1
|
Aziz MA, Salem IM, Al-Awadh MA, Alharbi AS, Elsayed Abouzed DE, Allam RM, Ahmed OAA, Ibrahim TS, Abuo-Rahma GEDA, Mohamed MFA. Exploration of anti-inflammatory activity of pyrazolo[3,4-d]pyrimidine/1,2,4-oxadiazole hybrids as COX-2, 5-LOX and NO release inhibitors: Design, synthesis, in silico and in vivo studies. Bioorg Chem 2025; 156:108181. [PMID: 39889555 DOI: 10.1016/j.bioorg.2025.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
New pyrazolo[3,4-d]pyrimidine derivatives 7a-h and 8a-h were synthesized and evaluated for their in vitro inhibitory potential against COX-1, COX-2, 5-LOX along with the NO release inhibitory activity to assess their anti-inflammatory potential. Most compounds confered inhibitory activity at a micromolar level and exhibited prominent selectivity towards COX-2 especially in the 8a-h series. The most useful compound 8e as a COX-2/5-LOX dual inhibitor, exhibited IC50 results of; 1.837 µM for COX-2, 2.662 µM for 5-LOX with an acceptable NO release inhibition rate of 66.02 %. Compounds 7e, 7f, 8e and 8f proved their efficiency as 5-LOX/NO release dual inhibitors; with IC50 values of 2.833, 1.952, 2.662 and 1.573 µM, respectively for 5-LOX biotarget, and with superior NO inhibitory ratio of 73.85, 65.57, 66.02 and 72.28 %, respectively. The in vivo anti-inflammatory assay explored that 7e is the most effective with minimal gastric ulceration prevalence. Molecular docking in the active site of both COX-2 and 5-LOX showed that, the most active 8e and 7e are correctly oriented inside the COX-2 binding pocket with unique binding mode independently on the reference celecoxib. Also, they demonstrated superior binding affinities to the 5-LOX enzyme over both the Zileuton as a reference drug and the normal ligand 30Z. The stability of the complex formed between the most promising candidates 7e or 8e with the COX-2 and 5-LOX active sites, was considered using a typical atomistic 100 ns dynamic simulation study. Investigation of the SAR revealed the importance of both the sulfonamide group in the 8a-h series and the substituents of the 3-phenyl ring tethered on the 1,2,4-oxadiazole core.
Collapse
Affiliation(s)
- Marwa A Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519 Egypt
| | - Ibrahim M Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 71515, Egypt
| | - Mohammed A Al-Awadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman S Alharbi
- Department of Chemistry, College of Science and Humanities-Dawadmi, Shaqra University, Saudi Arabia
| | - Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519 Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Egypt.
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| |
Collapse
|
2
|
Xiong L, Zhu H, Liu J, Wang R, Zhong T, Jiang X, Tang L, Fan Y. Design and synthesis of novel derivatives of bisepoxylignans as potent anti-inflammatory agents involves the modulation of the M1/M2 microglia phenotype via TLR4/NF-κB signaling pathway. Eur J Med Chem 2025; 282:117092. [PMID: 39612567 DOI: 10.1016/j.ejmech.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Bisepoxylignans have been reported to possess a variety of biological functions, especially in anti-inflammatory aspects. However, the bis-tetrahydrofuran scaffold restricts the type and position of substituents, which further limits the further optimization of their biological activity and druggability. Here, a series of novel derivative s of bisepoxylignans bearing 7H-pyrrolo[2,3-d]pyrimidin-4-amine and 1H-pyrazolo[3,4-d]pyrimidin-4-amine scaffolds were designed and synthesized by a scaffold hopping strategy. Biological evaluation demonstrated that compound 7x exhibited the most potent anti-inflammatory activity, both in vitro and in vivo. Additionally, 7x displayed an excellent oral safety profile at a dose of 500 mg/kg. The anti-inflammatory effect of 7x is potentially mediated by the inhibition of the TLR4/NF-κB pathway and the promotion of M1 to M2 microglial phenotypic conversion. Taken together, 7x could be a promising lead compound for the development of novel therapeutic agents for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Huilin Zhu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jie Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rongtao Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaowen Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lei Tang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
3
|
Cai N, Gao X, Jia L, Liu Y, Zhao J, Qu J, Zhou Y. 2-Trifluoromethyl-2H-chromene ethers: The dual triumph of anti-inflammation and analgesia with minimal ulcer threat. Bioorg Chem 2025; 154:108050. [PMID: 39675096 DOI: 10.1016/j.bioorg.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
In this report, we disclose the design and synthesis of a series of 2-trifluoromethyl-2H- chromene ethers as novel COX-2 inhibitors with low ulcerogenicity. Among them, 6-fluoro-3-(4-methoxyphenyl)-2-(2-(thiophen-3-yl)ethoxy)-2-(trifluoromethyl)-2H-chromene (E25) significantly suppressed LPS-induced release of NO and PGE2, expression of COX-2 and iNOS, and activation of NF-κB pathway. The inhibitory effect of E25 on human recombinant COX-2 (IC50 = 70.7 ± 4.7 nM) and molecular docking studies suggest that E25 functions as a COX-2 inhibitor. Moreover, the results of the cellular thermal shift assay also substantiate the interaction between E25 and COX-2. E25 manifests potent anti-inflammatory and analgesic efficacy on a par with or even superior to indomethacin in rodent models including carrageenan-induced paw edema, cotton pellet-induced granuloma, acetic acid-induced writhes, and adjuvant-induced arthritis. The possible mechanism of action of E25 might be to bind to COX-2 and suppress the NF-κB pathway as well as the expression of related proteins, thereby exerting anti-inflammatory and analgesic effects. Encouragingly, compared with indomethacin, E25 induces smaller areas and fewer ulcers, a lower level of inflammatory infiltration, a lower expression of MMP-9 and apoptosis of mucosal epithelial cells in rat gastric tissues. Overall, E25 and other analogues are promising candidates worthy of further investigation for the treatment of inflammation and pain, as well as other symptoms in which COX-2 and PGE2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
