1
|
Flores CV, Chan SY. Therapeutic targets for pulmonary arterial hypertension: insights into the emerging landscape. Expert Opin Ther Targets 2025:1-17. [PMID: 40368635 DOI: 10.1080/14728222.2025.2507034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/21/2025] [Accepted: 05/13/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease driven by vascular remodeling, right ventricular (RV) dysfunction, and metabolic and inflammatory dysregulation. Current therapies primarily target vasodilation to relieve symptoms but do not reverse disease progression. The recent approval of sotatercept, which modulates BMP/TGF-β signaling, marks a shift toward anti-remodeling therapies. Building on this, recent preclinical advances have identified promising therapeutic targets and potentially disease-modifying treatments. AREAS COVERED This review synthesizes the evolving preclinical landscape of emerging PAH therapeutic targets and drugs, highlighting innovative approaches aimed at addressing the underlying mechanisms of disease progression. Additionally, we discuss novel therapeutic strategies under development. EXPERT OPINION Recent advances in PAH research have identified novel therapeutic targets beyond vasodilators, including modulation of BMP/TGF-β signaling, metabolic programs, epigenetics, cancer-related signaling, the extracellular matrix, and immune pathways, among others. Sotatercept represents a significant advance in therapies that go beyond vasodilation, and long-term safety, efficacy, and durability are being assessed. Future treatment strategies will focus on precision approaches, noninvasive technologies, and regenerative biology to improve outcomes and reverse vascular remodeling.
Collapse
Affiliation(s)
- Christopher V Flores
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Miteva D, Kitanova M, Velikova T. Biomacromolecules as Immunomodulators: Utilizing Nature’s Tools for Immune Regulation. MACROMOL 2024; 4:610-633. [DOI: 10.3390/macromol4030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Although there are numerous available immunomodulators, those of natural origin would be preferable based on their safety profile and effectiveness. The research and clinical interest in immunomodulators have increased in the last decades, especially in the immunomodulatory properties of plant-based therapies. Innovative technologies and extensive study on immunomodulatory natural products, botanicals, extracts, and active moieties with immunomodulatory potential could provide us with valuable entities to develop as novel immunomodulatory medicines to enhance current chemotherapies. This review focuses on plant-based immunomodulatory drugs that are currently in clinical studies. However, further studies in this area are of utmost importance to obtain complete information about the positive effects of medicinal plants and their chemical components and molecules as an alternative to combatting various diseases and/or prevention.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
3
|
Singh D, Singh R, Akindele AJ. Therapeutic potential of nicorandil beyond anti-anginal drug: A review on current and future perspectives. Heliyon 2024; 10:e28922. [PMID: 38617945 PMCID: PMC11015415 DOI: 10.1016/j.heliyon.2024.e28922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Nicorandil (NIC) is a well-known anti-anginal agent, which has been recommended as one of the second-line treatments for chronic stable angina as justified by the European guidelines. It shows an efficacy equivalent to that of classic anti-anginal agents. NIC has also been used clinically in various cardiovascular diseases such as variant or unstable angina and reperfusion-induced damage following coronary angioplasty or thrombolysis. Different mechanisms have been involved in the protective effects of nicorandil in various diseases, including opening of adenosine triphosphate-sensitive potassium (KATP) channel and donation of nitric oxide (NO). In recent years, NIC has been found to show numerous pharmacological activities such as neuroprotective, nephroprotective, hepatoprotective, cardioprotective, and testicular protective effects, among other beneficial effects on the body. The present review dwells on the pharmacological potentials of NIC beyond its anti-anginal action.
Collapse
Affiliation(s)
- Dhirendra Singh
- M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India
| | - Randhir Singh
- Departments of Pharmacology, Central University of Punjab, Bhatinda, Punjab, India
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
4
|
Gong ZT, Xiong YY, Ning Y, Tang RJ, Xu JY, Jiang WY, Li XS, Zhang LL, Chen C, Pan Q, Hu MJ, Xu J, Yang YJ. Nicorandil-Pretreated Mesenchymal Stem Cell-Derived Exosomes Facilitate Cardiac Repair After Myocardial Infarction via Promoting Macrophage M2 Polarization by Targeting miR-125a-5p/TRAF6/IRF5 Signaling Pathway. Int J Nanomedicine 2024; 19:2005-2024. [PMID: 38469055 PMCID: PMC10926597 DOI: 10.2147/ijn.s441307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
Background Exosomes derived from bone marrow mesenchymal stem cells (MSC-exo) have been considered as a promising cell-free therapeutic strategy for ischemic heart disease. Cardioprotective drug pretreatment could be an effective approach to improve the efficacy of MSC-exo. Nicorandil has long been used in clinical practice for cardioprotection. This study aimed to investigate whether the effects of exosomes derived from nicorandil pretreated MSC (MSCNIC-exo) could be enhanced in facilitating cardiac repair after acute myocardial infarction (AMI). Methods MSCNIC-exo and MSC-exo were collected and injected into the border zone of infarcted hearts 30 minutes after coronary ligation in rats. Macrophage polarization was detected 3 days post-infarction, cardiac function as well as histological pathology were measured on the 28th day after AMI. Macrophages were separated from the bone marrow of rats for in vitro model. Exosomal miRNA sequencing was conducted to identify differentially expressed miRNAs between MSCNIC-exo and MSC-exo. MiRNA mimics and inhibitors were transfected to MSCs or macrophages to explore the specific mechanism. Results Compared to MSC-exo, MSCNIC-exo showed superior therapeutic effects on cardiac functional and structural recovery after AMI and markedly elevated the ratio of CD68+ CD206+/ CD68+cells in infarcted hearts 3 days post-infarction. The notable ability of MSCNIC-exo to promote macrophage M2 polarization was also confirmed in vitro. Exosomal miRNA sequencing and both in vivo and in vitro experiments identified and verified that miR-125a-5p was an effector of the roles of MSCNIC-exo in vivo and in vitro. Furthermore, we found miR-125a-5p promoted macrophage M2 polarization by inhibiting TRAF6/IRF5 signaling pathway. Conclusion This study suggested that MSCNIC-exo could markedly facilitate cardiac repair post-infarction by promoting macrophage M2 polarization by upregulating miR-125a-5p targeting TRAF6/IRF5 signaling pathway, which has great potential for clinical translation.
