1
|
Jeyachandran S, Chellapandian H, Park K, Kwak IS. Exploring the Antimicrobial Potential and Biofilm Inhibitory Properties of Hemocyanin from Hemifusus pugilinus (Born, 1778). Int J Mol Sci 2023; 24:11494. [PMID: 37511256 PMCID: PMC10380319 DOI: 10.3390/ijms241411494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The seafood industry plays a huge role in the blue economy, exploiting the advantage of the enriched protein content of marine organisms such as shrimps and molluscs, which are cultured in aquafarms. Diseases greatly affect these aquatic organisms in culture and, hence, there is need to study, in detail, their innate immune mechanisms. Hemocyanin is a non-specific innate defense molecule present in the blood cells of several invertebrates, especially molluscs, arthropods, and annelids. It is concerned with oxygen transport, blood clotting, and immune enhancement. In the present study, this macromolecular metalloprotein was isolated from the hemolymph of the marine snail Hemifusus pugilinus (Born, 1778) using Sephadex G-100 gel filtration column chromatography. It occurred as a single band (MW 80 kDa) on SDS-PAGE. High-performance liquid chromatography (HPLC) of the purified hemocyanin showed a single peak with a retention time of 4.3 min. The secondary structure and stability of the protein were detected using circular dichroism (CD), and the spectra demonstrated negative ellipticity bands close to 208 nm and 225 nm, indicating β-sheets. Further exploration of the purified hemocyanin revealed remarkable antimicrobial and antibiofilm activities against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Proteus vulgaris) at a concentration of 1-5 μg/mL. Spectrophotometric and in situ microscopic analyses (CLSM) unveiled the potential of the purified hemocyanin to inhibit biofilm formation in these bacteria with a minimal inhibitory concentration of 40 μg/mL. Furthermore, H. pugilinus hemocyanin (10 μg/mL concentration) displayed antifungal activity against Aspergillus niger. The purified hemocyanin was also assessed for cytotoxicity against human cancer cells using cell viability assays. Altogether, the present study shows that molluscan hemocyanin is a potential antimicrobial, antibiofilm, antifungal, anticancer, and immunomodulatory agent, with great scope for application in the enhancement of the immune system of molluscs, thereby facilitating their aquaculture.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Chennai 600077, Tamil Nadu, India
| | - Hethesh Chellapandian
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Chennai 600077, Tamil Nadu, India
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
2
|
Yuan C, Zheng X, Liu K, Yuan W, Zhang Y, Mao F, Bao Y. Functional Characterization, Antimicrobial Effects, and Potential Antibacterial Mechanisms of NpHM4, a Derived Peptide of Nautilus pompilius Hemocyanin. Mar Drugs 2022; 20:md20070459. [PMID: 35877752 PMCID: PMC9317327 DOI: 10.3390/md20070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Hemocyanins present in the hemolymph of invertebrates are multifunctional proteins that are responsible for oxygen transport and play crucial roles in the immune system. They have also been identified as a source of antimicrobial peptides during infection in mollusks. Hemocyanin has also been identified in the cephalopod ancestor Nautilus, but antimicrobial peptides derived from the hemocyanin of Nautilus pompilius have not been reported. Here, the bactericidal activity of six predicted peptides from N. pompilius hemocyanin and seven mutant peptides was analyzed. Among those peptides, a mutant peptide with 15 amino acids (1RVFAGFLRHGIKRSR15), NpHM4, showed relatively high antibacterial activity. NpHM4 was determined to have typical antimicrobial peptide characteristics, including a positive charge (+5.25) and a high hydrophobic residue ratio (40%), and it was predicted to form an alpha-helical structure. In addition, NpHM4 exhibited significant antibacterial activity against Gram-negative bacteria (MBC = 30 μM for Vibrio alginolyticus), with no cytotoxicity to mammalian cells even at a high concentration of 180 µM. Upon contact with V. alginolyticus cells, we confirmed that the bactericidal activity of NpHM4 was coupled with membrane permeabilization, which was further confirmed via ultrastructural images using a scanning electron microscope. Therefore, our study provides a rationalization for the development and optimization of antimicrobial peptide from the cephalopod ancestor Nautilus, paving the way for future novel AMP development with broad applications.