4
|
Cai N, Gao X, Jia L, Liu Y, Zhou L, Zhao J, Qu J, Zhou Y. 3-(2-Trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles: Mastering anti-inflammation and analgesia while mitigating gastrointestinal side effects. Bioorg Chem 2024; 153:107805. [PMID: 39255608 DOI: 10.1016/j.bioorg.2024.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
A series of 3-(2-trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles (5-1 to 5-29) were developed and characterized. Most of compounds were found to be potent for inhibiting the production of NO in LPS-induced RAW264.7 cells, of which 3-(3-(4-chlorophenyl)-6-methoxy-2-(trifluoromethyl)-4H-chromen-4-yl)-1H-indole (5-25) was the most optimal (IC50 = 4.82 ± 0.34 μΜ) and was capable of significantly suppressing the release of PGE2. The inhibitory effect of 5-25 on human recombinant COX-2 (IC50 = 51.7 ± 1.3 nM) was measured and molecular docking was performed, determining 5-25 as a COX-2 inhibitor. Additionally, the interaction between 5-25 and COX-2 was determined by the CETSA technique. Then, 5-25 inhibited the degradation of IκB, the phosphorylation and nuclear translocation of NF-κB p65, and the expression of COX-2 and iNOS. Moreover, it was verified that 5-25 exhibited efficacy in rodent models of inflammation and pain, encompassing the paw edema, cotton pellet-induced granuloma, acid-induced writhing, and adjuvant-induced arthritis models. Therefore, the mechanism of 5-25 may be to bind to COX-2 and exert anti-inflammatory and analgesic effects in vitro and in vivo by suppressing the NF-κB pathway. Encouragingly, in comparison with indomethacin, 5-25 exhibited a lower ulcerative potential in rats, as manifested by generating smaller areas and fewer ulcers, less inflammatory infiltration, a lower expression of MMP-9, and less apoptosis. In conclusion, 5-25 is a candidate drug with high activity and low ulcerogenic potential, and it deserves further research for the treatment of inflammation, pain, and other symptoms in which COX-2 plays a role in their pathogenesis.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Lingwei Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
5
|
Cai N, Gao X, Li W, Yang L, Zhao J, Qu J, Zhou Y. Novel trifluoromethyl ketone derivatives as oral cPLA 2/COX-2 dual inhibitors for resolution of inflammation in rheumatoid arthritis. Bioorg Chem 2024; 148:107453. [PMID: 38761708 DOI: 10.1016/j.bioorg.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 μM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
6
|
Cai N, Gao X, Yang L, Li W, Sun W, Zhang S, Zhao J, Qu J, Zhou Y. Discovery of novel NSAID hybrids as cPLA 2/COX-2 dual inhibitors alleviating rheumatoid arthritis via inhibiting p38 MAPK pathway. Eur J Med Chem 2024; 267:116176. [PMID: 38286094 DOI: 10.1016/j.ejmech.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 μΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| |
Collapse
|
7
|
Chung CY, Tseng CC, Li SM, Zeng WZ, Lin YC, Hu YP, Jiang WP, Huang GJ, Tsai HJ, Wong FF. Synthesis of β-Amino Carbonyl 6-(Aminomethyl)- and 6-(Hydroxymethyl)pyrazolopyrimidines for DPP-4 Inhibition Study. Curr Med Chem 2024; 31:3380-3396. [PMID: 35702778 DOI: 10.2174/0929867329666220614094305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type-2 diabetes is a chronic progressive metabolic disease resulting in severe vascular complications and mortality risk. Recently, DPP-4 inhibitors had been conceived as a favorable class of agents for the treatment of type 2 diabetes due to the minimal side effects. METHODS Sitagliptin is the first medicine approved for the DPP-4 inhibitor. Its structure involved three fragments: 2,4,5-triflorophenyl fragment pharmacophore, enantiomerically β-amino carbonyl linker, and tetrahydrotriazolopyridine. Herein, we are drawn to the possibility of substituting tetrahydrotriazolopyridine motif present in Sitagliptin with a series of new fused pyrazolopyrimidine bicyclic fragment to investigate potency and safety. RESULTS Two series of fused 6-(aminomethyl)pyrazolopyrimidine and 6-(hydroxymethyl) pyrazolopyrimidine derivatives containing β-amino ester or amide as linkers were successfully designed for the new DPP-4 inhibitors. Most fused 6-methylpyrazolopyrimidines were evaluated against DPP-4 inhibition and selectivity capacity. Based on research study, β-amino carbonyl fused 6-(hydroxymethyl)pyrazolopyrimidine possesses the significant DPP-4 inhibition (IC50 ≤ 59.8 nM) and presents similar with Sitagliptin (IC50 = 28 nM). Particularly, they had satisfactory selectivity over DPP-8 and DPP-9, except for QPP. CONCLUSION β-Amino esters and amides fused 6-(hydroxymethyl)pyrazolopyrimidine were developed as the new DPP-4 inhibitors. Those compounds with a methyl group or hydrogen in N-1 position and methyl substituted group in C-3 of pyrazolopyrimidine moiety showed better potent DPP-4 inhibition (IC50 = 21.4-59.8 nM). Furthermore, they had satisfactory selectivity over DPP-8 and DPP-9 Finally, the docking results revealed that compound 9n was stabilized at DPP-4 active site and would be a potential lead drug.
