐κB were the major genes downregulated by NPs. In tumor‐associated macrophages (TAM) such regulation switched M2 phenotype (CD163) towards M1 (CD68) and reduced levels of IL‐10, TGF‐β and CCL22. Moreover, malignant cells showed overexpression of FADD, APAF‐1, caspase‐3 and E‐cadherin, and decreased expression of Bcl‐2, MDR‐1, survivin, vimentin, CXCR4 and PD‐L1 after treatment with NPs. Conclusion and Implications NPs‐mediated STAT3/NF‐κB signalling axis suppression disrupted crosstalk between immune and malignant cells, reducing immunosuppression and critical pro‐tumour events. These findings provide a promising therapeutic approach capable of guiding the immune TME to suppress the development of breast cancer.
Collapse
Affiliation(s)
- Rômulo S Cavalcante
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Uta Ishikawa
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Emanuell S Silva
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Arnóbio A Silva-Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aurigena A Araújo
- Postgraduate Program in Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan B Chan
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Biotechnology Company, Percuros B. V, Leiden, The Netherlands
| | - Raimundo F de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
7
|
Souci L, Jaunet H, Le Diguerher G, Guionnet JM, Béven V, Paboeuf F, Montier T, Dory D. Intranasal inoculations of naked or PLGA-PEI nanovectored DNA vaccine induce systemic and mucosal antibodies in pigs: A feasibility study. Res Vet Sci 2020; 132:194-201. [PMID: 32619800 DOI: 10.1016/j.rvsc.2020.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/20/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Mucosa are the routes of entry of most pathogens into animals' organisms. Reducing the important global burden of mucosal infectious diseases in livestock animals is required in the field of veterinary public health. For veterinary respiratory pathogens, one possible strategy is the development of intranasal (IN) DNA vaccination. The aim of this study was to assess the feasibility of IN DNA vaccination in pigs, an important species in livestock production industry, and a source of zoonotic diseases. To achieve this goal, we used a DNA vaccine against pseudorabies virus (PrV) encoding the immunogenic glycoprotein B (pcDNA3-gB plasmid). When pigs were inoculated with the naked DNA vaccine through the IN route, PrV-specific IgG and IgA type antibodies were detected in porcine sera. Interestingly, mucosal salivary IgA antibodies against PrV were also detected, at similar levels to those measured following intramuscular injection (positive controls). Furthermore, the IN delivery of pcDNA3-gB combined with PLGA-PEI nanoparticles resulted in similar levels of antibodies but was associated with an increase in the duration of detection of mucosal IgA for 2 out of 3 pigs. Our results suggest that there is room to improve the efficacy of IN DNA vaccination in pigs through optimization of IN inoculations, for example by using nanoparticles such as PLGA-PEI. Further studies will be dedicated to optimizing and testing the protective potential of IN DNA vaccination procedures against PrV.
Collapse
Affiliation(s)
- Laurent Souci
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Viral Genetics and Biosafety Unit, Ploufragan, France
| | | | - Gérald Le Diguerher
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Pig Production and Experimental Unit, Ploufragan, France
| | - Jean-Marie Guionnet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Pig Production and Experimental Unit, Ploufragan, France
| | - Véronique Béven
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Viral Genetics and Biosafety Unit, Ploufragan, France
| | - Frédéric Paboeuf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Pig Production and Experimental Unit, Ploufragan, France
| | - Tristan Montier
- SynNanoVect platform - UMR INSERM 1078, University of Brest, Brest, France
| | - Daniel Dory
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Viral Genetics and Biosafety Unit, Ploufragan, France.