Collapse
Affiliation(s)
- Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Jun-Yan Xu
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Xiao-Song Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Meng-Jin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| |
Collapse
|
5
|
Sun F, Zhang L, Shen L, Wang C. Network Pharmacology Analysis of the Therapeutic Potential of Colchicine in Acute Lung Injury. Int J Clin Pract 2024; 2024:9940182. [PMID: 38352962 PMCID: PMC10864054 DOI: 10.1155/2024/9940182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Background This study employed integrated network pharmacology approach to explore the mechanisms underlying the protective effect of colchicine against acute lung injury (ALI). Methods We analyzed the expression profiles from 13 patients with sepsis-related ALI and 21 controls to identify differentially expressed genes and key modules. ALI-related genes were curated using databases such as DisGeNET, Therapeutic Target, and Comparative Toxicogenomics Database to curate ALI-related genes. Drug target fishing for colchicine was conducted using the DrugBank, BATMAN-TCM, STITCH, and SwissTargetPrediction. Potential drug-disease interactions were determined by intersecting ALI-associated genes with colchicine target genes. We performed comprehensive pathway and process enrichment analyses on these genes. A protein-protein interaction network was constructed, and topological analysis was executed. Additionally, an ALI mouse model was established to evaluate the effect of colchicine on CXCL12 and CXCR4 levels through western blot analysis. Results Analysis revealed 23 potential colchicine-ALI interaction genes from the intersection of 253 ALI-associated genes and 389 colchicine targets. Functional enrichment analysis highlighted several inflammation-related pathways, such as cytokine-mediated signaling pathway, CXCR chemokine receptor binding, NF-kappa B signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. The protein-protein interaction network demonstrated complex interactions for CXCL12 and CXCR4 among other candidate genes, with significant topological interaction degrees. In vivo studies showed that colchicine significantly reduced elevated CXCL12 and CXCR4 levels in ALI mice. Conclusion Our findings suggest that colchicine's therapeutic effect on ALI might derive from its anti-inflammatory properties. Further research is needed to explore the specific mechanisms of colchicine's interaction with sepsis-induced ALI.
Collapse
Affiliation(s)
- Fei Sun
- Department of Anaesthesiology, Children's Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Lijuan Zhang
- Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Lulu Shen
- Department of Anesthesiology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, No. 66 Huaihai South Road, Huai'an, Jiangsu, China
| | - Chunman Wang
- Pain Department, Hengshui People's Hospital, 180 People's East Road, Hengshui, Hebei, China
| |
Collapse
|
6
|
Gugliandolo E, Macrì F, Fusco R, Siracusa R, Cordaro M, D'amico R, Peritore AF, Impellizzeri D, Genovese T, Cuzzocrea S, Di Paola R, Crupi R. Inhibiting IL-6 in medicine: a new twist to sustain inhibition of his cytokine tin the therapy of Pulmonary Arterial Hypertension. Pharmacol Res 2023; 192:106750. [PMID: 37004831 DOI: 10.1016/j.phrs.2023.106750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, progressive disease characterized by an increase in blood pressure in the lungs' arteries. It can occur in a variety of species, including humans, dogs, cats, and horses. To date, PAH has a high mortality rate in both veterinary and human medicine, often due to complications such as heart failure. The complex pathological mechanisms of PAH involve multiple cellular signalling pathways at various levels. IL-6 is a powerful pleiotropic cytokine that regulates several phases of immune response, inflammation, and tissue remodelling. The hypothesis of this study was that the use of an IL-6 antagonist in PAH could interrupt or mitigate the cascade of events that leads to the progression of the disease and the worsening of clinical outcome, as well as tissue remodelling. In this study, we used two pharmacological protocols with an IL-6 receptor antagonist in a monocrotaline-induced PAH model in rats. Our results showed that the use of an IL-6 receptor antagonist had a significant protective effect, ameliorating both haemodynamic parameters, lung and cardiac function, tissue remodelling, and the inflammation associated with PAH. The results of this study suggest that the inhibition IL-6 could be a useful pharmacological strategy in PAH, in both human and veterinary medicine.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Ramona D'amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| |
Collapse
|
7
|
Sykora M, Andelova K, Szeiffova Bacova B, Egan Benova T, Martiskova A, Knezl V, Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules 2023; 13:biom13020330. [PMID: 36830700 PMCID: PMC9953310 DOI: 10.3390/biom13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.
Collapse
|
8
|
Wang Z, Zu X, Xiong S, Mao R, Qiu Y, Chen B, Zeng Z, Chen M, He Y. The Role of Colchicine in Different Clinical Phenotypes of Behcet Disease. Clin Ther 2023; 45:162-176. [PMID: 36732153 DOI: 10.1016/j.clinthera.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Behcet disease (BD) is a multisystemic disorder characterized by variable clinical manifestations that affect nearly all systems and organs. Colchicine, an alkaloid plant extract, is considered as the first-line therapy for gout, pericarditis, and familial Mediterranean fever. However, the role of colchicine in the treatment of different clinical phenotypes of BD has not been clearly described. This narrative review summarizes the clinical use of colchicine in BD. METHODS All relevant literature from 1980 to March 2021 was searched in PubMed, MEDLINE, and Cochrane Library. The Medical Subject Heading terms and related words that were searched are as follows: Behcet's disease, Behcet's syndrome, BD, colchicine, management, treatment, and therapy. FINDINGS BD is an autoimmune systemic vasculitis with various clinical phenotypes, with involvement of skin mucosa, joints, eyes, and gastrointestinal, vascular, and neurologic systems. Colchicine has been used for centuries, acts by binding to tubulin to prevent the mitotic process, and has anti-inflammatory, antitumor, and antifibrotic properties. Colchicine has been reported to be an effective option for the treatment of skin, mucosal, and joint involvement in patients with certain BD clinical phenotypes. IMPLICATIONS Colchicine reduces the severity of certain clinical phenotypes and may improve the overall disease activity index in patients with BD. More randomized clinical trials are needed to confirm the value of colchicine in the treatment of BD, and further elucidation of the mechanisms is also needed, which may reveal new application of colchicine that has been used for centuries.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoman Zu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Le Ribeuz H, Masson B, Dutheil M, Boët A, Beauvais A, Sabourin J, De Montpreville VT, Capuano V, Mercier O, Humbert M, Montani D, Antigny F. Involvement of SUR2/Kir6.1 channel in the physiopathology of pulmonary arterial hypertension. Front Cardiovasc Med 2023; 9:1066047. [PMID: 36704469 PMCID: PMC9871631 DOI: 10.3389/fcvm.2022.1066047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Aims We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Antoine Beauvais
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Orsay, France
| | | | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
10
|
