1
|
Elmowafy M, Shalaby K, Alruwaili NK, Alsaidan OA, Elkomy MH, Abdelgawad MA, Mostafa EM, Salama A, Kassem AM, Ibrahim MF, El-Emam MMA. In Vitro and In Vivo Appraisal of Glycerylmonostearate/chitosan Hybrid Nanocapsules As Peroral Delivery System of Simvastatin. AAPS PharmSciTech 2025; 26:143. [PMID: 40389763 DOI: 10.1208/s12249-025-03135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/22/2025] [Indexed: 05/21/2025] Open
Abstract
Simvastatin is one the most commonly used drugs for treatment of hypercholesterolemia but suffers from low bioavailability (about 5%) owing to poor aqueous solubility and extensive first pass metabolism. Glycerylmonostearate/chitosan hybrid olive oil cored nanocapsules were fabricated by a self-assembly method. Nine batches were successfully produced based on glycerylmonostearate/chitosan ratio and olive oil concentration. Selected formulation was and evaluated for oral bioavailability enhancement and pharmacodynamics. Glycerylmonostearate/chitosan ratio strongly influence the particle size and encapsulation of the formulations. Higher concentrations of olive oil produced larger particle size, heterogeneous distribution and higher encapsulation. Embedding of SIM in system matrix with existence in amorphous state was verified by DSC and FTIR tools. Selected formulation significantly enhanced SIM oral bioavailability with a 3.27-time higher in AUC when compared to SIM suspension. In addition, in vivo prolonged effect was verified by higher elimination half-life and mean residence time in plasma. Furthermore, pathological changes in liver and aorta associated with Poloxamer 704 injection have been mostly corrected. Serum lipid profile, liver function enzymes and oxidative stress were also restored. According to these results, glycerylmonostearate/chitosan hybrid olive oil cored nanocapsules proved to be a promising formulation strategy to significantly enhance SIM peroral bioavailability and therefore therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Patriota YBG, Arruda IES, de Jesus Oliveira AC, de Oliveira TC, de Lemos Vasconcelos Silva E, Chaves LL, de Oliveira Silva Ribeiro F, da Silva DA, de La Roca Soares MF, Soares-Sobrinho JL. Synthesis of Eudragit® L100-coated chitosan-based nanoparticles for oral enoxaparin delivery. Int J Biol Macromol 2021; 193:450-456. [PMID: 34688680 DOI: 10.1016/j.ijbiomac.2021.10.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Enoxaparin is an effective biological molecule for prevention and treatment of coagulation disorders. However, it is poorly absorbed in the gastrointestinal tract. In this study, we developed an Eudragit® L100 coated chitosan core shell nanoparticles for enoxaparin oral delivery (Eud/CS/Enox NPs) through a completely eco-friendly method without employing any high-energy homogenizer technique and any organic solvents. Spherical nanocarriers were successfully prepared with particle size lower than 300 nm, polydispersity index about 0.12 and zeta potential higher than +25 mV, entrapment efficiency greater than 95% and the in vitro release behavior confirms the good colloidal stability and the successful Eudragit® L100 coating process demonstrated by negligible cumulative enoxaparin release (<10%) when the particles are submitted to simulated gastric fluid conditions. Finally, we demonstrated that the core-shell structure of the particle influenced the drug release mechanism of the formulations, indicating the presence of the Eudragit® L100 on the surface of the particles. These results suggested that enteric-coating approach and drug delivery nanotechnology can be successfully explored as potential tools for oral delivery of enoxaparin.
