1
|
Anand P, Chhimwal J, Dhiman S, Yamini, Patial V, Das P, Ahmed Z, Nandi U, Tavassoli M, Padwad Y. Evaluation of Pyrrolone-Fused Benzosuberene MK2 Inhibitors as Promising Therapeutic Agents for HNSCC: In Vitro Efficacy, In-Vivo Safety, and Pharmacokinetic Profiling. Drug Dev Res 2025; 86:e70062. [PMID: 40009048 DOI: 10.1002/ddr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
MAPKAPK2/MK2 is well implicated in the progression of Head and Neck Squamous Cell Carcinoma (HNSCC), and potent MK2-inhibitors are required to suppress its activity. Several MK2-inhibitors have been developed in recent years to combat its effects on cancer. However, inadequate solubility, insufficient cellular permeability, systemic toxicity-mediated side effects, and low bioavailability have severely impeded the advancement of MK2-inhibitors to clinical trials. This void necessitates research to develop less toxic and more bioavailable potent MK2-inhibitors in HNSCC. In the present article, we have evaluated the in-vitro efficacy, in-vivo single-dose acute toxicity, and in-vivo pharmacokinetic profiling of recently developed PfBS (pyrrolone-fused benzosuberene) MK2-inhibitor analogues against HNSCC. The PfBS MK2 inhibitor analogues impeded HPV+ and HPV- HNSCC cell proliferation and two-dimensional migration. Moreover, MK2-inhibitors lowered HNSCC cell clonogenic survival in a dose-dependent manner, significantly enhancing radiation-induced cell death via exerting radio-sensitization effects. Furthermore, γ-H2AX immunostaining revealed that PfBS analogues impaired DNA damage repair in HNSCC cells exposed to gamma radiation. In mice, PfBS MK2 inhibitors at 300 mg/kg were well-tolerated without any lethal effects. Pharmacokinetic studies showed that PfBS analogues exhibited rapid absorption (Tmax), adequate plasma concentration above the micromolar level (C0 or Cmax), limited tissue distribution (Vd), and faster elimination from the body (Cl). Overall, this study summarizes in-vitro efficacy, safety, and pharmacokinetics of developed MK2-inhibitors and opens doors for pharmacodynamics and mechanism of action study of most effective leads in HNSCC.
Collapse
Affiliation(s)
- Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Centre for Host-Microbiome Interactions, King's College London, London, London, United Kingdom
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Sumit Dhiman
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
| | - Yamini
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Pralay Das
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Zabeer Ahmed
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
| | - Utpal Nandi
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
- Chemical Sciences, Unified Academic Campus, Bose Institute, Kolkata, West Bengal, India
| | - Mahvash Tavassoli
- Centre for Host-Microbiome Interactions, King's College London, London, London, United Kingdom
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Sonkar AB, Verma A, Yadav S, Singh J, Kumar R, Keshari AK, Kumar A, Kumar D, Shrivastava NK, Rani S, Rastogi S, Alamoudi MK, Nazam Ansari M, Saeedan AS, Kaithwas G, Saha S. Antiproliferative, apoptotic and anti-inflammatory potential of 5H-benzo[h]thiazolo[2,3-b]quinazoline analogues: Novel series of anticancer compounds. Int Immunopharmacol 2024; 137:112496. [PMID: 38901240 DOI: 10.1016/j.intimp.2024.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Lung cancer (LC) is the most common cancer in males. As per GLOBOCAN 2020, 8.1 % of deaths and 5.9 % of cases of LC were reported in India. Our laboratory has previously reported the significant anticancer potential of 5H-benzo[h]thiazolo[2,3-b]quinazoline analogues. In this study, we have explored the anticancer potential of 7A {4-(6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-7-yl)phenol} and 9A {7-(4-chlorophenyl)-9-methyl-6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazoline}by using in-vitro and in-vivo models of LC. In this study, we investigated the antiproliferative potential of quinazoline analogues using A549 cell line to identify the best compound of the series. The in-vitro and molecular docking studies revealed 7A and 9A compounds as potential analogues. We also performed acute toxicity study to determine the dose. After that, in-vivo studies using urethane-induced LC in male albino Wistar rats carried out further physiological, biochemical, and morphological evaluation (SEM and H&E) of the lung tissue. We have also evaluated the antioxidant level, inflammatory, and apoptotic marker expressions. 7A and 9A did not demonstrate any signs of acute toxicity. Animals treated with urethane showed a significant upregulation of oxidative stress. However, treatment with 7A and 9A restored antioxidant markers near-normal levels. SEM and H&E staining of the lung tissue demonstrated recovered architecture after treatment with 7A and 9A. Both analogues significantly restore inflammatory markers to normal level and upregulate the intrinsic apoptosis protein expression in the lung tissue. These experimental findings demonstrated the antiproliferative potential of the synthetic analogues 7A and 9A, potentially due to their anti-inflammatory and apoptotic properties.
Collapse
Affiliation(s)
- Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Sneha Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Jyoti Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Rohit Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Amit K Keshari
- Amity Institute of Pharmacy, Amity University, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Anurag Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Neeraj Kumar Shrivastava
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Soniya Rani
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India.