| |
Collapse
|
8
|
Proulx J, Joshi C, Vijayaraghavalu S, Saraswathy M, Labhasetwar V, Ghorpade A, Borgmann K. Arginine-Modified Polymers Facilitate Poly (Lactide-Co-Glycolide)-Based Nanoparticle Gene Delivery to Primary Human Astrocytes. Int J Nanomedicine 2020; 15:3639-3647. [PMID: 32547019 PMCID: PMC7250304 DOI: 10.2147/ijn.s250865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Astrocyte dysfunction is a hallmark of central nervous system injury or infection. As a primary contributor to neurodegeneration, astrocytes are an ideal therapeutic target to combat neurodegenerative conditions. Gene therapy has arisen as an innovative technique that provides excellent prospect for disease intervention. Poly (lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) are polymeric nanoparticles commonly used in gene delivery, each manifesting their own set of advantages and disadvantages. As a clinically approved polymer by the Federal Drug Administration, well characterized for its biodegradability and biocompatibility, PLGA-based nanoparticles (PLGA-NPs) are appealing for translational gene delivery systems. However, our investigations revealed PLGA-NPs were ineffective at facilitating exogenous gene expression in primary human astrocytes, despite their success in other cell lines. Furthermore, PEI polymers illustrate high delivery efficiency but induce cytotoxicity. The purpose of this study is to develop viable and biocompatible NPsystem for astrocyte-targeted gene therapy. MATERIALS AND METHODS Successful gene expression by PLGA-NPs alone or in combination with arginine-modified PEI polymers (AnPn) was assessed by a luciferase reporter gene encapsulated in PLGA-NPs. Cytoplasmic release and nuclear localization of DNA were investigated using fluorescent confocal imaging with YOYO-labeled plasmid DNA (pDNA). NP-mediated cytotoxicity was assessed via lactate dehydrogenase in primary human astrocytes and neurons. RESULTS Confocal imaging of YOYO-labeled pDNA confirmed PLGA-NPs delivered pDNA to the cytoplasm in a dose and time-dependent manner. However, co-staining revealed pDNA delivered by PLGA-NPs did not localize to the nucleus. The addition of AnPn significantly improved nuclear localization of pDNA and successfully achieved gene expression in primary human astrocytes. Moreover, these formulations were biocompatible with both astrocytes and neurons. CONCLUSION By co-transfecting two polymeric NPs, we developed an improved system for gene delivery and expression in primary human astrocytes. These findings provide a basis for a biocompatible and clinically translatable method to regulate astrocyte function during neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Chaitanya Joshi
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manju Saraswathy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX76107, USA,Correspondence: Kathleen Borgmann Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX76107, USATel +1 817 735-0339Fax +1 817 735-2610 Email
| |
Collapse
|
9
|
Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018; 13:1051-1066. [PMID: 29790803 PMCID: PMC6219432 DOI: 10.2217/nnm-2017-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
AIM Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype. Since no targeted therapy is available, gene-directed enzyme prodrug therapy (GDEPT) could be an attractive strategy for treating TNBC. MATERIALS & METHODS Polyethylene glycol (PEG)ylated-poly(lactic-co-glycolic acid)/polyethyleneimine nanoparticles (PLGA/PEI NPs) were synthesized and complexed with TK-NTR fusion gene. Ultrasound (US) and microbubble (MB) mediated sonoporation was used for efficient delivery of the TK-NTR-DNA-NP complex to TNBC tumor in vivo for cancer therapy. Therapeutic effect was evaluated by treating TNBC cells in vitro and tumor xenograft in vivo by using prodrugs ganciclovir (GCV) and CB1954. RESULTS TNBC cells treated with GCV/CB1954 prodrugs after transfection of TK-NTR-DNA by PEGylated-PLGA/PEI NP resulted in high apoptotic-index. US-MB image-guided delivery of TK-NTR-DNA-NP complex displayed significant expression level of TK-NTR protein and showed tumor reduction when treated with GCV/CB1954 prodrugs in TNBC xenograft in vivo. CONCLUSION US-MB image-guided delivery of TK-NTR gene by PEGylated-PLGA/PEI NPs could be a potential prodrug therapy for TNBC in the clinic.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Thillai V Sekar
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Kira Foygel
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
10
|
Du L, Yu Z, Pang F, Xu X, Mao A, Yuan W, He K, Li B. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses. Front Cell Infect Microbiol 2018; 8:7. [PMID: 29423381 PMCID: PMC5788884 DOI: 10.3389/fcimb.2018.00007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system.