Collapse
Affiliation(s)
- Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Ching-Chun Tseng
- Phd Program for Biotech Pharmaceutical Industry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Sin-Min Li
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Wei-Zheng Zeng
- Master Program for Pharmaceutical Manufacture, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Yu-Ching Lin
- Department of Biological Science and Technology, China Medical University, Taichung Taiwan
| | - Yu-Pei Hu
- Department of Biological Science and Technology, China Medical University, Taichung Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Henry J Tsai
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Fung Fuh Wong
- Phd Program for Biotech Pharmaceutical Industry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| |
Collapse
|
8
|
Revathi N, Sankarganesh M, Dhaveethu Raja J, Johnson Raja S, Gurusamy S, Nandini Asha R, Jeyakumar TC. Synthesis, spectral, DFT calculation, antimicrobial, antioxidant, DNA/BSA binding and molecular docking studies of bio-pharmacologically active pyrimidine appended Cu(II) and Zn(II) complexes. J Biomol Struct Dyn 2023; 41:14914-14928. [PMID: 37021479 DOI: 10.1080/07391102.2023.2196696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
A new pyrimidine derivative Schiff base (HL) [HL = 2-((4-amino-6-chloropyrimidin-2-ylimino)methyl)-4-nitrophenol] has been synthesized using 2,6-diamino-4-chloropyrimidine and 5-nitrosalicylaldehyde. Transition metal complexes of Cu(II) and Zn(II) complexes [CuL(OAc)] (1), [ZnL(OAc)] (2) are prepared with HL/metal(II) acetate with molar ratio of 1:1. The Schiff base (HL) and the complexes 1 and 2 are evaluated by UV-Visible, 1H-NMR, FT-IR, EI-MS and ESR spectral techniques. Complexes 1 and 2 are confirmed as square planar geometry. Electrochemical studies of the complexes 1 and 2 are used to analyse the quasi reversible process. Density Functional Theory (DFT) using the B3LYP/6-31++G(d,p) level basis set was used to get the optimised geometry and non-linear optical properties. The complexes 1 and 2 are good antimicrobial agents than Schiff base (HL). The interactions of the HL and complexes 1 and 2 with Calf Thymus (CT) DNA are investigated by electronic absorption methods and viscosity measurements. Various molecular spectroscopy techniques, such as UV absorption and fluorescence, were used to explore the mechanism of interaction between the BSA and the ligand HL and complexes 1 & 2 under physiological settings. Complexes 1 and 2 are act as potential antioxidants than free Schiff base (HL) by DPPH radical scavenging assay. Furthermore, the purpose of the molecular docking studies was to better understand how metal complexes interact with biomolecules (CT-DNA and BSA). From these biological analyses, complex 1 acts as good intercalator with CT DNA & BSA and potent antioxidant with DPPH radical than complex 2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
9
|
Wu J, Wang Z, Wang C, Wang Y, Li H, Luo H, Li H, Wang F, Li D, Yang J. Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg Chem 2022; 129:106171. [PMID: 36166898 DOI: 10.1016/j.bioorg.2022.106171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022]
Abstract
Uncontrolled inflammation predisposes to pleiotropic effects leading to cancer development thanks to promoting all stages of tumorigenesis. Therefore, cancer-associated inflammation has been delegated as the seventh hallmark of cancer. Thus, raging the war against both inflammation and cancer via the innovation of bioactive agents with dual anti-inflammatory and anticancer activities is a necessity. Herein, a novel series of pyrazole-chalcone analogs of Lonazolac (7a-g and 8a-g) have been synthesized and investigated for their in vitro anticancer activity against four cancer cell lines using the MTT assay method. Among all, hybrid 8g was the most potent against three cancer cell lines, HeLa, HCT-116, and RPMI-822 with IC50 values of 2.41, 2.41, and 3.34 µM, respectively. In contrast, hybrid 8g showed moderate inhibitory activity against MCF-7 with IC50 28.93 μM and with a selectivity profile against MCF-10A (non-cancer cells). Mechanistically, hybrid 8g was the most potent inhibitor against tubulin polymerization (IC50 = 4.77 µM), suggesting tubulin as a molecular target and explaining the observed cytotoxicity of hybrid 8g. This was mirrored by the detected potent pre-G1 apoptosis induction and G2/M cell cycle arrest. Moreover, hybrid8gexhibited selectivity against COX-2 (IC50 = 5.13 µM) more than COX-1 (IC50 = 33.46 µM), indicating that 8g may have lower cardiovascular side effects, but is still not potent as celecoxib (COX-2 IC50 = 0.204 µM, COX-1 = 35.8 µM). Notably, hybrid 8g showed promising inhibitory activity towards 5-LOX (IC50 = 5.88 µM). Finally, the anti-inflammatory activity of hybrid8 g was confirmed by high iNOS and PGE2 inhibitory activities in LPS-stimulated RAW cells with IC50 values of4.93 µM and 10.98 µM, respectively, that accompanied by showingthe most potent inhibition of NO release (70.61 % inhibition rate). Molecular docking studies of hybrid 8g confirmed good correlations with the executed biological results. Furthermore, hybrid 8g had good drug-likeness and suitable physicochemical properties. Taken together, the combined results suggested hybrid8gas a promising orally administered candidate in the journey of repurposing NSAIDs for cancer chemopreventionand treatment.
Collapse
|
11
|
Ng JH, Tiekink ERT, Dolzhenko AV. Three-component microwave-assisted synthesis of 3,5-disubstituted pyrazolo[3,4- d]pyrimidin-4-ones. RSC Adv 2022; 12:8323-8332. [PMID: 35424837 PMCID: PMC8984946 DOI: 10.1039/d2ra00980c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
A practical three-component method for the synthesis of pyrazolo[3,4-d]pyrimidin-4-ones was developed. The reaction was performed in a one-pot manner under controlled microwave irradiation using easily accessible methyl 5-aminopyrazole-4-carboxylates, trimethyl orthoformate, and primary amines. Under the optimized conditions, challenging substrates, such as N-1 unsubstituted 5-aminopyrazole-4-carboxylates with another substituted amino group in position 3, reacted selectively affording 5-substituted 3-arylamino-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-ones. The reaction tolerated a range of primary amines, including anilines. The advantages of the developed protocol include short reaction time, pot- and step-economy, and convenient chromatography-free product isolation. The structural features of representative products were explored by X-ray crystallography.