Zhao Y, Liu X, Ding C, Zheng Y, Zhu H, Cheng Z, Zhao C, Liu W. Aronia melanocarpa polysaccharide ameliorates liver fibrosis through TGF-β1-mediated the activation of PI3K/AKT pathway and modulating gut microbiota. J Pharmacol Sci 2022; 150:289-300. [PMID: 36344052 DOI: 10.1016/j.jphs.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this experiment was to investigate the anti-hepatic fibrosis effect of Aronia melanocarpa polysaccharide (AMP) on TAA-induced liver fibrosis mice and its mechanism, as well as the changes in intestinal flora in vivo. This was established with a dose of 200 mg/kg TAA (i.p) once every three days, lasting for eight weeks. Colchicine with 0.4 mg/kg, and AMP (200 and 400 mg/kg) were given by intragastric administration (i.g) after 28 days of intraperitoneal injection of TAA. AMP treatment significantly inhibited the activities of liver injury markers ALT and AST in serum. Histopathological staining demonstrated that AMP significantly reversed TAA-induced hepatocyte necrosis and collagen deposition. In addition, AMP treatment block TGF- β1/Smads pathway inhibited the production of ECM and alleviates liver fibrosis. Furthermore, AMP treatment enhanced the phosphorylation of PI3K/AKT and decreased the expression of its downstream apoptosis-related proteins in liver, thus effectively alleviating TAA-induced liver fibrosis. In addition, 16S rDNA gene sequencing analysis showed that AMP treatment helped restore the imbalanced ecosystem of gut microbes, increased the proportion of Bacteroidetes and Proteobacteria, and increased species richness. Above findings clearly show that AMP is an effective method for treating liver fibrosis, possibly by improving the gut microbiota.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xinglong Liu
- College of Chinese Traditional Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Chuanbo Ding
- College of Chinese Traditional Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhiqiang Cheng
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Chunli Zhao
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Zhang D, Li L, Li J, Wei Y, Tang J, Man X, Liu F. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats. Biomed Pharmacother 2022; 153:113461. [DOI: 10.1016/j.biopha.2022.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
|
12
|
Alsultan M, Obeid A, Alsamarrai O, Anan MT, Bakr A, Soliman N, Kurdy M, Mosa MH, Saleh Z, Hujij F, Barhoum J. Efficacy of Colchicine and Budesonide in Improvement Outcomes of Patients with Coronavirus Infection 2019 in Damascus, Syria: A Randomized Control Trial. Interdiscip Perspect Infect Dis 2021; 2021:2129006. [PMID: 34984065 PMCID: PMC8720363 DOI: 10.1155/2021/2129006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
COVID-19 was reported in China in 2019 and has spread worldwide. Transmission occurs through respiratory secretions and, less commonly, through contaminated surfaces. The severity of the disease can range from asymptomatic to acute respiratory distress syndrome (ARDS). In this study, we aim to investigate the efficacy of two agents (oral colchicine and budesonide inhaler) in COVID-19 infection management, compared with supportive care alone. 77 patients were admitted to the isolation section of Al Assad University Hospital, between the 1st of August and the 30th of August. A total of 49 patients were included in this randomized control trial, after excluding ineligible patients. The random sample was divided into three groups; the first group was supportive care plus colchicine, the second group was supportive care plus budesonide inhaler, and the control group was supportive care alone. PaO2/FiO2 was improved in the budesonide group, higher than the supportive and colchicine groups. The median hospitalization days were shorter when using colchicine or budesonide, opposed to supportive care alone (8 vs 10 days, respectively). 34 patients (69.3%) were discharged, and 27 patients (55.1%) were followed up until they were weaned from oxygen and made a complete recovery. There was a significant decrease in mortality with colchicine (3 patients; 21.4%) compared with supportive care (7 patients; 33.3%) and the budesonide group (5 patients; 35.7%).
Collapse
Affiliation(s)
- Mohammad Alsultan
- Department of Nephrology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Ameer Obeid
- Department of Infectious Diseases, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Omar Alsamarrai
- Department of Neurology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | | | - Aliaa Bakr
- Department of Oncology, Al Biruni University Hospital, Damascus, Syria
| | - Nawwar Soliman
- Department of Internal Medicine, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Mamdoh Kurdy
- Department of Oncology, Al Biruni University Hospital, Damascus, Syria
| | - Muhannad Hag Mosa
- Department of Internal Medicine, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Zain Saleh
- Department of Neurology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Fatima Hujij
- Department of Internal Medicine, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| | - Jafar Barhoum
- Department of Rheumatology, Al Assad and Al Mouwasat University Hospitals, Damascus, Syria
| |
Collapse
|
13
|
New Insights into Pulmonary Hypertension: A Role for Connexin-Mediated Signalling. Int J Mol Sci 2021; 23:ijms23010379. [PMID: 35008804 PMCID: PMC8745497 DOI: 10.3390/ijms23010379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension is a serious clinical condition characterised by increased pulmonary arterial pressure. This can lead to right ventricular failure which can be fatal. Connexins are gap junction-forming membrane proteins which serve to exchange small molecules of less than 1 kD between cells. Connexins can also form hemi-channels connecting the intracellular and extracellular environments. Hemi-channels can mediate adenosine triphosphate release and are involved in autocrine and paracrine signalling. Recently, our group and others have identified evidence that connexin-mediated signalling may be involved in the pathogenesis of pulmonary hypertension. In this review, we discuss the evidence that dysregulated connexin-mediated signalling is associated with pulmonary hypertension.
Collapse
|
14
|
Kamel NA, Ismail NSM, Yahia IS, Aboshanab KM. Potential Role of Colchicine in Combating COVID-19 Cytokine Storm and Its Ability to Inhibit Protease Enzyme of SARS-CoV-2 as Conferred by Molecular Docking Analysis. Medicina (B Aires) 2021; 58:medicina58010020. [PMID: 35056328 PMCID: PMC8781828 DOI: 10.3390/medicina58010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the advance in the management of Coronavirus disease 2019 (COVID-19), the global pandemic is still ongoing with a massive health crisis. COVID-19 manifestations may range from mild symptoms to severe life threatening ones. The hallmark of the disease severity is related to the overproduction of pro-inflammatory cytokines manifested as a cytokine storm. Based on its anti-inflammatory activity through interfering with several pro and anti-inflammatory pathways, colchicine had been proposed to reduce the cytokine storm and subsequently improve clinical outcomes. Molecular docking analysis of colchicine against RNA-dependent RNA polymerase (RdRp) and protease enzymes of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) revealed that colchicine provided a grid-based molecular docking method, C-DOCKER interaction energy 64.26 and 47.53 (Kcal/mol) with protease and RdRp, respectively. This finding indicated higher binding stability for colchicine–protease complexes than the colchicine–RdRp complex with the involvement of seven hydrogen bonds, six hydrogen acceptors with Asn142, Gly143, Ser144, and Glu166 and one hydrogen-bond donors with Cys145 of the protease enzyme. This is in addition to three hydrophobic interactions with His172, Glu166, and Arg188. A good alignment with the reference compound, Boceprevir, indicated high probability of binding to the protease enzyme of SARS-CoV-2. In conclusion, colchicine can ameliorate the destructive effect of the COVID-19 cytokine storm with a strong evidence of antiviral activity by inhibiting the protease enzyme of SARS-CoV-2.