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
3
|
Huo Z, Min D, Zhang S, Tang ML, Sun X. Discovery of novel tubulin CBSI (R)-9k from the indanone scaffold for the treatment of colorectal cancer. RSC Med Chem 2023; 14:2738-2750. [PMID: 38107178 PMCID: PMC10718523 DOI: 10.1039/d3md00337j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
In view of the serious adverse reactions and clinical toxicity of first line therapy 5-fluorouracil and lack of small molecule therapeutics in colorectal cancer chemotherapy, a series of natural scaffold-based 3-arylindanone derivatives (9a-q) were designed, synthesized and evaluated as tubulin polymerization inhibitors targeting the colchicine site. The most potent colchicine binding site inhibitor (CBSI), (R)-9k, exhibited 14-38 times more dominant anti-proliferative activity against three colon cancer cell lines than 5-fluorouracil. Particularly, (R)-9k showed higher selectivity against human normal cells compared with 5-fluorouracil and colchicine, and displayed negligible cardiotoxicity through hERG assessment. Furthermore, the binding of (R)-9k to the colchicine site was strongly supported by EBI competition assay and (R)-9k inhibited more tubulin polymerization than colchicine. Besides, the mechanism of action and binding modes of (R)-9k were verified by molecular dynamics simulations and docking. Therefore, (R)-9k could be regarded as a promising CBSI for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhipeng Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Delin Min
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Shijie Zhang
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Mei-Lin Tang
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Xun Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
- The Institutes of Integrative Medicine of Fudan University 12 Wulumuqi Zhong Road Shanghai 200040 China
| |
Collapse
|
4
|
Sharma S, Chandra K, Naik A, Sharma A, Sharma R, Thakur A, Grewal AS, Dhingra AK, Banerjee A, Liou JP, Guru SK, Nepali K. Flavone-based dual PARP-Tubulin inhibitor manifesting efficacy against endometrial cancer. J Enzyme Inhib Med Chem 2023; 38:2276665. [PMID: 37919954 PMCID: PMC10627047 DOI: 10.1080/14756366.2023.2276665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kavya Chandra
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Aliva Naik
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Nikolova S, Milusheva M, Gledacheva V, Feizi-Dehnayebi M, Kaynarova L, Georgieva D, Delchev V, Stefanova I, Tumbarski Y, Mihaylova R, Cherneva E, Stoencheva S, Todorova M. Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 2023; 11:2201. [PMID: 37626698 PMCID: PMC10452578 DOI: 10.3390/biomedicines11082201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Anticoagulants prevent the blood from developing the coagulation process, which is the primary cause of death in thromboembolic illnesses. Phenindione (PID) is a well-known anticoagulant that is rarely employed because it totally prevents coagulation, which can be a life-threatening complication. The goal of the current study is to synthesize drug-loaded Ag NPs to slow down the coagulation process. Methods: A rapid synthesis and stabilization of silver nanoparticles as drug-delivery systems for phenindione (PID) were applied for the first time. Results: Several methods are used to determine the size of the resulting Ag NPs. Additionally, the drug-release capabilities of Ag NPs were established. Density functional theory (DFT) calculations were performed for the first time to indicate the nature of the interaction between PID and nanostructures. DFT findings supported that galactose-loaded nanostructure could be a proper delivery system for phenindione. The drug-loaded Ag NPs were characterized in vitro for their antimicrobial, cytotoxic, and anticoagulant activities, and ex vivo for spasmolytic activity. The obtained data confirmed the drug-release experiments. Drug-loaded Ag NPs showed that prothrombin time (PT, sec) and activated partial thromboplastin time (APTT, sec) are approximately 1.5 times longer than the normal values, while PID itself stopped coagulation at all. This can make the PID-loaded Ag NPs better therapeutic anticoagulants. PID was compared to PID-loaded Ag NPs in antimicrobial, spasmolytic activity, and cytotoxicity. All the experiments confirmed the drug-release results.
Collapse
Affiliation(s)
- Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory of Experimental Chemotherapy, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
- Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., BI 9, 1113 Sofia, Bulgaria
| | - Snezhana Stoencheva
- University Hospital “Sveti Georgi” EAD, 4002 Plovdiv, Bulgaria
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
6
|
Qayum A, Singh J, Kumar A, Shah SM, Srivastava S, Kushwaha M, Magotra A, Nandi U, Malik R, Shah BA, Singh SK. 2-Pyridin-4-yl-methylene-beta-boswellic Acid-A Potential Candidate for Targeting O 6-Methylguanine-DNA Methyltransferase Epi-transcriptional Reprogramming in KRAS G13D-Microsatellite Stable, G12V-Microsatellite Instable Mutant Colon Cancer. ACS Pharmacol Transl Sci 2022; 5:306-320. [PMID: 35592435 PMCID: PMC9112411 DOI: 10.1021/acsptsci.1c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 12/24/2022]
Abstract
PMBA (2-Pyridin-4-yl-methylene-beta-boswellic acid), screened from among the 21 novel series of semisynthetic analogues of β-boswellic acid, is being presented as a lead compound for integrative management of KRAS mutant colorectal cancer (CRC), upon testing and analysis for its anticancerous activity on a panel of NCI-60 cancer cell lines and in vivo models of the disease. PMBA (1.7-29 μM) exhibited potent proliferation inhibition on the cell lines and showed sensitivity in microsatellite instability and microsatellite stable (GSE39582 and GSE92921) subsets of KRAS gene (Kirsten rat sarcoma viral oncogene homolog)-mutated colon cell lines, as revealed via flow cytometry analysis. A considerable decrease in mitogen-activated protein kinase pathway downstream effectors was observed in the treated cell lines via the western blot and STRING (Search tool for the retrieval of interacting genes/proteins) analysis. PMBA was further found to target KRAS at its guanosine diphosphate site. Treatment of the cell lines with PMBA showed significant reduction in MGMT promoter methylation but restored MGMT (O6-methylguanine-DNA methyltransferase) messenger ribonucleic acid expression via significant demethylation of the hypermethylated CpG (Cytosine phosphate guanine) sites in the MGMT promoter. A significant decrease in dimethylated H3K9 (Dimethylation of lysine 9 on histone 3) levels in the MGMT promoter in DNA hypo- and hypermethylated HCT-116G13D and SW-620G12V cells was observed after treatment. In the MNU (N-methyl-N-nitrosourea)-induced CRC in vivo model, PMBA instillation restricted and repressed polyp formation, suppressed tumor proliferation marker Ki67 (Marker of proliferation), ablated KRAS-associated cytokine signaling, and decreased mortality. Clinical trial data for the parent molecule revealed its effectiveness against the disease, oral bioavailability, and system tolerance. Comprehensively, PMBA represents a new class of KRAS inhibitors having a therapeutic window in the scope of a drug candidate. The findings suggest that the PMBA analogue could inhibit the growth of human CRC in vivo through downregulation of cancer-associated biomarkers as well as reactivate expression of the MGMT gene associated with increased H3K9 acetylation and H3K4 methylation with facilitated transcriptional activation, which might be important in silencing of genes associated with upregulation in the activity of KRAS.