Collapse
Affiliation(s)
| | - Igor Eduardo Silva Arruda
- Quality Control Core of Medicines and Correlates, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates, Federal University of Pernambuco, Recife, PE, Brazil; Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | | | | |
Collapse
|
3
|
Cheng H, Zhang X, Cui Z, Mao S. Grafted polysaccharides as advanced pharmaceutical excipients. ADVANCES AND CHALLENGES IN PHARMACEUTICAL TECHNOLOGY 2021:75-129. [DOI: 10.1016/b978-0-12-820043-8.00010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Fang G, Tang B. Advanced delivery strategies facilitating oral absorption of heparins. Asian J Pharm Sci 2020; 15:449-460. [PMID: 32952668 PMCID: PMC7486512 DOI: 10.1016/j.ajps.2019.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Heparins show great anticoagulant effect with few side effects, and are administered by subcutaneous or intravenous route in clinics. To improve patient compliance, oral administration is an alternative route. Nonetheless, oral administration of heparins still faces enormous challenges due to the multiple obstacles. This review briefly analyzes a series of barriers ranging from poorly physicochemical properties of heparins, to harsh biological barriers including gastrointestinal degradation and pre-systemic metabolism. Moreover, several approaches have been developed to overcome these obstacles, such as improving stability of heparins in the gastrointestinal tract, enhancing the intestinal epithelia permeability and facilitating lymphatic delivery of heparins. Overall, this review aims to provide insights concerning advanced delivery strategies facilitating oral absorption of heparins.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
5
|
Tang B, Qian Y, Fang G. Development of Lipid-Polymer Hybrid Nanoparticles for Improving Oral Absorption of Enoxaparin. Pharmaceutics 2020; 12:E607. [PMID: 32629827 PMCID: PMC7407632 DOI: 10.3390/pharmaceutics12070607] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 01/31/2023] Open
Abstract
Enoxaparin, an anticoagulant that helps prevent the formation of blood clots, is administered parenterally. Here, we report the development and evaluation of lipid-polymer hybrid nanoparticles (LPHNs) for the oral delivery of enoxaparin. The polymer poloxamer 407 (P407) was incorporated into lipid nanoparticles to form gel cores and ensure high encapsulation efficiency and the controlled release of enoxaparin. In vitro results indicated that 30% of P407 incorporation offered higher encapsulation efficiency and sustained the release of enoxaparin. Laser confocal scanning microscopy (LCSM) images showed that LPHNs could not only significantly improve the accumulation of enoxaparin in intestinal villi but also facilitate enoxaparin transport into the underlayer of intestinal epithelial cells. In vivo pharmacokinetic study results indicated that the oral bioavailability of enoxaparin was markedly increased about 6.8-fold by LPHNs. In addition, its therapeutic efficacy against pulmonary thromboembolism was improved 2.99-fold by LPHNs. Moreover, LPHNs exhibited excellent biocompatibility in the intestine. Overall, the LPHN is a promising delivery carrier to boost the oral absorption of enoxaparin.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China; (B.T.); (Y.Q.)
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- Yabang Medical Research Institute, 66 Changhong Road, Changzhou 213145, China
| | - Yu Qian
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China; (B.T.); (Y.Q.)
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China; (B.T.); (Y.Q.)
| |
Collapse
|
6
|
Sun Y, Wu H, Dong W, Zhou J, Zhang X, Liu L, Zhang X, Cheng H, Guan J, Zhao R, Mao S. Molecular simulation approach to the rational design of self-assembled nanoparticles for enhanced peroral delivery of doxorubicin. Carbohydr Polym 2019; 218:279-288. [DOI: 10.1016/j.carbpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
|
7
|
Gao M, Sun Y, Kou Y, Shen X, Huo Y, Liu C, Sun Z, Zhang X, Mao S. Effect of Glyceryl Monocaprylate-Modified Chitosan on the Intranasal Absorption of Insulin in Rats. J Pharm Sci 2019; 108:3623-3629. [PMID: 31356762 DOI: 10.1016/j.xphs.2019.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Nasal administration of insulin showed the attractive potential to improve the compliance of diabetic patients and alleviate mild cognitive impairment of Alzheimer's patients. However, the nasal absorption of insulin was not ideal, limiting its therapeutic effect in clinic. This study was to explore the potential of glyceryl monocaprylate-modified chitosan (CS-GMC) on the intranasal absorption of insulin via in vivo pharmacodynamic experiment in conscious rats. It was demonstrated that the absorption-enhancing effect of CS-GMC depended on the existing state of insulin in the formulation, substitution degree of GMC on chitosan and concentration of CS-GMC. Better insulin absorption was achieved when insulin existed in molecular form compared with that in polyelectrolyte complexes. CS-GMC with substitution degree 12% (CS-GMC 12%) was a preferred absorption enhancer, and its absorption enhancing effect increased linearly with the increment of its concentration in the range investigated. Compared with chitosan of the same concentration, CS-GMC12% showed remarkably enhanced and prolonged therapeutic effect up to at least 5 h under the concentration of 0.6% (w/v). CS-GMC12% showed almost no ciliotoxicity to the nasal cilia up to concentration 1.0% (w/v). In conclusion, CS-GMC was a promising absorption enhancer to improve the intranasal absorption of insulin.