Collapse
Affiliation(s)
- Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Xiaoying Zheng
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Wenbin Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
- Correspondence: (F.M.); (Y.B.); Tel.: +86-20-8910-2507 (F.M.)
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
- Correspondence: (F.M.); (Y.B.); Tel.: +86-20-8910-2507 (F.M.)
| |
Collapse
|
3
|
Wu J, Power H, Miranda-Saksena M, Valtchev P, Schindeler A, Cunningham AL, Dehghani F. Identifying HSV-1 Inhibitors from Natural Compounds via Virtual Screening Targeting Surface Glycoprotein D. Pharmaceuticals (Basel) 2022; 15:361. [PMID: 35337158 PMCID: PMC8955139 DOI: 10.3390/ph15030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus (HSV) infections are a worldwide health problem in need of new effective treatments. Of particular interest is the identification of antiviral agents that act via different mechanisms compared to current drugs, as these could interact synergistically with first-line antiherpetic agents to accelerate the resolution of HSV-1-associated lesions. For this study, we applied a structure-based molecular docking approach targeting the nectin-1 and herpesvirus entry mediator (HVEM) binding interfaces of the viral glycoprotein D (gD). More than 527,000 natural compounds were virtually screened using Autodock Vina and then filtered for favorable ADMET profiles. Eight top hits were evaluated experimentally in African green monkey kidney cell line (VERO) cells, which yielded two compounds with potential antiherpetic activity. One active compound (1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3] dioxolo[4,5-g]isoquinoline-5-ylidene]ethenone) showed weak but significant antiviral activity. Although less potent than antiherpetic agents, such as acyclovir, it acted at the viral inactivation stage in a dose-dependent manner, suggesting a novel mode of action. These results highlight the feasibility of in silico approaches for identifying new antiviral compounds, which may be further optimized by medicinal chemistry approaches.
Collapse
Affiliation(s)
- Jiadai Wu
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Helen Power
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
4
|
Pedler RL, Speck PG. Marine mollusc extracts-Potential source of SARS-CoV-2 antivirals. Rev Med Virol 2021; 32:e2310. [PMID: 34726308 PMCID: PMC8646538 DOI: 10.1002/rmv.2310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a novel human coronavirus and the causative agent of coronavirus disease 2019 (Covid‐19). There is an urgent need for effective antivirals to treat current Covid‐19 cases and protect those unable to be vaccinated against SARS‐CoV‐2. Marine molluscs live in an environment containing high virus densities (>107 virus particles per ml), and there are an estimated 100,000 species in the phylum Mollusca, demonstrating the success of their innate immune system. Mollusc‐derived antivirals are yet to be used clinically despite the activity of many extracts, including against human viruses, being demonstrated in vitro. Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against herpes simplex virus and human adenovirus, while antiviral action against SARS‐CoV‐2 has been proposed by in silico studies. Such evidence suggests that molluscs, and in particular C. gigas hemolymph, may represent a source of antivirals for human coronaviruses.
Collapse
Affiliation(s)
- Rebecca L Pedler
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
5
|
Structural, Thermal, and Storage Stability of Rapana Thomasiana Hemocyanin in the Presence of Cholinium-Amino Acid-Based Ionic Liquids. Molecules 2021; 26:molecules26061714. [PMID: 33808584 PMCID: PMC8003507 DOI: 10.3390/molecules26061714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Novel biocompatible compounds that stabilize proteins in solution are in demand for biomedical and/or biotechnological applications. Here, we evaluated the effect of six ionic liquids, containing mono- or dicholinium [Chol]1or2 cation and anions of charged amino acids such as lysine [Lys], arginine [Arg], aspartic acid [Asp], or glutamic acid [Glu], on the structure, thermal, and storage stability of the Rapana thomasiana hemocyanin (RtH). RtH is a protein with huge biomedicinal potential due to its therapeutic, drug carrier, and adjuvant properties. Overall, the ionic liquids (ILs) induce changes in the secondary structure of RtH. However, the structure near the Cu-active site seems unaltered and the oxygen-binding capacity of the protein is preserved. The ILs showed weak antibacterial activity when tested against three Gram-negative and three Gram-positive bacterial strains. On the contrary, [Chol][Arg] and [Chol][Lys] exhibited high anti-biofilm activity against E. coli 25213 and S. aureus 29213 strains. In addition, the two ILs were able to protect RtH from chemical and microbiological degradation. Maintained or enhanced thermal stability of RtH was observed in the presence of all ILs tested, except for RtH-[Chol]2[Glu].