Collapse
Affiliation(s)
- Arem Qayum
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jasvinder Singh
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Kumar
- Natural Product Microbes Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India
| | - Syed Mohmad Shah
- Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190001, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Manoj Kushwaha
- Microbial Biotechnology Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India
| | - Asmita Magotra
- PK-PD, Toxicology and Formulation Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India
| | - Utpal Nandi
- PK-PD, Toxicology and Formulation Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Bhahwal Ali Shah
- Natural Product Microbes Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India
| | - Shashank Kumar Singh
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India
| |
Collapse
|
7
|
Dorjay Lama P, Bhaskara Rao L, Sreenivasulu C, Ravi Kishore D, Satyanarayana G. Single‐Column‐Based Heck Coupling, Condensation and Alkylation Strategy: Synthesis of 2‐Benzoyl‐2‐alkyl‐2,3‐dihydro‐1
H
‐inden‐1‐ones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Penang Dorjay Lama
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | - Latchipatula Bhaskara Rao
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | | | - Dakoju Ravi Kishore
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | - Gedu Satyanarayana
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| |
Collapse
|
8
|
Wang SC, Shen YT, Zhang TS, Hao WJ, Tu SJ, Jiang B. Cyclic Oxime Esters as Deconstructive Bifunctional Reagents for Cyanoalkyl Esterification of 1,6-Enynes. J Org Chem 2021; 86:15488-15497. [PMID: 34664501 DOI: 10.1021/acs.joc.1c01972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A concise copper catalysis strategy for the addition-cyclization of cyclic oxime esters across 1,6-enynes with high stereoselectivity to generate 1-indanones bearing an all-carbon quaternary center is reported. In this process, single-electron reduction of cyclic oxime esters enables deconstructive carbon-carbon cleavage to provide a key cyanopropyl radical poised for the addition-cyclization. This reaction is redox-neutral, exhibits good functional group compatibility, and features 100% atomic utilization. This process driven by copper catalyst makes readily available cyclic oxime esters as bifunctional reagents to demonstrate convergent synthesis.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
9
|
Wang SC, Liu PY, Chen YX, Shen ZJ, Hao WJ, Tu SJ, Jiang B. Copper/silver co-mediated three-component bicyclization for accessing indeno[1,2- c]azepine-3,6-diones. Chem Commun (Camb) 2021; 57:7966-7969. [PMID: 34286745 DOI: 10.1039/d1cc02973h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new copper/silver-co-mediated three-component bicyclization of benzene-linked 1,6-enynes with ICF2CO2Et with TMSN3 was reported, and used to produce a wide range of hitherto unreported difluorinated tetrahydroindeno[1,2-c]azepine-3,6-diones with moderate to good yields. The mechanistic pathway consists of radical-induced 1,6-addition-cyclization, oxidative addition, reductive elimination, nitrene insertion and N-O cleavage, resulting in continuous multiple bond-forming events including C-C and C-N bonds to build up a 6/5/7 tricyclic framework.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Peng-Yu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yi-Xin Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zheng-Jia Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
10
|
Alnuqaydan AM, Rah B. Tamarix articulata Inhibits Cell Proliferation, Promotes Cell Death Mechanisms and Triggers G 0/G 1 Cell Cycle Arrest in Hepatocellular Carcinoma Cells. Food Technol Biotechnol 2021; 59:162-173. [PMID: 34316277 PMCID: PMC8284106 DOI: 10.17113/ftb.59.02.21.6904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/21/2021] [Indexed: 01/10/2023] Open
Abstract
RESEARCH BACKGROUND From ancient times plants have been used for medicinal purposes against various ailments. In the modern era, plants are a major source of drugs and are an appealing drug candidate for the anticancer therapeutics against various molecular targets. Here we tested methanolic extract of dry leaves of Tamarix articulata for anticancer activity against a panel of hepatocellular carcinoma cells. EXPERIMENTAL APPROACH Cell viability of hepatocellular carcinoma cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after a dose-dependent treatment with the extract of T. articulata. Phase-contrast microscopy and 4՛,6-diamidino-2-phenylindole (DAPI) staining served to analyse cellular and nuclear morphology. Immunoblotting was performed to determine the expression of proteins associated with autophagy, apoptosis and cell cycle. However, flow cytometry was used for the quantification of apoptotic cells and the analysis of cells in different phases of the cycle after the treatment with various doses of T. articulata. Additionally, acridine orange staining and 2՛,7՛-dichlorofluorescein diacetate (DCFH-DA) dye were used to analyse the quantification of autophagosomes and reactive oxygen species. RESULTS AND CONCLUSION Our results demonstrate that T. articulata methanolic extract exhibits promising antiproliferative activity with IC50 values (271.1±4.4), (298.3±7.1) and (336.7±6.1) µg/mL against hepatocellular carcinoma HepG2, Huh7D12 and Hep3B cell lines, respectively. Mechanistically, we found that T. articulata methanolic extract induces cell death by activating apoptosis and autophagy pathways. First, T. articulata methanolic extract promoted autophagy, which was confirmed by acridine orange staining. The immunoblotting analysis further confirmed that the extract at higher doses consistently induced the conversion of LC3I to LC3II form with a gradual decrease in the expression of autophagy substrate protein p62. Second, T. articulata methanolic extract promoted reactive oxygen species production in hepatocellular carcinoma cells and activated reactive oxygen species-mediated apoptosis. Flow cytometry and immunoblotting analysis showed that the plant methanolic extract induced dose-dependent apoptosis and activated proapoptotic proteins caspase-3 and PARP1. Additionally, the extract triggered the arrest of the G0/G1 phase of the cell cycle and upregulated the protein expression of p27/Kip and p21/Cip, with a decrease in cyclin D1 expression in hepatocellular carcinoma cells. NOVELTY AND SCIENTIFIC CONTRIBUTION The current study demonstrates that T. articulata methanolic extract exhibits promising anticancer potential to kill tumour cells by programmed cell death type I and II mechanisms and could be explored for potential drug candidate molecules to curtail cancer in the future.