Collapse
Affiliation(s)
- Luping Du
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Institute of Animal Immunity Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhengyu Yu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Fengjiao Pang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Xiangwei Xu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Wanzhe Yuan
- College of Animal Medicine, Agricultural University of Hebei, Baoding, China
| | - Kongwang He
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
11
|
Seok H, Noh JY, Lee DY, Kim SJ, Song CS, Kim YC. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J Control Release 2017; 265:66-74. [DOI: 10.1016/j.jconrel.2017.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
|
12
|
Gómez-Sequeda N, Torres R, Ortiz C. Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid). Nanotechnol Sci Appl 2017; 10:95-104. [PMID: 28572725 PMCID: PMC5441665 DOI: 10.2147/nsa.s96018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) loaded with fluconazole (FLZ) and FLZ-NPs coated with the cationic polymer polyethylenimine (PEI) (FLZ-NP-PEI) were synthetized in order to improve antimycotic activity against four strains of Candida spp. of clinical relevance. FLZ-NPs and FLZ-NP-PEI were synthesized by double emulsion solvent-diffusion (DES-D) and characterized. Minimum inhibitory concentration (MIC50) and minimum fungicide concentration (MFC) were determined in vitro by culturing Candida strains in the presence of these nanocompounds. FLZ-NPs were spherical in shape with hydrodynamic sizes of ~222 nm and surface charge of -11.6 mV. The surface charges of these NPs were successfully modified using PEI (FLZ-NP-PEI) with mean hydrodynamic sizes of 281 nm and surface charge of 23.5 mV. The efficiency of encapsulation (~53%) and a quick release of FLZ (≥90% after 3 h) were obtained. Cytotoxicity assay showed a good cell viability for FLZ-NPs (≥86%), and PEI-modified NPs presented a decrease in cell viability (~38%). FLZ-NPs showed an increasing antifungal activity of FLZ for sensitive (Candida parapsilosis ATCC22019 and Candida albicans ATCC10231, MIC50 =0.5 and 0.1 µg/mL, respectively) and resistant strains (Candida glabrata EMLM14 and Candida krusei ATCC6258, MIC50 =0.1 and 0.5 µg/mL, respectively). FLZ-NP-PEI showed fungicidal activity even against C. glabrata and C. krusei (MFC =4 and 8 µg/mL, respectively). MIC50 values showed best results for FLZ-NPs and FLZ-NP-PEI. Nevertheless, only FLZ-NP-PEI displayed fungicidal activity against the studied strains.
Collapse
Affiliation(s)
| | | | - Claudia Ortiz
- School of Microbiology, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
13
|
Tasharrofi N, Kouhkan F, Soleimani M, Soheili ZS, Atyabi F, Akbari Javar H, Abedin Dorkoosh F. Efficient gene delivery to primary human retinal pigment epithelial cells: The innate and acquired properties of vectors. Int J Pharm 2017; 518:66-79. [PMID: 28017770 DOI: 10.1016/j.ijpharm.2016.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 11/25/2022]
Abstract
The purpose of this study is designing non-viral gene delivery vectors for transfection of the primary human retinal pigment epithelial cells (RPE). In the design process of gene delivery vectors, considering physicochemical properties of vectors alone does not seem to be enough since they interact with constituents of the surrounding environment and hence gain new characteristics. Moreover, due to these interactions, their cargo can be released untimely or undergo degradation before reaching to the target cells. Further, the characteristics of cells itself can also influence the transfection efficacy. For example, the non-dividing property of RPE cells can impede the transfection efficiency which in most studies was ignored by using immortal cell lines. In this study, vectors with different characteristics differing in mixing orders of pDNA, PEI polymer, and PLGA/PEI or PLGA nanoparticles were prepared and characterized. Then, their characteristics and efficacy in gene delivery to RPE cells in the presence of vitreous or fetal bovine serum (FBS) were evaluated. All formulations showed no cytotoxicity and were able to protect pDNA from premature release and degradation in extracellular media. Also, the adsorption of vitreous or serum proteins onto the surface of vectors changed their properties and hence cellular uptake and transfection efficacy.