Collapse
|
6
|
Purification, characterization and biological functions of metalloprotein isolated from haemolymph of mud crab Scylla serrata (Forskal, 1775). Int J Biol Macromol 2020; 164:3901-3908. [PMID: 32889000 DOI: 10.1016/j.ijbiomac.2020.08.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/22/2022]
Abstract
In recent years, an enormous number of naturally occurring biological macromolecules has been reported worldwide due to its antibacterial and anticancerous potential. Among them, in this study, the copper containing respiratory protein namely haemocyanin (HC) was isolated from the haemolymph of mud crab Scylla serrata. The isolated metalloprotein HC was purified using Sepharose column by gel filtration chromatography. The purified HC was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and molecular weight of the protein was identified as 95 kDa. Fourier transform infrared spectrophotometer (FT-IR) and nuclear magnetic resonance (1H NMR) spectral data revealed the presence of amino acid constituents. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis based mass ion search exposed that the purified protein was HC. HC exhibited an in vitro bacteriostatic effects against the bacterial pathogens and also elevated ROS levels in the treated samples. The half maximal (50%) inhibitory concentration (IC50) of HC was found to be 80 μg/mL against lung cancer cells (A549). Our study collectively addressed the potential antibacterial and anti-cancerous activity of HC. The results obtained from this study suggest that HC can be used for therapeutical application in the near future.
Collapse
|
7
|
Riccio G, Ruocco N, Mutalipassi M, Costantini M, Zupo V, Coppola D, de Pascale D, Lauritano C. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules 2020; 10:biom10071007. [PMID: 32645994 PMCID: PMC7407529 DOI: 10.3390/biom10071007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.
Collapse
Affiliation(s)
- Gennaro Riccio
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Nadia Ruocco
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Mirko Mutalipassi
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Maria Costantini
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Valerio Zupo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Daniela Coppola
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Donatella de Pascale
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Correspondence: ; Tel.: +39-081-5833-221
| |
Collapse
|
8
|
Johnston EB, Kamath SD, Iyer SP, Pratap K, Karnaneedi S, Taki AC, Nugraha R, Schaeffer PM, Rolland JM, O’Hehir RE, Lopata AL. Defining specific allergens for improved component-resolved diagnosis of shrimp allergy in adults. Mol Immunol 2019; 112:330-337. [DOI: 10.1016/j.molimm.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/18/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
|
9
|
Zhou Y, Lei L, Zhang Z, Zhang R, Song Q, Li X. Cation instructed steroidal prodrug supramolecular hydrogel. J Colloid Interface Sci 2018; 528:10-17. [PMID: 29803956 DOI: 10.1016/j.jcis.2018.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/12/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022]
Abstract
In the present study, we propose an ionic coordination strategy for the design of a steroidal prodrug supramolecular hydrogel. The hydrogel composed of nanofibril networks formed spontaneously by the introduction of divalent cations (e.g., Mg2+, Ca2+, Zn2+ and Fe2+) and NH4+ to a succinated dexamethasone (Dex-SA) aqueous solution at room temperature. The formation of the nanofibril structure was dominantly driven by the ionic coordination with the assistance of a delicate balance of multiple noncovalent interactions. A rheological analysis indicated that the formed Ca2+/Dex-SA supramolecular hydrogel exhibits dominant elastic and thixotropic properties. The formed Ca2+/Dex-SA supramolecular hydrogel allowed the gradual release of Dex and Dex-SA in vitro, and the drug release behaviour can be finely tuned by changing the Ca2+ concentration. Storage stability studies showed that Dex-SA in hydrogel underwent an apparent chemical decomposition at 4 °C and 37 °C. In contrast, the Dex-SA xerogel was quite stable without any obvious chemical decomposition of Dex-SA in storage at -20 °C for 35 days, and it was able to turn into a hydrogel again within one minute after rehydration. The formed Ca2+/Dex-SA supramolecular hydrogel caused negligible cytotoxicity against HCEC and L-929 cells at drug concentrations up to 2 mM, as indicated by the in vitro cytotoxicity tests. Additionally, the proposed Ca2+/Dex-SA supramolecular hydrogel displayed a comparable anti-inflammatory efficacy with Dexp via the downregulation of NO, TNF-α and IL-6 expression in lipopolysaccharide (LPS)-activated RAW264.7 macrophage. Overall, the cation instructed steroidal prodrug supramolecular hydrogel might be a promising ophthalmic drug delivery system for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yanfang Zhou