Collapse
Affiliation(s)
| | - Bilal Rah
- Corresponding authors: Phone: +966558764066, +966506166275, E-mail: ,
| |
Collapse
|
11
|
Shinde RA, Adole VA, Jagdale BS, Pawar TB. Superfast synthesis, antibacterial and antifungal studies of halo-aryl and heterocyclic tagged 2,3-dihydro-1H-inden-1-one candidates. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02772-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Alnuqaydan AM, Rah B. Comparative assessment of biological activities of different parts of halophytic plant Tamarix articulata (T. articulata) growing in Saudi Arabia. Saudi J Biol Sci 2020; 27:2586-2592. [PMID: 32994715 PMCID: PMC7499369 DOI: 10.1016/j.sjbs.2020.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Owing to extremely high salinity and harsh environmental conditions, T. articulata is one of the most abundant wild plants growing in the deserts of Saudi Arabia. Such plants may contain novel compounds to display promising biological activities. Here, in this study, we evaluate the biological activities of methanolic extracts of fresh leaves, dry leaves, stem, and roots of T. articulata. The antioxidant activity was determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic and flavonoid content were determined using standard colorimetric methods. Whereas antimicrobial and ant-proliferative activities were determined by standard well-diffusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. Our results demonstrate that all methanolic extracts of T. articulata showed antioxidant activity, however, the methanolic extract of dry leaves exhibits promising antioxidant effect with IC₅₀ value 49.08 ± 1.98, which was strongly supported by total phenolic (409.92 ± 6.03 mg GAE/g DW) and flavonoid (177.71 mg QE/g DW) content. Although, antimicrobial activity was also exhibited by all the methanolic extracts, however, methanolic extract of dry leaves exhibits promising antimicrobial activity in Gram-positive bacteria Staphylococcus epidemidis. Furthermore, MTT assay revealed that all methanolic extracts exhibit antiproliferative activity in MCF-7 (breast cancer) and RKO (colorectal cancer) cells with IC₅₀ values ranges from 219 ± 5.112 µg/ml to 253 ± 5.231 µg/ml and 220 ± 4.330 µg/ml to 325 ± 6.213 µg/ml, respectively. However, the most promising antiproliferative effect was displayed by methanolic extract of dry leaves with IC₅₀ values 219 ± 5.112 µg/ml and 220 ± 4.330 µg/ml, respectively. In summary, these findings provide evidence that T. articulata has promising biological activities and can be used for many pharmaceutical activities in the future.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Bilal Rah
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| |
Collapse
|
13
|
Zhang X, Xu A, Lv J, Zhang Q, Ran Y, Wei C, Wu J. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem 2019; 185:111822. [PMID: 31699536 DOI: 10.1016/j.ejmech.2019.111822] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
Abstract
NLRP3 (Nod-like receptor protein 3) belongs to the NOD-like receptor family, which is activated by pathogen and damage-associated signals to form a multimeric protein complex, known as the NLRP3 inflammasome. NLRP3 inflammasome activation leads to release of proinflammatory cytokines IL-1β and IL-18, thus inducing pyroptosis, a programmed cell death mechanism. Dysregulation of the NLRP3 inflammasome pathway is closely related to the development of many human diseases, such as neuroinflammation, metabolic inflammation, and immune inflammation. Emerging studies have suggested NLRP3 inflammasome as a potential drug-target for inflammatory diseases. Several small molecules have recently been identified to target the NLRP3 inflammasome pathway directly or indirectly and alleviate related disease pathology. This review summarizes recent evolving landscape of small molecule inhibitor development targeting the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiangna Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China
| | - Ana Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China
| | - Jiahui Lv
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China
| | - Qiuqiong Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012, Ji'nan, Shandong, PR China.
| |
Collapse
|
14
|
Jung HJ, Noh SG, Park Y, Kang D, Chun P, Chung HY, Moon HR. In vitro and in silico insights into tyrosinase inhibitors with ( E)-benzylidene-1-indanone derivatives. Comput Struct Biotechnol J 2019; 17:1255-1264. [PMID: 31921392 PMCID: PMC6944710 DOI: 10.1016/j.csbj.2019.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tyrosinase is a key enzyme responsible for melanin biosynthesis and is effective in protecting skin damage caused by ultraviolet radiation. As part of ongoing efforts to discover potent tyrosinase inhibitors, we systematically designed and synthesized thirteen (E)-benzylidene-1-indanone derivatives (BID1–13) and determined their inhibitory activities against tyrosinase. Among the compounds evaluated, BID3 was the most potent inhibitor of mushroom tyrosinase (IC50 = 0.034 µM, monophenolase activity; IC50 = 1.39 µM, diphenolase activity). Kinetic studies revealed that BID3 demonstrated a mixed type of tyrosinase inhibition with Ki value of 2.4 µM using l-DOPA as a substrate. In silico molecular docking simulations demonstrated that BID3 can bind to the catalytic and allosteric sites of tyrosinase to inhibit enzyme activity which confirmed in vitro experimental studies between BID3 and tyrosinase. Furthermore, melanin contents decreased and cellular tyrosinase activity was inhibited after BID3 treatment. These observations revealed that BID3 is a potent tyrosinase inhibitor and potentially could be used as a whitening agent for the treatment of pigmentation-related disorders.
Collapse
Affiliation(s)
- Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Longevity Life Science and Technology Institutes, Pusan National University, Busan 46241, Republic of Korea.,Aging Tissue Bank, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Gyun Noh
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Longevity Life Science and Technology Institutes, Pusan National University, Busan 46241, Republic of Korea.,Aging Tissue Bank, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yujin Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gimhae 47392, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Longevity Life Science and Technology Institutes, Pusan National University, Busan 46241, Republic of Korea.,Aging Tissue Bank, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Antihypertensive activity of diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate: A continuation study in L-NAME treated wistar rats. Eur J Pharmacol 2019; 858:172482. [PMID: 31233749 DOI: 10.1016/j.ejphar.2019.172482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
In the present study, we report that neolignan1 (Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate) relaxes the superior mesenteric artery in a concentration dependent manner (pD2 value 5.392 ± 0.04; n = 8 for endothelium intact and 5.204 ± 0.03; n = 8 for endothelium denuded mesenteric rings, respectively). The relaxation response of neolignan1 was found to be endothelium independent and sensitive to 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-on (ODQ; 1 μM) and tetraethyl ammonium (TEA; 1 mM). In-silico studies showed good LibDock score (92.66) of neolignan1 with BKCa channel and are in well corroboration with ex-vivo study. Further, neolignan1 significantly decreased the systolic blood pressure, diastolic blood pressure and mean arterial pressure in the Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 50 mg/kg) treated Wistar rats at the dose of 30 and 100 mg/kg given once orally for 15 days. In addition, neolignan1 is well tolerated up to 100 mg/kg when given as a repeated dose, once orally for 28 days in Swiss albino mice. Neolignan1 was well absorbed from oral route, reached peak at 4 h and eliminated below detection level by 12 h after administration. Our present study concludes that neolignan1 produced relaxation in superior mesenteric artery by opening of BKCa channel and produced significant antihypertensive activity in L-NAME treated Wistar rats and was well tolerated by the experimental animal.