Collapse
Affiliation(s)
- Mingyue Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongqiang Kou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Shen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingnan Huo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zheng Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shirui Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
8
|
Fang G, Zhou J, Qian Y, Gou J, Yang X, Tang B. Development and evaluation of thermo-sensitive hydrogel system with nanocomplexes for prolonged subcutaneous delivery of enoxaparin. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Chitosan based polymer-lipid hybrid nanoparticles for oral delivery of enoxaparin. Int J Pharm 2018; 547:499-505. [DOI: 10.1016/j.ijpharm.2018.05.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
10
|
Akhtar F, Wan X, Wu G, Kesse S, Wang S, He S. Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes. Molecules 2018; 23:E1757. [PMID: 30021958 PMCID: PMC6100363 DOI: 10.3390/molecules23071757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023] Open
Abstract
A wide range of diseases have been treated using low-molecular-weight heparins (LMWHs), the drug of choice for anticoagulation. Owing to their better pharmacokinetic features compared to those of unfractionated heparin (uFH), several systems incorporating LMWHs have been investigated to deliver and improve their therapeutic outcomes, especially through development of their micro- and nano-particles. This review article describes current perspectives on the fabrication, characterization, and application of LMWHs-loaded micro- and nano-particles to achieve ameliorated bioavailability. The valuable applications of LMWH will continue to encourage researchers to identify efficient delivery systems that have specific release characteristics and ameliorated bioavailability, overcoming the challenges presented by biological obstructions and the physicochemical properties of LMWHs.
Collapse
Affiliation(s)
- Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Xinyu Wan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Gang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Samuel Kesse
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Shaoda Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Shuying He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv 2017; 15:223-233. [DOI: 10.1080/17425247.2017.1395853] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongqiang Kou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongbo Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianzhi Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Shrestha BK, Mousa HM, Tiwari AP, Ko SW, Park CH, Kim CS. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydr Polym 2016; 148:107-14. [DOI: 10.1016/j.carbpol.2016.03.094] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
13
|
Pérez YA, Urista CM, Martínez JI, Nava MDCD, Rodríguez FAR. Functionalized Polymers for Enhance Oral Bioavailability of Sensitive Molecules. Polymers (Basel) 2016; 8:E214. [PMID: 30979310 PMCID: PMC6432083 DOI: 10.3390/polym8060214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Currently, many sensitive molecules have been studied for effective oral administration. These substances are biologically active compounds that mainly suffer early degradation in the gastrointestinal tract (GIT) and physicochemical instability, inactivation and poor solubility and permeability. The sensibility of the biomolecules has limited their oral administration in the body and today is an important research topic to achieve desired effects in medicine field. Under this perspective, various enhancement approaches have been studied as alternatives to increase their oral bioavailability. Some of these strategies include functionalized polymers to provide specific useful benefits as protection to the intestinal tract by preventing its degradation by stomach enzymes, to increase their absorption, permeability, stability, and to make a proper release in the GIT. Due to specific chemical groups, shapes and sizes, morphologies, mechanical properties, and degradation, recent advances in functionalized polymers have opened the door to great possibilities to improve the physicochemical characteristics of these biopharmaceuticals. Today, many biomolecules are found in basic studies, preclinical steps, and others are late stage clinical development. This review summarizes the contribution of functionalized polymers to enhance oral bioavailability of sensitive molecules and their application status in medicine for different diseases. Future trends of these polymers and their possible uses to achieve different formulation goals for oral delivery are also covered in this manuscript.