Collapse
Affiliation(s)
- Nooshin Tasharrofi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Zahra-Soheila Soheili
- Institute of Medical Biotechnology, Faculty of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
14
|
Lü JM, Liang Z, Wang X, Gu J, Yao Q, Chen C. New polymer of lactic-co-glycolic acid-modified polyethylenimine for nucleic acid delivery. Nanomedicine (Lond) 2016; 11:1971-91. [PMID: 27456396 DOI: 10.2217/nnm-2016-0128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop an improved delivery system for nucleic acids. MATERIALS & METHODS We designed, synthesized and characterized a new polymer of lactic-co-glycolic acid-modified polyethylenimine (LGA-PEI). Functions of LGA-PEI polymer were determined. RESULTS The new LGA-PEI polymer spontaneously formed nanoparticles (NPs) with DNA or RNA, and showed higher DNA or RNA loading efficiency, higher or comparable transfection efficacy, and lower cytotoxicity in several cell types including PANC-1, Jurkat and HEK293 cells, when compared with lipofectamine 2000, branched or linear PEI (25 kDa). In nude mouse models, LGA-PEI showed higher delivery efficiency of plasmid DNA or miRNA mimic into pancreatic and ovarian xenograft tumors. LGA-PEI/DNA NPs showed much lower toxicity than control PEI NPs in mouse models. CONCLUSION The new LGA-PEI polymer is a safer and more effective system to deliver DNA or RNA than PEI.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Zhengdong Liang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Xiaoxiao Wang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Jianhua Gu
- AFM/SEM Core Facility, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Qizhi Yao
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| |
Collapse
|
15
|
Yu K, Zhao J, Yu C, Sun F, Liu Y, Zhang Y, Lee RJ, Teng L, Li Y. Role of Four Different Kinds of Polyethylenimines (PEIs) in Preparation of Polymeric Lipid Nanoparticles and Their Anticancer Activity Study. J Cancer 2016; 7:872-82. [PMID: 27162547 PMCID: PMC4860805 DOI: 10.7150/jca.13855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/22/2016] [Indexed: 01/14/2023] Open
Abstract
A series of polyethylenimines-coated poly(d,l-lactide-co-glycolide)/lipid nanoparticles (PPLs) were fabricated for delivering paclitaxel via a simple nano-precipitation method. Four kinds of polyethylenimines (PEIs) (800 Da-, 2000 Da- and 25 kDa-branched PEIs, and 25 kDa-linear PEI) were selected as a polymeric coating for the nanoparticles. The PPLs were evaluated for their cytotoxic effects towards tumor cells. The nanoparticles were uniform spheres with particle sizes ranging from 135.8 to 535.9 nm and zeta potentials between 13.5 and 45.4 mV. The content of lipids and PEIs were optimized at lipids content from 0 to 40% and PEI content from 2.5% to 10%, respectively. At 20% lipid content and 5% PEI content, the formulation was found to be optimal. In vitro experiments showed that 25 kDa-branched PEI coated PLGA/lipid nanoparticles (25k-bPPLs) had higher cytotoxicity than other PPLs in several cancer cell lines. Meanwhile, 25k-bPPLs maintained high cellular delivery efficiency without excessive toxicity, which was confirmed by confocal microscopy and flow cytometry analyses. Furthermore, 25k-bPPLs displayed excellent colloidal stability in pH 7.4 PBS. In conclusion, 25k-bPPLs are promising drug delivery vehicles for cancer therapeutics.
Collapse
Affiliation(s)
- Kongtong Yu
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jinlong Zhao
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Changhui Yu
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Fengying Sun
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Yan Liu
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Yang Zhang
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Robert J Lee
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China.; 2. College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Lesheng Teng
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China.; 3. State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai 264000, China
| | - Youxin Li
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China.; 3. State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai 264000, China
| |
Collapse
|
16
|
Cherng JY, Lin CH. Covalent attachment of an influenza hemagglutinin-derived peptide to urethane-based cationic polymers affects their transfection efficiency in DNA delivery and their course in cell entry. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Du L, Li B, Xu X, Sun B, Pang F, Wen L, Huang K, He K. Adsorption of a porcine reproductive and respiratory syndrome virus DNA vaccine candidate onto biodegradable nanoparticles improves immunogenicity in mice. Arch Virol 2015; 160:1543-7. [DOI: 10.1007/s00705-015-2396-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
|
18
|
Egusquiaguirre SP, Manguán-García C, Pintado-Berninches L, Iarriccio L, Carbajo D, Albericio F, Royo M, Pedraz JL, Hernández RM, Perona R, Igartua M. Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: A promising approach for the treatment of defective telomerase disorders. Eur J Pharm Biopharm 2015; 91:91-102. [DOI: 10.1016/j.ejpb.2015.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