Collapse
|
16
|
Sana T, Siddiqui BS, Shahzad S, Farooq AD, Siddiqui F, Sattar S, Begum S. Antiproliferative Activity and Characterization of Metabolites of Aspergillus nidulans: An Endophytic Fungus from Nyctanthes arbor-tristis Linn. Against Three Human Cancer Cell Lines. Med Chem 2018; 15:352-359. [PMID: 30152287 DOI: 10.2174/1573406414666180828124252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endophytic fungi are receiving attention as sources of structurally novel bioactive secondary metabolites towards drug discovery from natural products. This study reports the isolation and characterization of secondary metabolites from an endophytic fungus Aspergillus nidulans, associated with Nyctanthes arbor-tristis Linn., a plant which has a traditional use to cure many ailments including cancer. OBJECTIVE The objective of this study was to evaluate the antiproliferative activity of the metabolites of A. nidulans from N. arbor-tristis on three human cancer cell lines, lung (NCI-H460), breast (MCF-7) and uterine cervix (HeLa), and carry out their characterization. METHODS The extracts of the endophytic fungus cultured on potato dextrose agar were subjected to various chromatographic techniques. Structures of pure compounds were determined using spectroscopic techniques. The non-polar constituents were analyzed by GC-MS. Antiproliferative activity was determined by sulforhodamine B (SRB) assay. RESULTS The extracts and fractions showed moderate to good growth inhibition of the aforementioned human cancer cell lines. The broth extract was most potent (IC50 = 10 ± 3.1 μg/mL and LC50= 95 ± 3.9) against HeLa whereas petroleum ether insoluble fraction of mycelium was most active against NCI-H460 and MCF-7 (IC50 = 10 ± 2.1 µg/mL and 18 ± 3.1 µg/mL respectively). GC-MS led to identify 12 compounds in mycelium and 19 compounds in broth. Four pure compounds were isolated and characterized one compound 5, 10-dihydrophenazine-1-carboxylic acid (1) from broth and three 1-hydroxy-3-methylxanthone (2), ergosterol (3) and sterigmatocystin (4) from mycelium. 1 has not been reported earlier as a plant/fungal metabolite while 2-4 are new from this source. Sterigmatocystin exhibited growth inhibitory effect (IC50 = 50 ± 2.5 µM/mL) against only MCF-7 cell line whereas other compounds had IC50 > 100. CONCLUSIONS In this paper, the cytotoxicity of mycelium and broth constituents of endophytic fungus Aspergillus nidulans from Nyctanthes arbor-tristis is reported for the first time. The study shows that fungus Aspergillus nidulans from Nyctanthes arbor-tristis is capable of producing biologically active natural compounds and provides a scientific rationale for further chemical investigations of endophyte-producing natural products.
Collapse
Affiliation(s)
- Talea Sana
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Bina S Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Saleem Shahzad
- Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, Pakistan
| | - Ahsana D Farooq
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Faheema Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Samia Sattar
- Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, Pakistan
| | - Sabira Begum
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
17
|
Antitumour, acute toxicity and molecular modeling studies of 4-(pyridin-4-yl)-6-(thiophen-2-yl) pyrimidin-2(1H)-one against Ehrlich ascites carcinoma and sarcoma-180. Heliyon 2018; 4:e00661. [PMID: 30003157 PMCID: PMC6039700 DOI: 10.1016/j.heliyon.2018.e00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
In an effort to discover an effective and selective antitumour agent, synthesis and anti-cancer potential of 4-(pyridin-4-yl)-6-(thiophen-2-yl) pyrimidin-2(1H)-one (SK-25), which has been reported earlier by us with significant cytotoxicity towards MiaPaCa-2 malignant cells, with an IC50 value of 1.95 μM and was found to instigate apoptosis. In the present study, the antitumour efficacy of SK-25 was investigated on Ehrlich ascites tumour (EAT, solid), Sarcoma 180 (solid) tumour and Ehrlich ascites carcinoma. The compound was found to inhibit tumour development by 94.71% in Ehrlich ascites carcinoma (EAC), 59.06% in Ehrlich tumour (ET, solid) and 45.68% in Sarcoma-180 (solid) at 30 mg/kg dose. Additionally, SK-25 was established to be non-toxic at a maximum tolerated dose of 1000 mg/kg in acute oral toxicity in Swiss-albino mice. Computer-based predictions also show that the compounds could have an interesting DMPK profile since all 51 computed physicochemical parameters fall within the recommended range for 95% of known drugs. The current study provides insight for further investigation of the antitumour potential of the molecule.
Collapse
|
18
|
Insight into microtubule destabilization mechanism of 3,4,5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis. J Comput Aided Mol Des 2018. [DOI: 10.1007/s10822-018-0109-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Shen ZJ, Wu YN, He CL, He L, Hao WJ, Wang AF, Tu SJ, Jiang B. Stereoselective synthesis of sulfonated 1-indenones via radical-triggered multi-component cyclization of β-alkynyl propenones. Chem Commun (Camb) 2018; 54:445-448. [DOI: 10.1039/c7cc08516h] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New radical-triggered multi-component cyclizations of β-alkynyl propenones have been developed, leading to 50 examples of sulfonated 1-indenones with generally good yields and high levels of stereoselectivity.