Collapse
Affiliation(s)
- Jia Hui Ng
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University 5 Jalan Universiti, Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University GPO Box U1987 Perth Western Australia 6845 Australia
| |
Collapse
|
12
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
13
|
Ahmed EA, Mohamed MFA, Omran OA. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents. RSC Adv 2022; 12:25204-25216. [PMID: 36199335 PMCID: PMC9443684 DOI: 10.1039/d2ra04498f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Novel quinoxaline derivatives (2a–d, 3, 4a, 4b and 5–15) have been synthesized via the reaction of 4-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (1) with different aldehydes, ketones, diketones, ketoesters, as well as hydrazine, phenyl isothiocyanate, carbon disulphide. The synthesized products have been screened for their in vitro anticancer and COX inhibitory activities. Most of the synthesized compounds exhibited good anticancer and COX-2 inhibitory activities. MTT assay revealed that compounds 11 and 13 were the most potent and exhibited very strong anticancer activity against the three cancer cell lines with IC50 values ranging from 0.81 μM to 2.91 μM. Compounds 4a and 5 come next and displayed strong anticancer activity against the three cancer cell lines with IC50 values ranging from 3.21 μM to 4.54 μM. Mechanistically, compounds 4a and 13 were the most active and potently inhibited EGFR with IC50 = 0.3 and 0.4 μM, respectively. Compounds 11 and 5 come next with IC50 = 0.6 and 0.9 μM, respectively. Moreover, compounds 11 and 13 were the most potent as COX-2 inhibitors and displayed higher potency against COX-2 (IC50 = 0.62 and 0.46 μM, respectively) more than COX-1 (IC50 = 37.96 and 30.41 μM, respectively) with selectivity indexes (SI) of 61.23 and 66.11, respectively. Compounds 4a and 5 comes next with IC50 = 1.17 and 0.83 μM and SI of 24.61 and 48.58, respectively. Molecular docking studies into the catalytic binding pocket of both protein receptors, EGFR and COX-2, showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and Veber's standard were calculated and revealed that compounds 4a, 5, 11 and 13 had a reasonable drug-likeness with acceptable physicochemical properties. Therefore, based on the obtained biological results accompanied with the docking study and physicochemical parameters, it could be concluded that compounds 4a, 5, 11 and 13 could be used as promising orally absorbed dual anti-inflammatory agents via inhibition of COX-2 enzyme and anticancer candidates via inhibition of EGFR enzyme and could be used as a future template for further investigations. Novel quinoxaline derivatives (2a–d, 3, 4a, 4b, 5–15) have been synthesized and screened for their in vitro anticancer and COX-2 inhibitory activities. Compounds 4a, 5, 11 and 13 proved to be the most potent anticancer and COX-2 inhibitors.![]()
Collapse
Affiliation(s)
- Eman A. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Omran A. Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
14
|
Cheng X, Wang W, Wang Y, Xia D, Yin F, Liu Q, Luo H, Li M, Zhang C, Cao H, Lv X. Novel Pyrazolo[3,4- d]pyrimidin-4-one Derivatives as Potential Antifungal Agents: Design, Synthesis, and Biological Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11395-11405. [PMID: 34523907 DOI: 10.1021/acs.jafc.1c02454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant pathogenic fungi seriously threaten agricultural production. There is an urgent need to develop novel fungicides with low toxicity and high efficiency. In this study, we designed and synthesized 44 pyrazolo[3,4-d]pyrimidin-4-one derivatives and evaluated them for their fungicidal activities. The bioassay data revealed that most of the target compounds possessed moderate to high in vitro antifungal activities. Especially compound g22 exhibited remarkable antifungal activity against Sclerotinia sclerotiorum with an EC50 value of 1.25 mg/L, close to that of commercial fungicide boscalid (EC50 = 0.96 mg/L) and fluopyram (EC50 = 1.91 mg/L). Moreover, compound g22 possessed prominent protective activity against S. sclerotiorum in vivo for 24 h (95.23%) and 48 h (93.78%), comparable to positive control boscalid (24 h (96.63%); 48 h (93.23%)). Subsequent studies indicated that compound g22 may impede the growth and reproduction of S. sclerotiorum by affecting the morphology of mycelium, destroying cell membrane integrity, and increasing cell membrane permeability. In addition, the application of compound g22 did not injure the growth or reproduction of Italian bees. This study revealed that compound g22 is expected to be developed for efficient and safe agricultural fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yunxiao Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dongguo Xia
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fang Yin
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiaoyun Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Chengqi Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
15
|
Koksal M, Dedeoglu-Erdogan A, Bader M, Gurdal EE, Sippl W, Reis R, Ozgurbuz M, Sipahi H, Celik T. Design, synthesis, and molecular docking of novel 3,5-disubstituted-1,3,4-oxadiazole derivatives as iNOS inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000469. [PMID: 33969533 DOI: 10.1002/ardp.202000469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/06/2022]
Abstract
To obtain new anti-inflammatory agents, recent studies have aimed to replace the carboxylate functionality of nonsteroidal anti-inflammatory drugs with less acidic heterocyclic bioisosteres like 1,3,4-oxadiazole to protect the gastric mucosa from free carboxylate moieties. In view of these observations, we designed and synthesized a series of 3,5-disubstituted-1,3,4-oxadiazole derivatives as inhibitors of prostaglandin E2 (PGE2 ) and NO production with an improved activity profile. As initial screening, and to examine the anti-inflammatory activities of the compounds, the inhibitions of the productions of lipopolysaccharide-induced NO and PGE2 in RAW 264.7 macrophages were evaluated. The biological assays showed that, compared with indomethacin, compounds 5a, 5g, and 5h significantly inhibited NO production with 12.61 ± 1.16, 12.61 ± 1.16, and 18.95 ± 3.57 µM, respectively. Consequently, the three compounds were evaluated for their in vivo anti-inflammatory activities. Compounds 5a, 5g, and 5h showed a potent anti-inflammatory activity profile almost equivalent to indomethacin at the same dose in the carrageenan-induced paw edema test. Moreover, the treatment with 40 mg/kg of 5h produced significant anti-inflammatory activity data. Furthermore, docking studies were performed to reveal possible interactions with the inducible nitric oxide synthase enzyme. Docking results were able to rationalize the biological activity data of the studied inhibitors. In summary, our data suggest that compound 5h is identified as a promising candidate for further anti-inflammatory drug development with an extended safety profile.
Collapse
Affiliation(s)
- Meric Koksal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ayca Dedeoglu-Erdogan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Marwa Bader
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omar Al-Mukhtar University, Al Bayda, Libya
| | - Enise E Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry and Clinical Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry and Clinical Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rengin Reis
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Melda Ozgurbuz
- Department of Pharmacology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Turgay Celik
- Department of Pharmacology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
16
|
Kumar S, Kumar A, Agrawal A, Sahu JK. Synthesis, in vivo biological assessment and molecular docking study of some newer indole derivatives as COX 1/2 inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Fekri A, Keshk EM, Khalil AGM, Taha I. Synthesis of novel antioxidant and antitumor 5-aminopyrazole derivatives, 2D/3D QSAR, and molecular docking. Mol Divers 2021; 26:781-800. [PMID: 33683569 DOI: 10.1007/s11030-021-10184-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
5-Aminopyrazole serves as a vital precursor for several biologically active pyrazoloazines, including pyrazolopyridine, pyrazolopyrimidine, and pyrazolotriazine, as well as Schiff bases, thiourea, and phthalimide derivatives. In this study, we structurally characterized novel pyrazole derivatives by spectral IR, 1H and 13C NMR, and MASS spectroscopy. We also evaluated antioxidant activity of various derivatives using ABTS and DPPH methods and cytotoxicity in the hepatocellular carcinoma Hep-G2 cells by SRB assay. The most potent antitumor molecules were 5-aminopyrazole derivative 3, chloroacetanilide derivative 8, maleimide derivative 10a, pyrazolopyrimidine 16, and enamine 19, with IC50 values of 41, 3.6, 37, 24.4, and 17.7 μM, respectively. Complementary computational studies predicted QSAR and bioactivity of these molecules. Interestingly, the most effective compounds were also predicted to be kinase inhibitors; in addition, molecular docking with liver receptors (3MBG, 4XCU, and 4G9C) predicted promising interactions.