Collapse
Affiliation(s)
- Noha A. Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt;
| | - Nasser S. M. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt;
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University (ASU), Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Abbassia, Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-1-0075-82620; Fax: +20-2-2405110
| |
Collapse
|
15
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
16
|
Siak J, Flint N, Shmueli HG, Siegel RJ, Rader F. The Use of Colchicine in Cardiovascular Diseases: A Systematic Review. Am J Med 2021; 134:735-744.e1. [PMID: 33609528 DOI: 10.1016/j.amjmed.2021.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 01/16/2023]
Abstract
The medicinal properties of colchicine have been recognized for centuries. Although previously used for gout and familial Mediterranean fever, its immune-modulating, anti-inflammatory, and antifibrotic effects are increasingly recognized as beneficial in the treatment of cardiovascular disorders. In this systematic review, we summarize the current evidence on colchicine's effectiveness in 1) pericarditis, 2) coronary artery disease, and 3) atrial fibrillation. We also discuss the safety, potential adverse effects, and common drug interactions that should be considered during use.
Collapse
Affiliation(s)
- Jessica Siak
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Nir Flint
- Department of Cardiology, Tel Aviv Sourasky Medical Center affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Hezzy G Shmueli
- Department of Cardiology, Tel Aviv Sourasky Medical Center affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Robert J Siegel
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, Calif
| | - Florian Rader
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, Calif.
| |
Collapse
|
17
|
Abel D, Ardoin SP, Gorelik M. The potential role of Colchicine in preventing coronary vascular disease in childhood-onset lupus: a new view on an old drug. Pediatr Rheumatol Online J 2021; 19:15. [PMID: 33593369 PMCID: PMC7885423 DOI: 10.1186/s12969-021-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/08/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Patients with systemic lupus erythematous have a significantly increased risk of cardiovascular disease, which is not fully explained by traditional cardiovascular disease risk factors. Despite increasing life expectancy in patients with systemic lupus erythematous, mortality due to cardiovascular disease, the major cause of death in these patients, has not changed. Children with lupus suffer from more aggressive disease compared to their adult counterparts, and there is a growing concern for their increased risk of cardiovascular disease as they age. BODY: There is an unmet need for therapies to address the increased risk of cardiovascular disease in childhood-onset lupus. Colchicine has many anti-inflammatory and cardiovascular protective properties, including inhibition of IL-1β and IL-18 activity, key proinflammatory cytokines that are predictive of future adverse cardiovascular events. In the Colchicine Cardiovascular Outcomes Trial (COLCOT), colchicine was recently found to have significant benefit with minimal risk in adults with previous myocardial infarction for prevention of secondary vascular disease. While adult studies are promising, no studies have been conducted in pediatric patients to investigate colchicine's potential for cardiovascular protection in children and adolescents with lupus. CONCLUSIONS Studies investigating colchicine's potential role for cardiovascular protection are needed in pediatric patients with systemic lupus erythematous.
Collapse
Affiliation(s)
- Dori Abel
- Department of Pediatrics, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY, 10032-3702, USA.
| | - Stacy P. Ardoin
- grid.261331.40000 0001 2285 7943Department of Medicine, Division of Rheumatology and Immunology, The Ohio State University, 370 W. 9th Ave, Columbus, OH 43210 USA ,grid.240344.50000 0004 0392 3476Department of Rheumatology, Nationwide Children’s Hospital, 700 Children’s Dr, Columbus, OH 43205 USA
| | - Mark Gorelik
- grid.21729.3f0000000419368729Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY 10032-3702 USA
| |
Collapse
|
18
|
Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for Right Ventricular Function. Int J Mol Sci 2021; 22:ijms22030987. [PMID: 33498172 PMCID: PMC7863922 DOI: 10.3390/ijms22030987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.
Collapse
|
19
|
Correa-Sadouet C, Rodríguez-Granillo AM, Gallardo C, Mieres J, Fontana L, Curotto MV, Wainer P, Allende NG, Fernández-Pereira C, M Vetulli H, la Hoz RPD, Kastrati A, Rodríguez AE. Randomized comparison between bare-metal stent plus colchicine versus drug-eluting stent alone in prevention of clinical adverse events after percutaneous coronary intervention. Future Cardiol 2020; 17:539-547. [PMID: 33174761 DOI: 10.2217/fca-2020-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of colchicine is associated with a significant reduction of cardiac adverse events in patients with coronary artery disease. Past small randomized trials with oral immunosuppressive or anti-inflammatory therapies have demonstrated a reduction of adverse clinical events after bare metal stent implantation. The potential role of adjunctive colchicine after bare-metal stent implantation, compared with drug-eluting stent alone, is unknown. The primary end point of the study will be to compare cost-effectiveness at 1 year of follow-up of coronary intervention with bare-metal stent implantation plus 1 mg of colchicine during 3 months versus percutaneous coronary intervention with drug-eluting stent implantation alone. ClinicalTrials.gov identifier: NCT04382443.
Collapse
Affiliation(s)
| | - A Matías Rodríguez-Granillo
- Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina.,Interventional Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina.,Centro de Estudios en Cardiología Intervencionista, Ciudad de Buenos Aires, Argentina
| | - Camila Gallardo
- Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina
| | - Juan Mieres
- Interventional Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina.,Centro de Estudios en Cardiología Intervencionista, Ciudad de Buenos Aires, Argentina
| | - Lucía Fontana
- Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina
| | | | - Pedro Wainer
- Internal Medicine Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina
| | - N Gustavo Allende
- Cardiology Department, Clínica IMA, Adrogué, Provincia de Buenos Aires, Argentina
| | - Carlos Fernández-Pereira
- Interventional Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina.,Centro de Estudios en Cardiología Intervencionista, Ciudad de Buenos Aires, Argentina
| | - Héctor M Vetulli
- Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina
| | - R Pérez de la Hoz
- Cardiology Department, Hospital de Clínicas José de San Martín, Ciudad de Buenos Aires, Argentina
| | | | - Alfredo E Rodríguez
- Interventional Cardiology Department, Sanatorio Otamendi, Ciudad de Buenos Aires, Argentina.,Centro de Estudios en Cardiología Intervencionista, Ciudad de Buenos Aires, Argentina
| | | |
Collapse
|
20
|
Prins KW, Thenappan T, Weir EK, Kalra R, Pritzker M, Archer SL. Repurposing Medications for Treatment of Pulmonary Arterial Hypertension: What's Old Is New Again. J Am Heart Assoc 2020; 8:e011343. [PMID: 30590974 PMCID: PMC6405714 DOI: 10.1161/jaha.118.011343] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt W Prins
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Thenappan Thenappan
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - E Kenneth Weir
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Rajat Kalra
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Marc Pritzker
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | | |
Collapse
|
21
|
Aral CA, Aral K, Yay A, Özçoban Ö, Berdeli A, Saraymen R. Effects of colchicine on gingival inflammation, apoptosis, and alveolar bone loss in experimental periodontitis. J Periodontol 2019. [PMID: 29520818 DOI: 10.1002/jper.17-0359] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of the study was to investigate the effects of colchicine on cytokine production, apoptosis, alveolar bone loss, and oxidative stress in an experimental model of periodontitis in rats. METHODS Forty-eight rats were divided equally into four groups: healthy (H); periodontitis (P); periodontitis+colchicine low dose (CL, 30 μg/kg/day), and periodontitis+colchicine high dose (CH, 100 μg/kg/day). After 11 days, interleukin (IL) -1β, IL-8, and IL-10 were analyzed in gingival samples using Enzyme-Linked ImmunoSorbent Assay. Receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), total oxidative stress (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) were measured in gingiva and serum. Alveolar bone volume was evaluated via micro-CT. Apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in histological sections. RESULTS Colchicine treatment significantly reduced IL-1β, IL-8, RANKL, RANKL/OPG, TOS, OSI, and bone volume ratio levels, and increased TAS levels compared to group P (p < 0.05). High dose colchicine treatment (CH) significantly decreased TUNEL+ cell counts compared to group P (p < 0.05). CONCLUSIONS These finding suggest that colchicine has a prophylactic potential for the prevention of periodontal tissue destruction through anti-inflammatory, anti-oxidative, anti-apoptotic, and bone-protective effects.