Collapse
Affiliation(s)
- Zheng-Jia Shen
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Ya-Nan Wu
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Chun-Lan He
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Long He
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Ai-Fang Wang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| |
Collapse
|
20
|
Baddeley TC, Gomes LR, Low JN, Turner AB, Wardell JL, Watson GJR. Structural studies of ( E)-2-(benzylidene)-1-tetralone derivatives: crystal structures and Hirshfeld surface analysis. Z KRIST-CRYST MATER 2017. [DOI: 10.1515/zkri-2017-2048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Crystal structures are reported from data collected at 100 K of (E)-2-(X-benzylidene)-1-tetralone (2: X=3-O2N; 3: X=4-O2N; 5: X=4-HO; 6: X=4-Me2N; 7: 4-NC), (E)-2-(X-benzylidene)-6-MeO-1-tetralone, 8, and (E)-2-(X-benzylidene)-5-MeO-1-tetralone 9. Also reported herein are the Hirshfeld surface calculations for these compounds as well as those of (E)-2-(X-benzylidene)-1-tetralone (1: X=H; 4: X=4-MeO), whose structures were previously reported. The molecules are not planar as shown by the dihedral angles of 45.66(5)–69.78(5)° between the phenyl groups and by the puckered cyclohexenyl rings. A common feature of the molecular conformations is the C–H···O1(carbonyl) intramolecular hydrogen bond. The carbonyl oxygen atom plays significant roles in the interactions in all compounds baring compound 8. However, there is no consistent set of intermolecular interaction in this group of compounds. Intermolecular interactions present in each compound are some of the O–H···O, C–H···A (A=O, N or π), A–O···π (A=C or N) and π···π interactions. The only compound exhibiting a classical O–H···O hydrogen bond is compound 5. C–H···π interactions are found in all compounds, and while π···π interactions are present in compounds 2, 3, 7 and 9, no consistent type of stacking arrangement is shown. The Hirshfeld surface calculations, while generally concurring with the intermolecular interactions indicated by PLATON analyses, also reveal short interactions, which fall below the PLATON cut-off parameters.
Collapse
Affiliation(s)
- Thomas C. Baddeley
- Department of Chemistry , University of Aberdeen, Meston Walk , Old Aberdeen, AB24 3UE , UK
| | - Ligia R. Gomes
- FP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP , Universidade Fernando Pessoa, Rua Carlos da Maia, 296 , P-4200-150 Porto , Portugal
- REQUIMTE, Departamento de Química e Bioquímica , Faculdade de Ciências da Universidade do Porto , Rua do Campo Alegre, 687, P-4169-007 , Porto , Portugal
| | - John N. Low
- Department of Chemistry , University of Aberdeen, Meston Walk , Old Aberdeen, AB24 3UE , UK
| | - Alan B. Turner
- Department of Chemistry , University of Aberdeen, Meston Walk , Old Aberdeen, AB24 3UE , UK
| | - James L. Wardell
- Department of Chemistry , University of Aberdeen, Meston Walk , Old Aberdeen, AB24 3UE , UK
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz , 21041-250 Rio de Janeiro, RJ , Brazil
| | - Graeme J. R. Watson
- Department of Chemistry , University of Aberdeen, Meston Walk , Old Aberdeen, AB24 3UE , UK
| |
Collapse
|
21
|
Discovery and structure-activity relationship studies of 2-benzylidene-2,3-dihydro-1 H -inden-1-one and benzofuran-3(2 H )-one derivatives as a novel class of potential therapeutics for inflammatory bowel disease. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Patil SA, Patil R, Patil SA. Recent developments in biological activities of indanones. Eur J Med Chem 2017; 138:182-198. [DOI: 10.1016/j.ejmech.2017.06.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
|
23
|
Hameed A, Ijaz S, Mohammad IS, Muhammad KS, Akhtar N, Khan HMS. Aglycone solanidine and solasodine derivatives: A natural approach towards cancer. Biomed Pharmacother 2017; 94:446-457. [PMID: 28779706 DOI: 10.1016/j.biopha.2017.07.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Over the past few years, it was suggested that a rational approach to treat cancer in clinical settings requires a multipronged approach that augments improvement in systemic efficiency along with modification in cellular phenotype leads to more efficient cell death response. Recently, the combinatory delivery of traditional chemotherapeutic drugs with natural compounds proved to be astonishing to deal with a variety of cancers, especially that are resistant to chemotherapeutic drugs. The natural compounds not only synergize the effects of chemotherapeutics but also minimize drug associated systemic toxicity. In this review, our primary focus was on antitumor effects of natural compounds. Previously, the drugs from natural sources are highly precise and safer than drugs of synthetic origins. Many natural compounds exhibit anti-cancer potentials by inducing apoptosis in different tumor models, in-vitro and in-vivo. Furthermore, natural compounds are also found equally useful in chemotherapeutic drug resistant tumors. Moreover, these Phyto-compounds also possess numerous other pharmacological properties such as antifungal, antimicrobial, antiprotozoal, and hepatoprotection. Aglycone solasodine and solanidine derivatives are the utmost important steroidal glycoalkaloids that are present in various Solanum species, are discussed here. These natural compounds are highly cytotoxic against different tumor cell lines. As the molecular weight is concerned; these are smaller molecular weight chemotherapeutic agents that induce cell death response by initiating apoptosis through both extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Abdul Hameed
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Shakeel Ijaz
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | | | - Naveed Akhtar
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Haji Muhammad Shoaib Khan
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| |
Collapse
|
24
|
Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages. Eur J Med Chem 2017; 133:121-138. [DOI: 10.1016/j.ejmech.2017.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
|
25
|
Baddeley TC, Gomes LR, Low JN, Skakle JM, Turner AB, Wardell JL, Watson GJ. Structural studies of ( E)-2-(benzylidene)- 2,3-dihydro-1H-inden-1-one derivatives: crystal structures and Hirshfeld surface analysis. Z KRIST-CRYST MATER 2017. [DOI: 10.1515/zkri-2016-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Crystal structures are reported of (E)-2-(4-hydroxybenzylidene)-2,3-dihydro-1H-inden-1-one, 1, (E)-2-(4-dimethylaminobenzylidene)-2,3- dihydro-1H-inden-1-one, 2, (E)-2-(4-cyanobenzylidene)-2,3-dihydro-1H-inden-1-one, 3, and monoclinic-(E)- 2-(3-nitrobenzylidene)-2,3-dihydro-1H-inden-1-one, monoclinic-4, all from data collected at 100 K and (E)-2-(4-hydroxy-3,5-dimethylbenzylidene)-2,3-dihydro-1H-indan-1-one, 6, from data collected at 299 K. An earlier triclinic form of 4 has been reported. Also reported herein are the Hirshfeld suface calculations for these five compounds, as well as that of 2-(4-methoxybenzylidene)-2,3-dihydro-1H-inden-1-one, 5,whose crystal structure has been previously reported. The three rings in each of the compounds, 1–4 and 6, are essentially planar, including the five-membered ring containing a formally hydridized sp3 atom. The molecules exhibit slight deviations from overall planarity as shown by the dihedral angles, >8.15(6)° between the 2,3-dihydro-1H-inden-1-one fragments and the phenyl fragments. The main intermolecular interactions in compounds 1 and are classical O–H···O1(carbonyl) hydrogen bonds. The carbonyl oxygen atom in compounds 1–4 are involved in non-classical C–H···O intermolecular hydrogen bonds. Intermolecular C–H---π interactions are present in 2, 3 and 6, while π···π are present in 2–4 and 6. As noted in the structure determinations of these compounds, different π···π motifs are possible. The Hirshfeld surface calculations, while generally concurring with the intermolecular interactions indicated by PLATON analyses, also reveal significant interactions, which fall below the PLATON radar.