Collapse
Affiliation(s)
- Yolanda Alvarado Pérez
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Claudia Muro Urista
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Javier Illescas Martínez
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - María Del Carmen Díaz Nava
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Francisco A Riera Rodríguez
- Departamento de Ingeniería Química y Tecnología de Medio Ambiente, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain.
| |
Collapse
|
14
|
Abstract
INTRODUCTION Anticoagulants have been prescribed to patients to prevent deep vein thrombosis or pulmonary embolism. However, because of several problems in anticoagulant therapy, much attention has been directed at developing an ideal anticoagulant, and numerous attempts have been made to develop new anticoagulant delivery systems in recent years. AREAS COVERED This review discusses the challenges associated with the recent development of anticoagulants and their delivery systems. Various delivery methods have been developed to improve the use of anticoagulants. Recent advances in anticoagulant delivery and antidote development are also discussed in the context of their current progression states. EXPERT OPINION There have been many different approaches to developing the delivery system of anticoagulants. One approach has been to expand the use of new oral agents and develop their antidotes. Reducing the size of heparins to use smaller heparins for delivery, and developing oral or topical heparins are also some of the approaches used. Various physical formulations or chemical modifications are other ways that have enhanced the therapeutic potential of anticoagulant agents. On the whole, recent advances have contributed to increasing the efficacy and safety of anticoagulant clinically and have benefited the field of anticoagulant delivery.
Collapse
Affiliation(s)
- Jooho Park
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Youngro Byun
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea.,b Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
15
|
Ibrahim SS, Osman R, Awad GAS, Mortada ND, Geneidy AS. Low molecular weight heparins for current and future uses: approaches for micro- and nano-particulate delivery. Drug Deliv 2015; 23:2661-2667. [DOI: 10.3109/10717544.2015.1046570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shaimaa S. Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassyia, Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassyia, Cairo, Egypt
| | - Gehanne A. S. Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassyia, Cairo, Egypt
| | - Nahed D. Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassyia, Cairo, Egypt
| | - Ahmed-Shawky Geneidy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassyia, Cairo, Egypt
| |
Collapse
|
16
|
Mahjub R, Heidari Shayesteh T, Radmehr M, Vafaei SY, Amini M, Dinarvand R, Dorkoosh FA. Preparation and optimization of N-trimethyl-O-carboxymethyl chitosan nanoparticles for delivery of low-molecular-weight heparin. Pharm Dev Technol 2014; 21:14-25. [PMID: 25255172 DOI: 10.3109/10837450.2014.965320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was preparation, optimization and in vitro characterization of nanoparticles composed of 6-[O-carboxymethyl]-[N,N,N-trimethyl] (TMCMC) for oral delivery of low-molecular-weight heparin. The chitosan derivative was synthesized. Nanoparticles were prepared using the polyelectrolyte complexation method. Box-Behnken response surface experimental design methodology was used for optimization of nanoparticles. The morphology of nanoparticles was studied using transmission electron microscopy. In vitro release of enoxaparin from nanoparticles was determined under simulated intestinal fluid. The cytotoxicity of nanoparticles on a Caco-2 cell line was determined, and finally the transport of prepared nanoparticles across Caco-2 cell monolayer was defined. Optimized nanoparticles with proper physico-chemical properties were obtained. The size, zeta potential, poly-dispersity index, entrapment efficiency and loading efficiency of nanoparticles were reported as 235 ± 24.3 nm, +18.6 ± 2.57 mV, 0.230 ± 0.03, 76.4 ± 5.43% and 12.6 ± 1.37%, respectively. Morphological studies revealed spherical nanoparticles with no sign of aggregation. In vitro release studies demonstrated that 93.6 ± 1.17% of enoxaparin released from nanoparticles after 600 min of incubation. MTT cell cytotoxicity studies showed no cytotoxicity at 3 h post-incubation, while the study demonstrated concentration-dependent cytotoxicity after 24 h of exposure. The obtained data had shown that the nanoparticles prepared from trimethylcarboxymethyl chitosan may be considered as a good candidate for oral delivery of enoxaparin.