Collapse
Affiliation(s)
- Cüneyt Asım Aral
- Division of Periodontics, Malatya Oral and Dental Heath Hospital, Malatya, Turkey
| | - Kübra Aral
- Division of Periodontics, Malatya Oral and Dental Heath Hospital, Malatya, Turkey
| | - Arzu Yay
- Department of Histology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Özçoban
- Department of Histology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Afig Berdeli
- Department of Paediatrics, Faculty of Medicine, Molecular Medicine Laboratory, Ege University, Izmir, Turkey
| | - Recep Saraymen
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Lindman J, Khammy MM, Lundegaard PR, Aalkjær C, Jepps TA. Microtubule Regulation of Kv7 Channels Orchestrates cAMP-Mediated Vasorelaxations in Rat Arterial Smooth Muscle. Hypertension 2017; 71:336-345. [PMID: 29279314 DOI: 10.1161/hypertensionaha.117.10152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/01/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Microtubules can regulate GPCR (G protein-coupled receptor) signaling in various cell types. In vascular smooth muscle, activation of the β-adrenoceptor leads to production of cAMP to mediate a vasorelaxation. Little is known about the role of microtubules in smooth muscle, and given the importance of this pathway in vascular smooth muscle cells, we investigated the role of microtubule stability on β-adrenoceptor signaling in rat renal and mesenteric arteries. In isometric tension experiments, incubation with the microtubule inhibitors colchicine and nocodazole enhanced isoprenaline-mediated relaxations of renal and mesenteric arteries that the microtubule stabilizer, paclitaxel, prevented. Sharp microelectrode experiments showed that colchicine treatment caused increased hyperpolarization of mesenteric artery segments in response to isoprenaline. Application of the Kv7 channel blocker, XE991, attenuated the effect of colchicine on isoprenaline relaxations, whereas iberiotoxin-a BKCa channel blocker-had no effect. In addition, colchicine improved the relaxations to the Kv7.2 to 7.5 activator, S-1, in both renal and mesenteric artery segments compared with dimethyl sulfoxide incubation. We determined that increased mesenteric artery myocytes treated with colchicine showed increased Kv7.4 membrane expression, but Western blot analysis showed no change in total Kv7.4 protein. This study is the first to show microtubule disruption improves the β-adrenoceptor-mediated relaxations of mesenteric and renal arteries and determine this enhancement to be because of increased membrane expression of the Kv7 voltage-gated potassium channels.
Collapse
Affiliation(s)
- Johanna Lindman
- From the Department of Biomedical Sciences, Ion Channels Group, University of Copenhagen, Denmark (J.L., M.M.K., P.R.L., C.A., T.A.J.); and Department of Biomedicine, Aarhus University, Denmark (M.M.K., C.A.)
| | - Makhala M Khammy
- From the Department of Biomedical Sciences, Ion Channels Group, University of Copenhagen, Denmark (J.L., M.M.K., P.R.L., C.A., T.A.J.); and Department of Biomedicine, Aarhus University, Denmark (M.M.K., C.A.)
| | - Pia R Lundegaard
- From the Department of Biomedical Sciences, Ion Channels Group, University of Copenhagen, Denmark (J.L., M.M.K., P.R.L., C.A., T.A.J.); and Department of Biomedicine, Aarhus University, Denmark (M.M.K., C.A.)
| | - Christian Aalkjær
- From the Department of Biomedical Sciences, Ion Channels Group, University of Copenhagen, Denmark (J.L., M.M.K., P.R.L., C.A., T.A.J.); and Department of Biomedicine, Aarhus University, Denmark (M.M.K., C.A.)
| | - Thomas A Jepps
- From the Department of Biomedical Sciences, Ion Channels Group, University of Copenhagen, Denmark (J.L., M.M.K., P.R.L., C.A., T.A.J.); and Department of Biomedicine, Aarhus University, Denmark (M.M.K., C.A.).
| |
Collapse
|
23
|
Sekmenli T, Gunduz M, Öztürk B, Karabağlı P, Ciftci I, Tekin G, Yılmaz M. The effects of melatonin and colchicine on ischemia-reperfusion injury in experimental rat testicular torsion model. J Pediatr Surg 2017; 52:582-586. [PMID: 27899171 DOI: 10.1016/j.jpedsurg.2016.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the present study is to investigate the efficiency of colchicine and melatonın in an experimental rat testicular torsion model in the light of histological and biochemical data. METHODS A total of 34 Wistar albino male rats were randomly divided into 5 groups as: Group C (control, n=6), Group S (sham; underwent only left scrotal exploration, n=7), Group TD (torsion and detorsion; 6h of ischemia and 7days of reperfusion, n=7), Group TD/M (TD+Melatonin; 6h of ischemia and 7days of reperfusion and 7days of 17mg/kg intraperitoneal melatonin per day, n=7), group TD/Col (TD+Colchicine; 6h of ischemia and 7days of reperfusion and 7days of 1mg/kg oral colchicine per day, n=7). Histopathologic evaluation of seminiferous tubule deterioration was performed by Johnsen's scoring system. Total antioxidant status (TAS), total oxidant status (TOS), IL-6, TNF alpha levels were analyzed in each group. RESULTS The histopathologic scores, total antioxidant status (TAS), total oxidant status (TOS), IL-6, TNF alpha levels in groups C and TD/Col were significantly lower than groups TD and TD/M (P<.001). CONCLUSION Our study results revealed that colchicine reduced testicular ischemia-reperfusion injury in experimental rat testis torsion model. Although detorsion of testis is crucial for the preserving the testicular viability, antioxidant and anti-inflammatory treatment modalities like colchicine might help to reduce ischemia-reperfusion injury in detorsed testis.