Collapse
Affiliation(s)
- Thomas C. Baddeley
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
| | - Ligia R. Gomes
- FP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal
| | - John N. Low
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
| | - Janet M.S. Skakle
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
| | - Alan B. Turner
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
| | - James L. Wardell
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
- Instituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Graeme J.R. Watson
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, UK
| |
Collapse
|
26
|
Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate exhibits antihypertensive activity in rats through increase in intracellular cGMP level and blockade of calcium channels. Eur J Pharmacol 2017; 799:84-93. [PMID: 28159537 DOI: 10.1016/j.ejphar.2017.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
We report here the antihypertensive and vasorelaxant potential of some steroidal and non-steroidal compounds identified through a library of compounds. All the novel analogues showed vasorelaxant potential in isolated rat aorta. The most potent lead neolignan1 (Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate) produced concentration dependent relaxation with [pD2 5.16±0.05; n=16 and Emax 96.97%±1.12%; n=16]. The neolignan1 relaxation is independent of endothelium and is sensitive to ODQ (1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one; a blocker of soluble guanylyl cyclase (sGC) which synthesizes cGMP (cyclic guanosine monophosphate)). ELISA analysis of treated arterial tissues showed concentration-dependent increase in cGMP level in treated tissues compared to control (2.03 and 7.16 fold of control at 10 and 30µM of neolignan1, respectively) and a synergistic increase in cGMP level by 26.66 fold compared to control when used in combination with sildenafil (10µM; a known inducer of cGMP level by selectively blocking cGMP specific phosphodiesterase 5). Our present study reports for the first time that neolignans produce relaxation in isolated rat aorta through increase in intracellular cGMP level. The ODQ resistant relaxation of neolignan1 is mediated by blockade of voltage dependent L-type calcium channel (VDCC) as observed in the experiment with CaCl2. Neolignan1 upon intravenous administration via tail vein in Spontaneously Hypertensive Rats (SHR) produced significant decrease in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP). The present study concludes that neolignan1 exhibited antihypertensive potential in rats through rise in intracellular cGMP and blockade of VDCC.
Collapse
|
27
|
Menezes JCJMDS. Arylidene indanone scaffold: medicinal chemistry and structure–activity relationship view. RSC Adv 2017. [DOI: 10.1039/c6ra28613e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arylidene indanone (AI) scaffolds are considered as the rigid cousins of chalcones, incorporating the α,β-unsaturated ketone system of chalcones forming a cyclic 5 membered ring.
Collapse
|
28
|
Gul HI, Tugrak M, Sakagami H, Taslimi P, Gulcin I, Supuran CT. Synthesis and bioactivity studies on new 4-(3-(4-Substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. J Enzyme Inhib Med Chem 2016; 31:1619-24. [PMID: 27028783 DOI: 10.3109/14756366.2016.1160077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
A series of new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides (7-12) was synthesized starting from 2-(4-substitutedbenzylidene)-2,3-dihydro-1H-inden-1-one (1-6) and 4-hydrazinobenzenesulfonamide. The substituted benzaldehydes from which the key intermediate was prepared by introducing 2- or 4-substituents such as fluorine, hydroxy, methoxy, or the 3,4,5-trimethoxy moieties. The compounds were tested for their cytotoxicity, tumor-specificity and potential as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic activities, which may be crucial for further anti-tumor activity studies, whereas some of these sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.
Collapse
Affiliation(s)
- Halise Inci Gul
- a Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Ataturk University , Erzurum , Turkey
| | - Mehtap Tugrak
- a Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Ataturk University , Erzurum , Turkey
| | - Hiroshi Sakagami
- b Division of Pharmacology , Meikai University School of Dentistry , Sakado , Saitama , Japan
| | - Parham Taslimi
- c Ataturk University, Faculty of Science, Department of Chemistry , Erzurum , Turkey
| | - Ilhami Gulcin
- c Ataturk University, Faculty of Science, Department of Chemistry , Erzurum , Turkey
- d College of Science, Department of Zoology, King Saud University , Riyadh , Saudi Arabia , and
| | - Claudiu T Supuran
- e Neurofarba Department and Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
29
|
Vinoth P, Nagarajan S, Maheswari CU, Sudalai A, Pace V, Sridharan V. Palladium-Catalyzed Internal Nucleophile-Assisted Hydration–Olefin Insertion Cascade: Diastereoselective Synthesis of 2,3-Dihydro-1H-inden-1-ones. Org Lett 2016; 18:3442-5. [DOI: 10.1021/acs.orglett.6b01623] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Perumal Vinoth
- Organic
Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil
Nadu, India
| | - Subbiah Nagarajan
- Organic
Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil
Nadu, India
| | - C. Uma Maheswari
- Organic
Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil
Nadu, India
| | - Arumugam Sudalai
- Chemical
Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411
008, India
| | - Vittorio Pace
- Department
of Pharmaceutical Chemistry, University of Vienna, Althanstrasse
14, A-1090 Vienna, Austria
| | - Vellaisamy Sridharan
- Organic
Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil
Nadu, India
| |
Collapse
|
30
|
Diab KAE, Guru SK, Bhushan S, Saxena AK. In Vitro Anticancer Activities of Anogeissus latifolia, Terminalia bellerica, Acacia catechu and Moringa oleiferna Indian Plants. Asian Pac J Cancer Prev 2015; 16:6423-8. [DOI: 10.7314/apjcp.2015.16.15.6423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma P, Chandan B, Jaglan S, Sharma J, Shah BA, Tasduq SA, Lattoo SK, Faruk A, Saxena A, Vishwakarma R, Bhushan S. Secalonic Acid-D Represses HIF1α/VEGF-Mediated Angiogenesis by Regulating the Akt/mTOR/p70S6K Signaling Cascade. Cancer Res 2015; 75:2886-96. [DOI: 10.1158/0008-5472.can-14-2312] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
32
|
Singh A, Fatima K, Singh A, Behl A, Mintoo MJ, Hasanain M, Ashraf R, Luqman S, Shanker K, Mondhe DM, Sarkar J, Chanda D, Negi AS. Anticancer activity and toxicity profiles of 2-benzylidene indanone lead molecule. Eur J Pharm Sci 2015; 76:57-67. [PMID: 25933717 DOI: 10.1016/j.ejps.2015.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/22/2015] [Accepted: 04/26/2015] [Indexed: 01/15/2023]
Abstract
3-(3',4',5'-Trimethoxyphenyl)-4,5,6-trimethoxy,2-(3″,4″-methylenedioxybenzylidene)-indan-1-one (1) is an optimized anti-cancer lead molecule obtained on modification of gallic acid, a plant phenolic acid. It exhibited potent cytotoxicities (IC50=0.010-14.76μM) against various human carcinoma cells. In cell cycle analysis, benzylidene indanone 1 induced G2/M phase arrest in both MCF-7 and MDA-MB-231 cells. It also induced apoptosis in DU145 cells which was evident by cleavage of PARP. In Ehrlich ascites carcinoma, benzylidene indanone 1 showed 45.48% inhibition of tumour growth at 20mg/kg dose in Swiss albino mice. Further, in sub-acute toxicity experiment in Swiss-albino mice, it was found to be non-toxic up to 100mg/kg dose for 28days. The lead compound benzylidene indanone 1 can further be optimized for better anti-cancer activity.