Collapse
Affiliation(s)
- Ahmed Fekri
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt.
| | - Eman M Keshk
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Abdel-Galil M Khalil
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Israa Taha
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| |
Collapse
|
18
|
Elrayess R, Elgawish MS, Elewa M, Nafie MS, Elhady SS, Yassen ASA. Synthesis, 3D-QSAR, and Molecular Modeling Studies of Triazole Bearing Compounds as a Promising Scaffold for Cyclooxygenase-2 Inhibition. Pharmaceuticals (Basel) 2020; 13:ph13110370. [PMID: 33172102 PMCID: PMC7694773 DOI: 10.3390/ph13110370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Targeting of cyclooxygenase-2 (COX-2) has emerged as a powerful tool for therapeutic intervention because the overexpression of this enzyme is synonymous with inflammation, cancer, and neurodegenerative diseases. Herein, a new series of 1,2,4-triazole Schiff bases scaffold with aryl and heteroaryl systems 9a–12d were designed, synthesized, structurally elucidated, and biologically evaluated as a potent COX-2 blocker. The rationale beyond the current study is to increase the molecule bulkiness allowing a selective binding to the unique hydrophobic pocket of COX-2. Among the triazole–thiazole hybrids, the one with the para-methoxy moiety linked to a phenyl ring 12d showed the highest In vitro selectivity by COX-2 inhibition assay (IC50 of 0.04 μM) and in situ anti-inflammatory activity when evaluated using the protein denaturation assay (IC50 of 0.88 μM) in comparison with commercially available selective COX-2 inhibitor, Celecoxib (IC50 of 0.05 μM). Towards the COX-2 selectivity, ligand-based three dimensional quantitative structures activity relationship (3D-QSAR) employing atomic-based and field-based approaches were performed and resulted in the necessity of triazole and thiazole/oxazole scaffolds for COX-2 blocking. Furthermore, the molecular modeling study indicated a high selectivity and promising affinity of our prepared compounds to COX-2, especially the hydrophobic pocket and the mouth of the active site holding hydrogen-bonding, hydrophobic, and electrostatic interactions. In Silico absorption, delivery, metabolism, and excretion (ADME) predictions showed that all the pharmacokinetic and physicochemical features are within the appropriate range for human use.
Collapse
Affiliation(s)
- Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.)
| | - Mohamed Saleh Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Marwa Elewa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.)
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Asmaa S. A. Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.)
- Correspondence: ; Tel.: +20-1096206738; Fax: +20-064-3230741
| |
Collapse
|
19
|
Discovery of novel urea-diarylpyrazole hybrids as dual COX-2/sEH inhibitors with improved anti-inflammatory activity and highly reduced cardiovascular risks. Eur J Med Chem 2020; 205:112662. [DOI: 10.1016/j.ejmech.2020.112662] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022]
|
20
|
Mohamed MFA, Marzouk AA, Nafady A, El-Gamal DA, Allam RM, Abuo-Rahma GEDA, El Subbagh HI, Moustafa AH. Design, synthesis and molecular modeling of novel aryl carboximidamides and 3-aryl-1,2,4-oxadiazoles derived from indomethacin as potent anti-inflammatory iNOS/PGE2 inhibitors. Bioorg Chem 2020; 105:104439. [PMID: 33161252 DOI: 10.1016/j.bioorg.2020.104439] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
The development of NSAIDs/iNOS inhibitor hybrids is a new strategy for the treatment of inflammatory diseases by suppression of the overproduction of PGE2 and NO. A novel series of aryl carboximidamides 4a-g and their cyclized 3-aryl-1,2,4-oxadiazoles 5a-g counterparts derived from indomethacin 1 were synthesized. Most of the target compounds displayed lower LPS-induced NO production IC50 in RAW 264.7 cells and potent in vitro iNOS and PGE2 inhibitory activity than indomethacin. Moreover, in carrageenan-induced rat paw oedema method, most of them exhibited higher in vivo anti-inflammatory activity than the reference drug indomethacin. Notably, 4 hrs after carrageenan injection, compound 4a proved to be the most potent anti-inflammatory agent in this study, with almost two- and eight-fold more active than the reference drugs indomethacin (1) and celecoxib, respectively. Compound 4a proved to be inhibitor to LPS-induced NO production, iNOS activity and PGE2 with IC50 of 10.70 μM, 2.31 μM, and 29 nM; respectively. Compounds 4a and 5b possessed the lowest ulcerogenic liabilities (35% and 38%, respectively) compared to 1. Histopathological analysis revealed that compounds 4a and 5b demonstrated reduced degeneration and healing of ulcers. Molecular docking studies into the catalytic binding pocket of the iNOS protein receptor (PDB ID: 1r35) showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and ADMET analysis were calculated where compound 4a had reasonable drug-likeness with acceptable physicochemical properties so it could be used as promising orally absorbed anti-inflammatory therapy and entitled to be used as future template for further investigations.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| | - Adel A Marzouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalia A El-Gamal
- Histology Department, Faculty of Medicine, Assiut University, 71526 Assiut, Egypt
| | - Rasha M Allam
- Pharmacology Department, National Research Centre, Giza 11865, Egypt
| | | | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Amr H Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
21
|
Mehrzadi S, Khalili H, Fatemi I, Malayeri A, Siahpoosh A, Goudarzi M. Zingerone Mitigates Carrageenan-Induced Inflammation Through Antioxidant and Anti-inflammatory Activities. Inflammation 2020; 44:186-193. [PMID: 32803664 DOI: 10.1007/s10753-020-01320-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is the body's response against various pathogens and has a critical role in numerous diseases. Zingerone (Zing), a bioactive substance derived from ginger root, has a variety of pharmacological properties, such as reducing inflammation, and antioxidant effects. We aimed to evaluate the beneficial effects of Zing in a carrageenan-induced inflammation model. Paw edema induced by carrageenan (100 μl of 1%) was used to induce acute inflammation in rats. Different doses of Zing (10, 20, and 40 mg/kg) were administered intraperitoneally. Paw tissue levels of MDA, NO, CAT, SOD, GPx, GSH, COX-2, PGE2, TNF-α, and IL-1β were estimated. Our results showed that Zing, especially at the highest dose of 40 mg/kg, significantly reduced paw swelling in carrageenan-injected animals. Zing significantly increased paw enzymatic and nonenzymatic antioxidants except CAT. It also decreased paw levels of MDA, NO, COX-2, PGE2, TNF-α, and IL-1β. The results of this study show that Zing may provide an alternative for the clinical control of inflammation through antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Malayeri
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nab'a Al-Hayat Health Research Center, Nab'a Al-Hayat Foundation for Medical Sciences and Health Care, Najaf, Iraq
| | - Amir Siahpoosh
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Shaker AMM, Abdelall EKA, Abdellatif KRA, Abdel-Rahman HM. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem 2020; 14:23. [PMID: 32259135 PMCID: PMC7106896 DOI: 10.1186/s13065-020-00675-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/16/2020] [Indexed: 01/03/2023] Open
Abstract
Three series of 2-(4-methylsulfonylphenyl) indole derivatives have been designed and synthesized. The synthesized compounds were assessed for their antimicrobial, COX inhibitory and anti-inflammatory activities. Compound 7g was identified to be the most potent antibacterial candidate against strains of MRSA, E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, respectively, with safe therapeutic dose. Compounds 7a-k, 8a-c, and 9a-c showed good anti-inflammatory activity with excessive selectivity towards COX-2 in comparison with reference drugs indomethacin and celecoxib. Compounds 9a-c were found to release moderate amounts of NO to decrease the side effects associated with selective COX-2 inhibitors. A molecular modeling study for compounds 7b, 7h, and 7i into COX-2 active site was correlated with the results of in vitro COX-2 inhibition assays.