Collapse
Affiliation(s)
- Tamer Sekmenli
- Selcuk University Faculty of Medicine, Department of Pediatric Surgery.
| | - Metin Gunduz
- Selcuk University Faculty of Medicine, Department of Pediatric Surgery
| | - Bahadır Öztürk
- Selcuk University Faculty of Medicine, Department of Medical Biochemistry
| | - Pınar Karabağlı
- Selcuk University Faculty of Medicine, Department of Pathology
| | - Ilhan Ciftci
- Selcuk University Faculty of Medicine, Department of Pediatric Surgery
| | - Gülsüm Tekin
- Selcuk University Faculty of Medicine, Department of Medical Biochemistry
| | - Mustafa Yılmaz
- Selcuk University Faculty of Medicine, Department of Histology
| |
Collapse
|
24
|
Zhang YQ, Tian F, Chen JS, Chen YD, Zhou Y, Li B, Ma Q, Zhang Y. Delayed reendothelialization with rapamycin is rescued by the addition of nicorandil in balloon-injured rat carotid arteries. Oncotarget 2016; 7:75926-75939. [PMID: 27713157 PMCID: PMC5342788 DOI: 10.18632/oncotarget.12444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023] Open
Abstract
Rapamycin is an immunosuppressive agent that is added to drug eluting stents. It prevents restenosis, but it also impairs reendothelialization. Nicorandil is a hybrid agent with adenosine triphosphated (ATP)-sensitive K+ (KATP) channel opener and nitrate properties. It prevents oxidative stress and cell apoptosis induced by rapamycin in endothelial cells in vitro. However, whether nicorandil promotes reendothelialization after angioplasty delayed by rapamycin remains to be determined. Balloon injury model was established in SD rats. Nicorandil increased reendothelialization impaired by rapamycin, and it decreased xanthine oxidase (XO)-generated reactive oxygen species (ROS) induced by rapamycin. In addition, eNOS expression inhibited by rapamycin was increased by nicorandil in vivo. In vitro, rapamycin-impeded cardiac microvascular endothelial cells (CMECs) migration, proliferation and rapamycin-induced ROS production were reversed by nicorandil. Knockdown of XO partially inhibited rapamycin-induced ROS production and cell apoptosis in CMECs, and it promoted CMECs migration and proliferation suppressed by rapamycin. Knockdown of Akt partially prevents eNOS upregulation promoted by nicorandil. The beneficial effect of nicorandil is exhibited by inhibiting XO and up-regulating Akt pathway. Nicorandil combined with rapamycin in effect rescue the deficiencies of rapamycin alone in arterial healing after angioplasty.
Collapse
Affiliation(s)
- Ying Qian Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jin Song Chen
- Department of Cardiology, Chinese PLA 175th Hospital, Fujian, China.,Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yun Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhou
- VIP Medical Service Department, Beijing Shijitan Hospital, Beijing, China.,Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Bo Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model. Acta Pharmacol Sin 2016; 37:772-82. [PMID: 27180980 DOI: 10.1038/aps.2016.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/08/2016] [Indexed: 12/28/2022]
Abstract
AIM The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. METHODS PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg(-1)·d(-1)) or a positive control bosentan (30 mg·kg(-1)·d(-1)) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. RESULTS Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. CONCLUSION SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH.
Collapse
|
26
|
Zhang YQ, Tian F, Zhou Y, Chen YD, Li B, Ma Q, Zhang Y. Nicorandil attenuates carotid intimal hyperplasia after balloon catheter injury in diabetic rats. Cardiovasc Diabetol 2016; 15:62. [PMID: 27059601 PMCID: PMC4826484 DOI: 10.1186/s12933-016-0377-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic patients suffer from undesired intimal hyperplasia after angioplasty. Nicorandil has a trend to reduce the rate of target lesion revascularization. However, whether nicorandil inhibits intimal hyperplasia and the possible mechanisms underlying it remain to be determined. We aimed at assessing the effect of nicorandil on intimal hyperplasia in diabetic rats. METHODS After intraperitoneal injection of streptozotocin (STZ, 50 mg/kg), balloon injury model was established in carotid arteries of diabetic rats. Rats were randomized to vehicle, nicorandil (15 mg/kg/day) or 5-hydroxydecanoate (5-HD, 10 mg/kg/day), a mitochondrial ATP-sensitive potassium channel (mitoKATP channel)-selective antagonist. Perivascular delivery of εPKC siRNA was conducted to determine the role of εPKC pathway in intimal hyperplasia. In hyperglycemia environment (25 mM glucose), primary culture of vascular smooth muscle cells (VSMCs) were treated with nicorandil or 5-HD. Cell proliferation and cell migration were analyzed. RESULTS Intimal hyperplasia significantly increased 14 days after balloon injury in diabetic rats (p < 0.01). Nicorandil inhibited intima development, reduced inflammation and prevented cell proliferation in balloon-injured arteries (p < 0.01). The protective effects of nicorandil were reversed by 5-HD (p < 0.05). εPKC was activated in balloon-injured arteries (p < 0.01). Nicorandil inhibited εPKC activation by opening mitoKATP channel. Perivascular delivery of εPKC siRNA inhibited intimal hyperplasia, inflammation and cell proliferation (p < 0.01). High glucose-induced VSMCs proliferation and migration were inhibited by nicorandil. εPKC activation induced by high glucose was also inhibited by nicorandil and that is partially reversed by 5-HD. εPKC knockdown prevented VSMCs proliferation and migration (p < 0.01). CONCLUSIONS Our study demonstrates that nicorandil inhibits intimal hyperplasia in balloon-injured arteries in diabetic rats. Nicorandil also prevents VSMCs proliferation and migration induced by high glucose. The beneficial effect of nicorandil is conducted via opening mitoKATP channel and inhibiting εPKC activation.