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Zhaoliang Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Renshu Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Qianqian Song
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|
10
|
Velkova L, Dolashka P, Van Beeumen J, Devreese B. N-glycan structures of β-HlH subunit of Helix lucorum hemocyanin. Carbohydr Res 2017; 449:1-10. [PMID: 28672164 DOI: 10.1016/j.carres.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
The carbohydrate structures of molluscan hemocyanins have recently received particular interest due to their specific monosaccharide composition, as well as their immunostimulatory properties and application in clinical studies. For the first time, we investigated N-glycans of the structural subunit β-HlH of hemocyanin isolated from Helix lucorum. In total, 32 different glycans were enzymatically liberated and characterized by tandem mass spectrometry using a Q-Trap mass spectrometer. Our study revealed a highly heterogeneous mixture of glycans with composition Hex3-7HexNAc2-5MeHex0-4Pent0-1Fuc0-1. The oligosaccharide chains are mostly modified at the inner core by β1-2-linked xylose to β-mannose, by α1-6-fucosylation of the innermost GlcNAc residue (the Asn-bound GlcNAc), and by methylation. The glycans of β-HlH mainly contain a terminal MeHex residue; in some cases even two, three or four of these residues occur. Several carbohydrate chains in β-HlH are core-fucosylated without Xyl and also possess a high degree of methylation. This study shows the presence of mono- and bi-antennary N-glycans as well as hybrid type structures with or without core-fucosylation.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 9 G. Bonchev St., Sofia 1113, Bulgaria.
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 9 G. Bonchev St., Sofia 1113, Bulgaria
| | - Jozef Van Beeumen
- Laboratory of Protein Biochemistry and Biomolecular Engineering, Ghent University, KL Ledeganckstraat 35, Ghent 9000, Belgium
| | - Bart Devreese
- Laboratory of Protein Biochemistry and Biomolecular Engineering, Ghent University, KL Ledeganckstraat 35, Ghent 9000, Belgium
| |
Collapse
|
11
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
12
|
Differential Protein Expression in the Hemolymph of Bithynia siamensis goniomphalos Infected with Opisthorchis viverrini. PLoS Negl Trop Dis 2016; 10:e0005104. [PMID: 27893749 PMCID: PMC5125571 DOI: 10.1371/journal.pntd.0005104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/12/2016] [Indexed: 01/05/2023] Open
Abstract
Bithynia siamensis goniomphalos is a freshwater snail that serves as the first intermediate host of the human liver fluke Opisthorchis viverrini. This parasite is a major public health problem in different countries throughout the Greater Mekong sub-region (Thailand, southern Vietnam, Lao PDR and Cambodia). Chronic O. viverrini infection also results in a gradual increase of fibrotic tissues in the biliary tract that are associated with hepatobiliary diseases and contribute to cholangiocarcinoma (a fatal type of bile duct cancer). Infectivity of the parasite in the snail host is strongly correlated with destruction of helminths by the snail's innate immune system, composed of cellular (hemocyte) and humoral (plasma) defense factors. To better understand this important host-parasite interface we applied sequential window acquisition of all theoretical spectra mass spectrometry (SWATH-MS) to identify and quantify the proteins from the hemolymph of B. siamensis goniomphalos experimentally infected with O. viverrini and compare them to non-infected snails (control group). A total of 362 and 242 proteins were identified in the hemocytes and plasma, respectively. Of these, 145 and 117 proteins exhibited significant differences in expression upon fluke infection in hemocytes and plasma, respectively. Among the proteins with significantly different expression patterns, we found proteins related to immune response (up-regulated in both hemocyte and plasma of infected snails) and proteins belonging to the structural and motor group (mostly down-regulated in hemocytes but up-regulated in plasma of infected snails). The proteins identified and quantified in this work will provide important information for the understanding of the factors involved in snail defense against O. viverrini and might facilitate the development of new strategies to control O. viverrini infection in endemic areas.