Collapse
Affiliation(s)
- Ahmed M M Shaker
- 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62517 Egypt
| | - Eman K A Abdelall
- 2Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Khaled R A Abdellatif
- 2Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt.,Pharmaceutical Sciences Department, IbnSina National College for Medical Studies, Jeddah, 21418 Kingdom of Saudi Arabia
| | - Hamdy M Abdel-Rahman
- 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62517 Egypt.,4Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
23
|
Prediction of the potential biological activity of novel spiropyrazolo[3,4-b]pyridines and spiropyrazolo[3,4-b]pyridine-5,5'-pyrimidines by a ligand-protein inverse-docking approach. J Mol Graph Model 2020; 97:107581. [PMID: 32199275 DOI: 10.1016/j.jmgm.2020.107581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
The interaction of a series of spiropyrazolo[3,4-b]pyridines and spiropyrazolo[3,4-b]pyridine-5,5'-pyrimidines with 975 molecular targets involved in different diseases and biochemical alterations in humans was assessed. In-silico and in-vivo methods were used to predict the potential biological activity of these compounds. The exposure of several individuals of C. elegans to these compounds shows that their lethality would be less than 10% and that they do not induce any alteration in their locomotion. The compounds identified as PRV-8 and 13-G were the most bioactive, and also showed other advantages such as; better structural properties, adequate pharmacokinetic and pharmacodynamic properties, and good flexibility and unsaturation, which placed them as the compounds of greatest interest to be tested in-vitro and in-vivo. The series of compounds described here exhibited significant interactions with the estrogen signaling pathway.
Collapse
|
24
|
Tseng CC, Tsai SE, Li SM, Wong FF. One-Pot Acid-Promoted Synthesis of 6-Aminopyrazolopyrimidines from 1 H-Pyrazol-5-yl- N, N-dimethylformamidines or 5-Amino-1 H-pyrazole-4-carbaldehydes with Cyanamide. J Org Chem 2019; 84:16157-16170. [PMID: 31736306 DOI: 10.1021/acs.joc.9b02653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient and efficient one-pot acid-promoted synthesis of 6-aminopyrazolo[3,4-d]pyrimidine has been developed by treatment of 1H-pyrazol-5-yl-N,N-dimethylformamidines or 5-amino-1H-pyrazole-4-carbaldehydes with cyanamide (NH2C≡N) in an acid-mediated solution. This synthetic route involves four steps of deprotection, imination, the key acid-promoted heterocyclization, and aromatization. On the basis of optimized studies, methanesulfonylchloride is considered to be the best solvent. Furthermore, the microwave-assisted synthetic technique was also carried out to improve the major product 6-aminopyrazolo[3,4-d]pyrimidines in this method. Moreover, our proposed mechanism was confirmed in this study, which demonstrates that N-[(5-amino-1,3-diaryl-1H-pyrazol-4-yl)methylene]cyanamide is the intermediate.
Collapse
|
25
|
El-Shitany NA, Eid BG. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed Pharmacother 2019; 120:109567. [DOI: 10.1016/j.biopha.2019.109567] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022] Open
|
26
|
Synthesis, modeling and biological evaluation of some pyrazolo[3,4-d]pyrimidinones and pyrazolo[4,3-e][1,2,4]triazolo[4,3-a]pyrimidinones as anti-inflammatory agents. Bioorg Chem 2019; 90:102844. [DOI: 10.1016/j.bioorg.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
|
27
|
Li J, Yin P, Gong P, Lv A, Zhang Z, Liu F. 8-Methoxypsoralen protects bovine mammary epithelial cells against lipopolysaccharide-induced inflammatory injury via suppressing JAK/STAT and NF-κB pathway. Microbiol Immunol 2019; 63:427-437. [PMID: 31313848 DOI: 10.1111/1348-0421.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Bovine mastitis is the most common disease in dairy cattle. Bacterial infections are the main cause of mastitis. Lipopolysaccharide (LPS), a major structural component of the cell wall of Escherichia coli, is a good inducer used to replicate inflammation models. 8-Methoxypsoralen (8-MOP), a formerly considered photosensitizing agent, has been used in immunotherapy. This study investigated the protective effects of 8-MOP on LPS-induced inflammatory injury in bovine mammary epithelial cells (BMECs). LPS treatment (50 μg/mL for 12 hr) caused a decrease in cell viability, morphological damage, and cell apoptosis. Pretreatment with 8-MOP at concentrations of 25 and 50 μg/ml significantly attenuated LPS-induced inflammation in BMECs. qRT-PCR analysis revealed that the messenger RNA expression of inflammatory cytokines and chemokine (interleukin-1β [IL-1β], IL-6, tumor necrosis factor-α, and IL-8) was suppressed by 8-MOP in LPS-stimulated BMECs. Western blot analysis showed that 8-MOP could also reduce the protein levels of cyclooxygenase-2 and promote the translocation of high-mobility group box 1 from the nucleus to cytoplasm. Furthermore, the anti-inflammatory property of 8-MOP was mediated by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells activation and STAT1 phosphorylation. Taken together, 8-MOP could protect cells from inflammatory injury induced by LPS, and may be a potential agent against bovine mastitis.