Collapse
Affiliation(s)
- Aastha Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Kaneez Fatima
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Arjun Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Akansha Behl
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - M J Mintoo
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Mohammad Hasanain
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Raghib Ashraf
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - D M Mondhe
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
33
|
Kumar S, Guru SK, Pathania AS, Manda S, Kumar A, Bharate SB, Vishwakarma RA, Malik F, Bhushan S. Fascaplysin Induces Caspase Mediated Crosstalk Between Apoptosis and Autophagy Through the Inhibition of PI3K/AKT/mTOR Signaling Cascade in Human Leukemia HL‐60 Cells. J Cell Biochem 2015; 116:985-97. [DOI: 10.1002/jcb.25053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Santosh Kumar Guru
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Anup Singh Pathania
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Sudhakar Manda
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Medicinal Chemistry DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Ajay Kumar
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Sandip B. Bharate
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Ram A. Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Fayaz Malik
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| | - Shashi Bhushan
- Academy of Scientific and Innovative Research (AcSIR)New Delhi110001India
- Cancer Pharmacology DivisionIndian Institute of Integrative Medicine, CSIRJammu180001India
| |
Collapse
|
34
|
Negi AS, Gautam Y, Alam S, Chanda D, Luqman S, Sarkar J, Khan F, Konwar R. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Bioorg Med Chem 2014; 23:373-89. [PMID: 25564377 DOI: 10.1016/j.bmc.2014.12.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/29/2023]
Abstract
Microtubules are polar cytoskeletal filaments assembled from head-to-tail and comprised of lateral associations of α/β-tubulin heterodimers that play key role in various cellular processes. Because of their vital role in mitosis and various other cellular processes, microtubules have been attractive targets for several disease conditions and especially for cancer. Antitubulin is the most successful class of antimitotic agents in cancer chemotherapeutics. The target recognition of antimitotic agents as a ligand is not much explored so far. However, 3,4,5-trimethoxyphenyl fragment has been much highlighted and discussed in such type of interactions. In this review, some of the most important naturally occurring antimitotic agents and their interactions with microtubules are discussed with a special emphasis on the role of 3,4,5-trimethoxyphenyl unit. At last, some emerging naturally occurring antimitotic agents have also been tabulated.
Collapse
Affiliation(s)
- Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India.
| | - Yashveer Gautam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Sarfaraz Alam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Rituraj Konwar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| |
Collapse
|
35
|
Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. Eur J Med Chem 2014; 80:201-8. [PMID: 24780597 DOI: 10.1016/j.ejmech.2014.04.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022]
Abstract
A microwave assisted strategy for synthesis of series of 1H-pyrazolo[4,3-d]pyrimidin-7(6H)-ones has been developed and their biological evaluation as anticancer agents is described. The synthetic protocol involves simple procedure by oxidative coupling of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide with different aldehydes in presence of K2S2O8 offering 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one compounds in excellent yields. The in vitro anticancer activity screening against human cancer cell lines HeLa, CAKI-I, PC-3, MiaPaca-2, A549 gave good results. The in detailed mechanistic correlation studies of compound 3m revealed that the compound shows anticancer activity through apoptosis mechanism and also inhibits mTOR with nonomolar potency. The design was based on docking with mTOR protein. The concentration dependent cell cycle analysis, western blotting experiment and nuclear cell morphology studies have been described.
Collapse
|
36
|
Dulla B, Sailaja E, Reddy CH U, Aeluri M, Kalle AM, Bhavani S, Rambabu D, Rao MB, Pal M. Synthesis of indole based novel small molecules and their in vitro anti-proliferative effects on various cancer cell lines. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang T, Bandero V, McCabe T, Frankish N, Sheridan H. 2-(Di-phenyl-methyl-idene)-2,3-di-hydro-1H-inden-1-one. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1306-o1307. [PMID: 24109382 PMCID: PMC3793795 DOI: 10.1107/s1600536813018990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
In the title mol-ecule, C22H16O, the indanone ring system is approximately planar with a dihedral angle between the fused rings of 5.13 (14)°. Two benzene rings are linked together at one side of a double bond, sitting on either side of the indanone ring system and making dihedral angles of 70.30 (12) and 44.74 (13)° with it. In the crystal, hydrogen bonding is not present, but weak C-H⋯π or π-π inter-actions occur and mol-ecules form a sheet-like structure in the bc plane.
Collapse
Affiliation(s)
- Tao Zhang
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Vilmar Bandero
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Tom McCabe
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Neil Frankish
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Helen Sheridan
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|