Collapse
Affiliation(s)
- Ying Qian Zhang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Ying Zhou
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Yun Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
| | - Bo Li
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| |
Collapse
|
27
|
Gozukara IO, Pınar N, Ozcan O, Ozgur T, Dokuyucu R, Kurt RK, Kucur SK, Aksoy AN. Effect of colchicine on polycystic ovary syndrome: an experimental study. Arch Gynecol Obstet 2015; 293:675-80. [DOI: 10.1007/s00404-015-3933-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
28
|
Zheng Y, Ma H, Hu E, Huang Z, Cheng X, Xiong C. Inhibition of FGFR Signaling With PD173074 Ameliorates Monocrotaline-induced Pulmonary Arterial Hypertension and Rescues BMPR-II Expression. J Cardiovasc Pharmacol 2015; 66:504-14. [DOI: 10.1097/fjc.0000000000000302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Mendes-Ferreira P, Maia-Rocha C, Adão R, Mendes MJ, Santos-Ribeiro D, Alves BS, Cerqueira RJ, Castro-Chaves P, Lourenço AP, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Neuregulin-1 improves right ventricular function and attenuates experimental pulmonary arterial hypertension. Cardiovasc Res 2015; 109:44-54. [PMID: 26503987 DOI: 10.1093/cvr/cvv244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/15/2015] [Indexed: 12/24/2022] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a serious disease that affects both the pulmonary vasculature and the right ventricle (RV). Current treatment options are insufficient. The cardiac neuregulin (NRG)-1/ErbB system is deregulated during heart failure, and treatment with recombinant human NRG-1 (rhNRG-1) has been shown to be beneficial in animal models and in patients with left ventricular (LV) dysfunction. This study aimed to evaluate the effects of rhNRG-1 in RV function and pulmonary vasculature in monocrotaline (MCT)-induced PAH and RV hypertrophy (RVH). METHODS AND RESULTS Male wistar rats (7- to 8-weeks old, n = 78) were injected with MCT (60 mg/kg, s.c.) or saline and treated with rhNRG-1 (40 µg/kg/day) or vehicle for 1 week, starting 2 weeks after MCT administration. Another set of animals was submitted to pulmonary artery banding (PAB) or sham surgery, and followed the same protocol. MCT administration resulted in the development of PAH, pulmonary arterial and RV remodelling, and dysfunction, and increased RV markers of cardiac damage. Treatment with rhNRG-1 attenuated RVH, improved RV function, and decreased RV expression of disease markers. Moreover, rhNRG-1 decreased pulmonary vascular remodelling and attenuated MCT-induced endothelial dysfunction. The anti-remodelling effects of rhNRG-1 were confirmed in the PAB model, where rhNRG-1 treatment was able to attenuate PAB-induced RVH. CONCLUSION rhNRG-1 treatment attenuates pulmonary arterial and RV remodelling, and dysfunction in a rat model of MCT-induced PAH and has direct anti-remodelling effects on the pressure-overloaded RV.
Collapse
Affiliation(s)
- Pedro Mendes-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Adão
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Maria José Mendes
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Diana Santos-Ribeiro
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bárbara Silvana Alves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui João Cerqueira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paulo Castro-Chaves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - André Pedro Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | - Adelino Ferreira Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carmen Brás-Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells. Apoptosis 2015; 21:69-84. [DOI: 10.1007/s10495-015-1184-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Mohamed SS, Ahmed LA, Attia WA, Khattab MM. Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats. Biochem Pharmacol 2015; 98:403-11. [PMID: 26453143 DOI: 10.1016/j.bcp.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation has emerged as a promising technique for regenerative medicine in cardiovascular therapeutics. However, the results have been less than optimal. The aim of the present study was to investigate whether nicorandil could offer an additional benefit over bone marrow-derived mesenchymal stem cell therapy in isoproterenol-induced myocardial damage and its progression to heart failure in rats. Isoproterenol was injected subcutaneously for 2 consecutive days at doses of 85 and 170 mg/kg/day, respectively. Nicorandil (3 mg/kg/day) was then given orally with or without a single intravenous bone marrow-derived mesenchymal stem cell administration. Electrocardiography and echocardiography were recorded 2 weeks after the beginning of treatment. Rats were then sacrificed and the ventricle was isolated for estimation of tumor necrosis factor-alpha, vascular endothelial growth factor and transforming growth factor-beta. Moreover, protein expressions of caspase-3, connexin-43 as well as endothelial and inducible nitric oxide synthases were evaluated. Finally, histological studies of myocardial fibrosis and blood vessel density were performed and cryosections were done for estimation cell homing. Combined nicorandil/bone marrow-derived mesenchymal stem cell therapy provided an additional improvement compared to cell therapy alone toward reducing isoproterenol-induced cardiac hypertrophy, fibrosis and inflammation. Notably, combined therapy induced significant increase in angiogenesis and cell homing and prevented isoproterenol-induced changes in contractility and apoptotic markers. In conclusion, combined nicorandil/bone marrow-derived mesenchymal stem cell therapy was superior to cell therapy alone toward preventing isoproterenol-induced heart failure in rats through creation of a supportive environment for mesenchymal stem cells.
Collapse
Affiliation(s)
- Sarah S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Wael A Attia
- Pediatric Department, Pediatric Cardiology Unit, Abou EL-Reesh Children Hospital, Cairo, Egypt.
| | - Mahmoud M Khattab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
32
|
Gasparyan AY, Ayvazyan L, Yessirkepov M, Kitas GD. Colchicine as an anti-inflammatory and cardioprotective agent. Expert Opin Drug Metab Toxicol 2015; 11:1781-94. [PMID: 26239119 DOI: 10.1517/17425255.2015.1076391] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Colchicine has been successfully used for the treatment of neutrophilic disorders such as familial Mediterranean fever (FMF), Behçet disease (BD) and gout. There is a growing interest in its cardiovascular effects. AREAS COVERED A MEDLINE/PubMed search for English articles published from January 1972 to June 2015 was completed using the following terms: therapy, pharmacokinetics, efficiency, side effects, toxicity, heart, colchicine, inflammation, FMF, amyloidosis, BD, gout, cardiovascular disorders, pericarditis, arrhythmias, inflammation, neutrophils, platelets. EXPERT OPINION By targeting neutrophils, endothelial cells and platelets, inhibiting mitosis, vascular hyperplasia and fibrosis, colchicine improves outcomes of pericarditis, myocardial ischemia and coronary interventions. Studies in neutrophilic rheumatic diseases and cardiovascular disorders demonstrated that oral colchicine at doses of 0.5 - 2.5 mg/daily is useful for treating pericarditis, myocardial ischemia and coronary occlusion. In rheumatic and cardiovascular disorders, therapeutic doses of the drug reduce C-reactive protein to levels below 2 mg/L, prevent myocardial damage and preserve normal values of atrial and ventricular impulse generation. One of the drug's frequent side effects is diarrhea, which is treated by diet modification or temporary discontinuation of the therapy. Certain drugs (macrolides, statins), comorbidities and certain genetic factors increase risk of colchicine toxicity.