Collapse
Affiliation(s)
- Reza Mahjub
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran .,b School of Pharmacy , Hamedan University of Medical Sciences , Hamedan , Iran
| | | | - Moojan Radmehr
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Seyed Yaser Vafaei
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohsen Amini
- c Department of Medicinal Chemistry, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran , and.,d Drug Design and Development Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Rasoul Dinarvand
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Farid Abedin Dorkoosh
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
17
|
Wang L, Sun Y, Shi C, Li L, Guan J, Zhang X, Ni R, Duan X, Li Y, Mao S. Uptake, transport and peroral absorption of fatty glyceride grafted chitosan copolymer-enoxaparin nanocomplexes: influence of glyceride chain length. Acta Biomater 2014; 10:3675-85. [PMID: 24814881 DOI: 10.1016/j.actbio.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
Abstract
The objective of this paper is to elucidate the influence of fatty glyceride chain length in chitosan copolymers on the peroral absorption of enoxaparin. First of all, a series of chitosan copolymers with glyceryl monocaprylate (GM8), glyceryl monolaurate (GM12) and glyceryl monostearate (GM18) as the hydrophobic part were synthesized. The structure of the copolymers was characterized using proton nuclear magnetic resonance. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that all the copolymers were non-toxic. Enoxaparin nanocomplexes were prepared by self-assembly. Mucoadhesion of the nanocomplexes was characterized using the mucin particle method. Nanocomplex uptake and transport were quantified in Caco-2 cells and cellular localization was visualized by confocal laser scanning microscopy. Enoxaparin uptake was enhanced by nanocomplex formation, and was dependent on incubation time, concentration, temperature and glyceride chain length. The GM8 grafted chitosan-enoxaparin nanocomplex exhibited the strongest bioadhesion and the best uptake and transport in both cell culture and in vivo absorption in rats. The uptake mechanism was assumed to be adsorptive endocytosis via clathrin- and caveolae-mediated processes. In conclusion, oral absorption of enoxaparin can be further enhanced by using GM8 grafted chitosan copolymer as the carrier to form nanocomplexes.
Collapse
|
18
|
Groo AC, Lagarce F. Mucus models to evaluate nanomedicines for diffusion. Drug Discov Today 2014; 19:1097-108. [DOI: 10.1016/j.drudis.2014.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 01/25/2023]
|
19
|
Wang L, Li L, Sun Y, Ding J, Li J, Duan X, Li Y, Junyaprasert VB, Mao S. In vitro and in vivo evaluation of chitosan graft glyceryl monooleate as peroral delivery carrier of enoxaparin. Int J Pharm 2014; 471:391-9. [PMID: 24882036 DOI: 10.1016/j.ijpharm.2014.05.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 01/02/2023]
Abstract
In this paper a novel copolymer, chitosan graft glyceryl monooleate (CS-GO) was synthesized and its potential as the nanocarrier for enhancing the peroral delivery of enoxaparin was studied systemically. The successful synthesis was characterized by (1)H NMR. Enoxaparin nanocomplexes were prepared by self-assembly. Mucoadhesive properties of the nanocomplexes were evaluated using mucin particle method. Uptake and transport of the nanocomplexes were investigated in Caco-2 cells. In vivo absorption was studied in rats. The therapeutic effects of the nanocomplexes were evaluated using pulmonary thromboembolism model in mice. This study demonstrated that compared to chitosan based system, hydrophobic modification of CS with GO enhanced the oral absorption of enoxaparin significantly, which is in good agreement with the enhanced mucoadhesion, cellular internalization and transport in cell culture. Cellular uptake of CS-GO based enoxaparin nanocomplexes was incubation time, enoxaparin concentration and incubation temperature dependent. The uptake mechanism was assumed to be adsorptive endocytosis via clathrin- and caveolae-mediated process. Its therapeutic efficacy was further demonstrated by pharmacodynamic study with pulmonary thromboembolism inhibition percentage 47.1%. In conclusion, CS-GO copolymer is a promising nanocarrier for enhancing the oral absorption of enoxaparin.
Collapse
Affiliation(s)
- Linlin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liang Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yujiao Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jiaojiao Ding
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinfeng Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaopin Duan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yaping Li
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Varaporn B Junyaprasert
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Autthaya, Rajathavee, Bangkok 10400, Thailand
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|