Collapse
|
13
|
Toledo-Piza ARD, Figueiredo CA, Oliveira MID, Negri G, Namiyama G, Tonelotto M, Villar KDS, Rofatto HK, Mendonça RZ. The antiviral effect of mollusk mucus on measles virus. Antiviral Res 2016; 134:172-181. [PMID: 27623346 DOI: 10.1016/j.antiviral.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 11/25/2022]
Abstract
Measles is a viral disease highly contagious spread by respiratory transmission. Although infection can be controlled by vaccination, numerous cases of measles have been registered in many areas of the world, highlighting the need for additional interventions. Terrestrial gastropods exude mucus on their body surface when traveling, to protect the body from mechanical injury, desiccation or contact with harmful substances. The mucus of mollusks has been studied as a source of new natural compounds with diverse biological activities. In this study, the antiviral activity of the mucus of the land slug P. boraceiensis was demonstrated in vitro using Vero cells infected with measles virus. The crude sample and four fractions were tested in cultures infected with measles virus and the antiviral activity was assessed by the cytopathic effect in infected cell cultures as well as by immunofluorescence and qPCR. Fractions 39 and 50 of the mucus from P. boraceiensis were analyzed by HPLC-DAD-ESI-MS/MS and infrared spectroscopy. A mixture of polyunsaturated fatty acids was found in the two fractions. A reduction in the growth of the measles virus was observed, measured by qPCR, with a protection index of 80% in Vero cells infected with measles and treated with fraction 39. Fraction 39 exhibited the best antiviral action in vitro and high contents of hydroxy-tritriacontapentaenoic acid and hydroxy-pentatriacontapentaenoic acid were found in this fraction.
Collapse
Affiliation(s)
- Ana Rita de Toledo-Piza
- Laboratory of Parasitology, Butantan Institute, 1500th, Vital Brazil Ave, São Paulo, SP, Brazil.
| | | | - Maria Isabel de Oliveira
- Respiratory Infectious Diseases, Adolfo Lutz Institute, 355th, Doutor Arnaldo Ave, São Paulo, SP, Brazil
| | - Giuseppina Negri
- Department of Preventive Medicine, Federal University of São Paulo, 740th, Botucatu St., São Paulo, SP, Brazil
| | - Gislene Namiyama
- Electron Microscopy Center, Adolfo Lutz Institute, 355th, Doutor Arnaldo Ave, São Paulo, SP, Brazil
| | - Mariana Tonelotto
- Laboratory of Parasitology, Butantan Institute, 1500th, Vital Brazil Ave, São Paulo, SP, Brazil
| | - Karina de Senna Villar
- Laboratory of Parasitology, Butantan Institute, 1500th, Vital Brazil Ave, São Paulo, SP, Brazil
| | | | | |
Collapse
|
14
|
Wu J, Cunningham AL, Dehghani F, Diefenbach RJ. Comparison of Haliotis rubra hemocyanin isoforms 1 and 2. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Zhang Y, Zhu L, Li S, Zhang J, She T, Yan J, Bian Y, Li H. Identification of the major allergenic epitopes of Eriocheir sinensis roe hemocyanin: A novel tool for food allergy diagnoses. Mol Immunol 2016; 74:125-32. [DOI: 10.1016/j.molimm.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
16
|
Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy. Antimicrob Agents Chemother 2015; 60:1003-12. [PMID: 26643336 DOI: 10.1128/aac.01738-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/22/2015] [Indexed: 02/07/2023] Open
Abstract
A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections.