Collapse
Affiliation(s)
- Armen Yuri Gasparyan
- a 1 Dudley Group NHS Foundation Trust (Teaching Trust of University of Birmingham), Russells Hall Hospital, Departments of Rheumatology and Research & Development , DY1 2HQ, Dudley, UK +44 138 424 4842 ; +44 138 424 4808 ;
| | - Lilit Ayvazyan
- b 2 Yerevan State Medical University, Department of Medical Chemistry , Yerevan, Armenia
| | - Marlen Yessirkepov
- c 3 South Kazakhstan State Pharmaceutical Academy, Department of Biochemistry, Biology and Microbiology , Shymkent, Kazakhstan
| | - George D Kitas
- a 1 Dudley Group NHS Foundation Trust (Teaching Trust of University of Birmingham), Russells Hall Hospital, Departments of Rheumatology and Research & Development , DY1 2HQ, Dudley, UK +44 138 424 4842 ; +44 138 424 4808 ; .,d 4 University of Manchester, Arthritis Research UK Epidemiology Unit , Manchester, UK
| |
Collapse
|
33
|
Leung YY, Yao Hui LL, Kraus VB. Colchicine--Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 2015; 45:341-50. [PMID: 26228647 DOI: 10.1016/j.semarthrit.2015.06.013] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/19/2015] [Accepted: 06/19/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To review the literature and provide an update on the mechanisms of action and therapeutic uses of oral colchicine in arthritis and inflammatory conditions. METHODS We performed PubMed database searches through June 2014 for relevant studies in the English literature published since the last update of colchicine in 2008. Searches encompassed colchicine mechanisms of action and clinical applications in medical conditions. A total of 381 articles were reviewed. RESULTS The primary mechanism of action of colchicine is tubulin disruption. This leads to subsequent down regulation of multiple inflammatory pathways and modulation of innate immunity. Newly described mechanisms include various inhibitory effects on macrophages including the inhibition of the NACHT-LRRPYD-containing protein 3 (NALP3) inflammasome, inhibition of pore formation activated by purinergic receptors P2X7 and P2X2, and stimulation of dendritic cell maturation and antigen presentation. Colchicine also has anti-fibrotic activities and various effects on endothelial function. The therapeutic use of colchicine has extended beyond gouty arthritis and familial Mediterranean fever, to osteoarthritis, pericarditis, and atherosclerosis. CONCLUSION Further understanding of the mechanisms of action underlying the therapeutic efficacy of colchicine will lead to its potential use in a variety of conditions.
Collapse
Affiliation(s)
- Ying Ying Leung
- Department of Rheumatology & Immunology, Singapore General Hospital, The Academia, Level 4, 20 College Rd, Singapore 169856; Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore.
| | - Laura Li Yao Hui
- Department of Rheumatology & Immunology, Singapore General Hospital, The Academia, Level 4, 20 College Rd, Singapore 169856
| | - Virginia B Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
34
|
Cero FT, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, Lunde IG, Olsen MB, Lien E, Zhang L, Haugstad SB, Løberg EM, Christensen G, Larsen KO, Skjønsberg OH. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L378-87. [PMID: 26071556 DOI: 10.1152/ajplung.00342.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Fadila Telarevic Cero
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway;
| | - Vigdis Hillestad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Trine Ranheim
- Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Maria Belland Olsen
- Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; Centre of Inflammation Research, Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Solveig Bjærum Haugstad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Else Marit Løberg
- Department of Pathology, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Karl-Otto Larsen
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Ole Henning Skjønsberg
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Kurt RK, Dogan AC, Dogan M, Albayrak A, Kurt SN, Eren F, Okyay AG, Karateke A, Duru M, Fadillioglu E, Delibasi T. Protective Effect of Colchicine on Ovarian Ischemia–Reperfusion Injury. Reprod Sci 2014; 22:545-50. [DOI: 10.1177/1933719114553065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Raziye Keskin Kurt
- Mustafa Kemal University Medical School, Department of Obstetrics and Gynecology, Hatay, Turkey
| | - Ayse Citil Dogan
- Zekai Tahir Burak Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Murat Dogan
- Hacettepe University Medical School, Department of Physiology, Ankara, Turkey
| | - Aynur Albayrak
- Ankara Diskapi YB Training and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Sefika Nur Kurt
- Hacettepe University Medical School, Department of Physiology, Ankara, Turkey
| | - Furkan Eren
- Hacettepe University Medical School, Department of Physiology, Ankara, Turkey
| | - Ayse Guler Okyay
- Mustafa Kemal University Medical School, Department of Obstetrics and Gynecology, Hatay, Turkey
| | - Atilla Karateke
- Mustafa Kemal University Medical School, Department of Obstetrics and Gynecology, Hatay, Turkey
| | - Mehmet Duru
- Mustafa Kemal University Medical School, Department of Emergency Medicine, Hatay, Turkey
| | - Ersin Fadillioglu
- Hacettepe University Medical School, Department of Physiology, Ankara, Turkey
| | - Tuncay Delibasi
- Ankara Diskapi YB Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
- Ankara Diskapi YB Training and Research Hospital, Pancreas Islet Research Center, Ankara, Turkey
- Hacettepe University Kastamonu Medical School, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
36
|
Eguchi M, Ikeda S, Kusumoto S, Sato D, Koide Y, Kawano H, Maemura K. Adipose-derived regenerative cell therapy inhibits the progression of monocrotaline-induced pulmonary hypertension in rats. Life Sci 2014; 118:306-12. [PMID: 24853385 DOI: 10.1016/j.lfs.2014.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/26/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
AIMS Functional and structural changes in pulmonary vasculature characterize pulmonary arterial hypertension (PAH) and the prognosis of advanced PAH remains poor despite progress in pharmacotherapy. Adipose-derived regenerative cells (ADRCs) promote cell regeneration at pathological sites and comprise a novel therapy for ailments of various organs. We investigated the effects of ADRC therapy in rat models of monocrotaline (MCT)-induced pulmonary hypertension (PH) and the underlying mechanisms. MAIN METHODS Rats were assigned to Control and MCT groups without and with (M/A) intravenous transfusion of seven million ADRCs on day 7. We echocardiographically evaluated pulmonary hypertension as pulmonary artery flow acceleration time (PAAT) and deceleration (PADc). Right ventricular (RV) systolic pressure was measured by catheterization on day 28 and then pathological changes in pulmonary vessels were assessed. We analyzed PAH-associated gene expression on day 14 using real-time RT-PCR. KEY FINDINGS Echocardiography and RV catheterization showed that ADRC therapy inhibited PH development (assessed as PAAT, PADc, and RV systolic pressure) at day 28 (MCT vs. M/A, P<0.05). Pulmonary vascular remodeling was also inhibited (vessel wall thickness: MCT vs. M/A, P<0.01). Messenger RNA levels of endothelin (ET) A and B receptors, ET-1 and transforming growth factor (TGF)-β increased in the lungs by MCT were suppressed by ADRCs (MCT vs. M/A, P<0.05). SIGNIFICANCE The development of PH was inhibited by ADRCs through suppressing changes in the expression of genes associated with ET and TGF-β systems. We believe that ADRC therapy could serve as a novel strategy for treating PH.
Collapse
Affiliation(s)
- Masamichi Eguchi
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Ikeda
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Saburo Kusumoto
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Sato
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Koide
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|