Collapse
Affiliation(s)
- Jiandong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ping Gong
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - An Lv
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhicong Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
28
|
Wang BS, Huang X, Chen LZ, Liu MM, Shi JB. Design and synthesis of novel pyrazolo[4,3- d]pyrimidines as potential therapeutic agents for acute lung injury. J Enzyme Inhib Med Chem 2019; 34:1121-1130. [PMID: 31117832 PMCID: PMC6534230 DOI: 10.1080/14756366.2019.1618291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four series of total 35 new pyrazolo[4,3-d]pyrimidine compounds were designed, synthesized and evaluated for their inhibitory activity against LPS-induced NO production in RAW264.7 macrophages. Among them, compound 4e was found to be the most potent inhibitor, which decreased the production of cytokines in vitro, such as NO, IL-6 and TNF-α, with IC50 values of 2.64, 4.38 and 5.63 μM, respectively. Further studies showed that compound 4e inhibited cytokines secretion of macrophages through suppressing TLR4/p38 signaling pathway. Additionally, compound 4e showed in vivo anti-inflammatory activity in LPS-induced model of acute lung injury. These data suggested that compound 4e may be a promising lead structure for the treatment of ALI.
Collapse
Affiliation(s)
- Bao Shi Wang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Xin Huang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Liu Zeng Chen
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Ming Ming Liu
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Jing Bo Shi
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| |
Collapse
|
29
|
Somakala K, Tariq S, Amir M. Synthesis, evaluation and docking of novel pyrazolo pyrimidines as potent p38α MAP kinase inhibitors with improved anti-inflammatory, ulcerogenic and TNF-α inhibitory properties. Bioorg Chem 2019; 87:550-559. [DOI: 10.1016/j.bioorg.2019.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
|
30
|
Abdelall EK, Lamie PF, Ahmed AK, EL-Nahass ELS. COX-1/COX-2 inhibition assays and histopathological study of the new designed anti-inflammatory agent with a pyrazolopyrimidine core. Bioorg Chem 2019; 86:235-253. [DOI: 10.1016/j.bioorg.2019.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/31/2018] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
|
31
|
Shi JB, Chen LZ, Wang BS, Huang X, Jiao MM, Liu MM, Tang WJ, Liu XH. Novel Pyrazolo[4,3-d]pyrimidine as Potent and Orally Active Inducible Nitric Oxide Synthase (iNOS) Dimerization Inhibitor with Efficacy in Rheumatoid Arthritis Mouse Model. J Med Chem 2019; 62:4013-4031. [DOI: 10.1021/acs.jmedchem.9b00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Bao Shi Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Xin Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Ming Ming Jiao
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Wen Jian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
32
|
Anti-Inflammation Effect of Small Molecule Oligopeptides Prepared from Panax ginseng C. A. Meyer in Rats. Molecules 2019; 24:molecules24050858. [PMID: 30823424 PMCID: PMC6429476 DOI: 10.3390/molecules24050858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
The present study was designed to investigate the anti-inflammatory effects of ginseng oligopeptides (GOPs). For the anti-inflammatory activity, dextran-induced paw edema and granuloma models were used in Sprague-Dawley rats (180–200 g, 12 weeks old, n = 10). Rats were treated orally with GOPs (0, 62.5, 125, 250 and 500 mg/kg) for prophylaxis. In the granuloma model, the levels of NO, Tumor necrosis factor-α (TNF-α), interleukin IL-β, and interleukin IL-10 in serum were evaluated. In addition, in the edema model, the level of TNF-α, prostaglandin E2 (PGE2), Leukotriene D4 (LTD4), and the platelet activating factor (RAF) in paw tissue were detected. PCR assessed the effect of GOPs on the expression of MAPK and NF-κB. The results showed that oral administration of GOPs inhibited inflammation caused by cotton pellet and dextran. GOPs significantly inhibited the edema formation via MAPK and NF-κB. These findings suggested that GOPs have a beneficial effect on acute and chronic inflammation, and the mechanism possibly mediated by inhibiting gene expression involved in inflammation and downregulating inflammatory mediators.
Collapse
|
33
|
Tageldin GN, Fahmy SM, Ashour HM, Khalil MA, Nassra RA, Labouta IM. Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorg Chem 2018; 80:164-173. [DOI: 10.1016/j.bioorg.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
|
34
|
Abdellatif KR, Bakr RB. New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorg Chem 2018; 78:341-357. [DOI: 10.1016/j.bioorg.2018.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 01/20/2023]
|
35
|
Nassar IF, El Farargy AF, Abdelrazek FM. Synthesis and Anticancer Activity of Some New Fused Pyrazoles and Their Glycoside Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ibrahim F. Nassar
- Faculty of Specific Education; Ain Shams University; 365 Ramsis Street, Abassia Cairo Egypt
| | - Ahmed F. El Farargy
- Department of Chemistry, Faculty of Science; Zagazig University; Zagazig Egypt
| | - Fathy M. Abdelrazek
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| |
Collapse
|
36
|
Tsai SE, Yen WP, Tseng CC, Xie JJ, Liou MY, Li YT, Uramaru N, Wong FF. Efficient acid catalytic synthesis of pyrazolopyrimidines from 1H-pyrazol-5-yl-N,N-dimethylformamidines with cyanamide. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Tageldin GN, Fahmy SM, Ashour HM, Khalil MA, Nassra RA, Labouta IM. Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidines as anti-inflammatory agents. Bioorg Chem 2018; 78:358-371. [PMID: 29627656 DOI: 10.1016/j.bioorg.2018.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 12/18/2022]
Abstract
New pyrazolo[3,4-d]pyrimidines substituted with various functionalities or attached to a substituted pyrazole ring through different linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory activity using in vitro COX-1/COX-2 inhibition assay and in vivo formalin induced paw edema and cotton pellet-induced granuloma assays. Results revealed that compounds 17b and 18 possessed COX-1/COX-2 selectivity indices higher than diclofenac sodium and celecoxib. However, compounds 16a,b exhibited selectivity indices higher than diclofenac sodium and nearly equivalent to celecoxib, whereas, 9b displayed selectivity index comparable to diclofenac sodium. In vivo anti-inflammatory data showed that compounds 9b, 16a, 18 displayed anti-inflammatory activity higher than both references in the formalin induced paw edema model. On the other hand, the pyrazolyl derivatives 9b, 16b and 17b displayed anti-inflammatory activity about 2-2.5-fold that of diclofenac sodium and nearly 8-10.5-fold that of celecoxib in the cotton pellet-induced granuloma assay. The ulcerogenic effect of the active compounds was also investigated and results revealed that compounds 16a, 17a,b and 18 showed good gastrointestinal safety profile. Based on this, compounds 16a and 18 were considered as safe and effective leads in managing acute inflammation, while, 17b was prominent in controlling chronic inflammation.