|
19
|
Yoneki N, Takami T, Ito T, Anzai R, Fukuda K, Kinoshita K, Sonotaki S, Murakami Y. One-pot facile preparation of PEG-modified PLGA nanoparticles: Effects of PEG and PLGA on release properties of the particles. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Ediriwickrema A, Zhou J, Deng Y, Saltzman WM. Multi-layered nanoparticles for combination gene and drug delivery to tumors. Biomaterials 2014; 35:9343-54. [PMID: 25112935 DOI: 10.1016/j.biomaterials.2014.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
Abstract
Drug resistance and toxicity are major obstacles in cancer chemotherapy. Combination therapies can overcome resistance, and synergies can minimize dosing. Polymer nanocarriers are interesting vehicles for cancer therapeutics for their delivery and tumor targeting abilities. We synthesized a multi-layered polymer nanoparticle (MLNP), comprising of poly(lactic-co-glycolic acid) with surface polyethyleneimine and functional peptides, for targeted drug and gene delivery. We confirmed the particle's ability to inhibit tumor growth through synergistic action of the drug and gene product. MLNPs achieved transfection levels similar to lipofectamine, while maintaining minimal cytotoxicity. The particles delivered camptothecin (CPT), and plasmid encoding TNF related apoptosis inducing ligand (pTRAIL) (CT MLNPs), and synergistically inhibited growth of multiple cancer cells in vitro. The synergy of co-delivering CPT and pTRAIL via CT MLNPs was confirmed using the Chou-Talalay method: the combination index (CI) values at 50% inhibition ranged between 0.31 and 0.53 for all cell lines. Further, co-delivery with MLNPs resulted in a 3.1-15 fold reduction in CPT and 4.7-8.0 fold reduction in pTRAIL dosing. CT MLNPs obtained significant HCT116 growth inhibition in vivo compared to monotherapy. These results support our hypothesis that MLNPs can deliver both small molecules and genetic agents towards synergistically inhibiting tumor growth.
Collapse
Affiliation(s)
- Asiri Ediriwickrema
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA; Department of Neurosurgery, Yale University, 333 Cedar Street, FMB 410, New Haven, CT 06520, USA
| | - Yang Deng
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA.
| |
Collapse
|
21
|
Xu Z, Lai J, Tang R, Ji W, Wang R, Wang J, Wang C. Synthesis and Characterization of Homopolymers Bearing Acid-Cleavable Cationic Side-Chains for pH-Modulated Release of DNA. Macromol Biosci 2014; 14:1015-24. [DOI: 10.1002/mabi.201400004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/22/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Zhangyan Xu
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road Wuxi, Jiangsu Province 214122 P. R. China
| | - Junping Lai
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road Wuxi, Jiangsu Province 214122 P. R. China
| | - Rupei Tang
- School of Life Science; Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| | - Weihang Ji
- Department of Biomedical Engineering; University of Minnesota; 7-105 Hasselmo Hall, 312 Church Street S. E. Minneapolis MN 55455 USA
| | - Rui Wang
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road Wuxi, Jiangsu Province 214122 P. R. China
| | - Jun Wang
- School of Life Science; Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| | - Chun Wang
- Department of Biomedical Engineering; University of Minnesota; 7-105 Hasselmo Hall, 312 Church Street S. E. Minneapolis MN 55455 USA
| |
Collapse
|
22
|
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Am J Cancer Res 2014; 4:240-55. [PMID: 24505233 PMCID: PMC3915088 DOI: 10.7150/thno.6914] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022] Open
Abstract
Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery.
Collapse
|
23
|
Abstract
Microneedles were initially developed as pretreatment tools for the delivery of therapeutic drugs to intradermal locales in the human skin. Over time, variations in microneedle forms and functions burgeoned through the works of many researchers worldwide. The four major types of microneedles in use today are solid, dissolving, coating, and hollow microneedles. The emergence of different types of microneedles also paved the way for a flourishing diversification of microneedle applications, one of the most remarkable of which deals with the transcutaneous delivery of prophylactic vaccines. Here, we describe fabrication methods of microneedles and DNA vaccine loading methods on the microneedle surface. Furthermore, in the latter part of this chapter, in vivo test protocols for assessing the efficacy of gene delivery using microneedles are described.
Collapse
|
24
|
|
25
|
Cheng FF, Chen W, Hu LH, Chen G, Miao HT, Li C, Zhu JJ. Highly dispersible PEGylated graphene/Au composites as gene delivery vector and potential cancer therapeutic agent. J Mater Chem B 2013; 1:4956-4962. [DOI: 10.1039/c3tb20656d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|