Collapse
|
17
|
Green TJ, Raftos D, Speck P, Montagnani C. Antiviral immunity in marine molluscs. J Gen Virol 2015; 96:2471-2482. [DOI: 10.1099/jgv.0.000244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Timothy J. Green
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Caroline Montagnani
- IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| |
Collapse
|
18
|
Dang VT, Benkendorff K, Green T, Speck P. Marine Snails and Slugs: a Great Place To Look for Antiviral Drugs. J Virol 2015; 89:8114-8. [PMID: 26063420 PMCID: PMC4524231 DOI: 10.1128/jvi.00287-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molluscs, comprising one of the most successful phyla, lack clear evidence of adaptive immunity and yet thrive in the oceans, which are rich in viruses. There are thought to be nearly 120,000 species of Mollusca, most living in marine habitats. Despite the extraordinary abundance of viruses in oceans, molluscs often have very long life spans (10 to 100 years). Thus, their innate immunity must be highly effective at countering viral infections. Antiviral compounds are a crucial component of molluscan defenses against viruses and have diverse mechanisms of action against a wide variety of viruses, including many that are human pathogens. Antiviral compounds found in abalone, oyster, mussels, and other cultured molluscs are available in large supply, providing good opportunities for future research and development. However, most members of the phylum Mollusca have not been examined for the presence of antiviral compounds. The enormous diversity and adaptations of molluscs imply a potential source of novel antiviral compounds for future drug discovery.
Collapse
Affiliation(s)
- Vinh T Dang
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia Department of Aquaculture, Ha Long University, Quang Ninh, Vietnam
| | - Kirsten Benkendorff
- Marine Ecology Research Center, School of Environmental Sciences and Management, Southern Cross University, Lismore, NSW, Australia
| | - Tim Green
- Macquarie University, School of Biological Sciences, Sydney, NSW, Australia Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
19
|
Green TJ, Robinson N, Chataway T, Benkendorff K, O'Connor W, Speck P. Evidence that the major hemolymph protein of the Pacific oyster, Crassostrea gigas, has antiviral activity against herpesviruses. Antiviral Res 2014; 110:168-74. [PMID: 25169112 DOI: 10.1016/j.antiviral.2014.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
Abstract
Viruses belonging to the family Malacoherpesviridae currently pose a serious threat to global production of the Pacific oyster, Crassostrea gigas. Hemolymph extracts from C. gigas are known to have potent antiviral activity. The compound(s) responsible for this broad-spectrum antiviral activity in oyster hemolymph have not been identified. The objective of this study was to identify these antiviral compound(s) and establish whether hemolymph antiviral activity is under genetic control in the Australian C. gigas population. Hemolymph antiviral activity of 18 family lines of C. gigas were assayed using a herpes simplex virus type 1 (HSV-1) and Vero cell plaque reduction assay. Differences in anti-HSV-1 activity between the family lines were observed (p<0.001) with heritability estimated to be low (h(2)=0.21). A glycoprotein that inhibits HSV-1 replication was identified by resolving oyster hemolymph by native-polyacrylamide gel electrophoresis (PAGE) and assaying extracted protein fractions using the HSV-1 and Vero cell plaque assay. Highest anti-HSV-1 activity corresponded with an N-linked glycoprotein with an estimated molecular mass of 21kDa under non-reducing SDS-PAGE conditions. Amino acid sequencing by tandem mass spectrometry revealed this protein matched the major hemolymph protein, termed cavortin. Our results provide further evidence that cavortin is a multifunctional protein involved in immunity and that assays associated with its activity might be useful for marker-assisted selection of disease resistant oysters.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences and Australian Seafood Cooperative Research Centre, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Nick Robinson
- School of Biological Sciences and Australian Seafood Cooperative Research Centre, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Nofima, P.O. Box 210, N-1431 Ås, Norway
| | - Tim Chataway
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
| | - Wayne O'Connor
- Industry & Investment NSW, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Peter Speck
- School of Biological Sciences and Australian Seafood Cooperative Research Centre, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
20
|
Coates CJ, Nairn J. Diverse immune functions of hemocyanins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:43-55. [PMID: 24486681 DOI: 10.1016/j.dci.2014.01.021] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Substantial evidence gathered recently has revealed the multiple functionalities of hemocyanin. Contrary to previous claims that this ancient protein is involved solely in oxygen transport within the hemolymph of invertebrates, hemocyanin and hemocyanin-derived peptides have been linked to key aspects of innate immunity, in particular, antiviral and phenoloxidase-like activities. Both phenoloxidase and hemocyanin belong to the family of type-3 copper proteins and share a high degree of sequence homology. While the importance of phenoloxidase in immunity and development is well characterised, the contribution of hemocyanin to biological defence systems within invertebrates is not recognised widely. This review focusses on the conversion of hemocyanin into a phenoloxidase-like enzyme and the array of hemocyanin-derived immune responses documented to date.
Collapse
Affiliation(s)
- Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Jacqueline Nairn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|