Collapse
Affiliation(s)
- Gina N Tageldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Salwa M Fahmy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hayam M Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mounir A Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Rasha A Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ibrahim M Labouta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
38
|
Kosbar TR, Abou-Zeid L, Sofan MA. Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel Pyrazolo[3,4-d
]pyrimidines as Potential Telomerase Inhibitors. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tamer R. Kosbar
- Department of Chemistry, Faculty of Science; Damietta University; 34517 New Damietta Egypt
| | - Laila Abou-Zeid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy; Mansoura University; 35516 Mansoura Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy; Delta University; Mansoura Egypt
| | - Mamdouh A. Sofan
- Department of Chemistry, Faculty of Science; Damietta University; 34517 New Damietta Egypt
| |
Collapse
|
39
|
Lycopene rich extract from red guava ( Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 2017; 99:959-968. [DOI: 10.1016/j.foodres.2017.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
|
40
|
Abdellatif KR, Fadaly WA. New 1,2-diaryl-4-substituted-benzylidene-5-4 H -imidazolone derivatives: Design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. Bioorg Chem 2017; 72:123-129. [DOI: 10.1016/j.bioorg.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
|
41
|
Yen WP, Tsai SE, Uramaru N, Takayama H, Wong FF. One-Flask Synthesis of Pyrazolo[3,4-d]pyrimidines from 5-Aminopyrazoles and Mechanistic Study. Molecules 2017; 22:molecules22050820. [PMID: 28509884 PMCID: PMC6154590 DOI: 10.3390/molecules22050820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
A novel one-flask synthetic method was developed in which 5-aminopyrazoles were reacted with N,N-substituted amides in the presence of PBr3. Hexamethyldisilazane was then added to perform heterocyclization to produce the corresponding pyrazolo[3,4-d]pyrimidines in suitable yields. These one-flask reactions thus involved Vilsmeier amidination, imination reactions, and the sequential intermolecular heterocyclization. To study the reaction mechanism, a series of 4-formyl-1,3-diphenyl-1H-pyrazol-5-yl-N,N-disubstituted formamidines, which were conceived as the chemical equivalent of 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-formamidine, were prepared and successfully converted into pyrazolo[3,4-d]pyrimidines. The experiments demonstrated that the reaction intermediates were the chemical equivalents of 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl)formamidines. The rate of the reaction could be described as being proportional to the reactivity of amine reactants during intermolecular heterocyclization, especially when hexamethyldisilazane was used.
Collapse
Affiliation(s)
- Wan-Ping Yen
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Program for Biotech Pharmaceutical Industry, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Shuo-En Tsai
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Program for Biotech Pharmaceutical Industry, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Naoto Uramaru
- Department of Environmental Science, Nihon Pharmaceutical University, Komuro Inamachi Kita-adachi-gun, Saitama-ken 10281, Japan.
| | - Hiroyuki Takayama
- Department of Medico Pharmaceutical Science, Nihon Pharmaceutical University, Komuro Inamachi Kita-adachi-gun, Saitama-ken 10281, Japan.
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.
| |
Collapse
|
42
|
Nassar IF, El Farargy AF, Abdelrazek FM, Ismail NSM. Design, synthesis and anticancer evaluation of novel pyrazole, pyrazolo[3,4-d]pyrimidine and their glycoside derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:275-291. [PMID: 28323527 DOI: 10.1080/15257770.2016.1276290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The chalcone derivatives 3a,b were cyclized upon reaction with thiourea to give the pyrazolo[3,4-d]pyrimidine derivatives 5a,b. Condensation of 5a,b and their hydrazide derivatives 8a,b with cyclic and acyclic glucose gave the condensed S- and N-glycosides 7a,b and 9a,b, respectively. Reaction of 3b with ethyl cyanoacetate followed by reaction with cyclic glucose afforded a mixture of the O- and/or N-glycoside isomers 12 and 13, respectively. The pyrazolo[3,4-c]pyrazole derivative 14 was also obtained from the reaction of 3b with hydrazine hydrate. A number of the synthesized compounds were screened for their antitumor activity against three different tumor cell lines HEPG2 (liver), HCT116 (colon) and MCF-7 (breast) with a docking study against CDK2.
Collapse
Affiliation(s)
- Ibrahim F Nassar
- a Faculty of Specific Education, Ain Shams University , Abassia , Cairo , Egypt
| | - Ahmed F El Farargy
- b Department of Chemistry , Faculty of Science, Zagazig University , Zagazig , Egypt
| | - Fathy M Abdelrazek
- c Department of Chemistry , Faculty of Science, Cairo University , Giza , Egypt
| | - Nasser S M Ismail
- d Pharmaceutical Chemistry Department , Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University , Cairo , Egypt
| |
Collapse
|
43
|
Wang H, Xu YS, Wang ML, Cheng C, Bian R, Yuan H, Wang Y, Guo T, Zhu LL, Zhou H. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders. Int J Mol Med 2017; 39:819-830. [PMID: 28260042 PMCID: PMC5360435 DOI: 10.3892/ijmm.2017.2904] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurosurgery, Traffic Hospital of Shandong Province, Jinan, Shandong 250031, P.R. China
| | - You Song Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Miao Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Rui Bian
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ting Guo
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lin Lin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hang Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
44
|
Alsayed SSR, Elshemy HAH, Abdelgawad MA, Abdel-Latif MS, Abdellatif KRA. Design, synthesis and biological screening of some novel celecoxib and etoricoxib analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem 2016; 70:173-183. [PMID: 28057325 DOI: 10.1016/j.bioorg.2016.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Two new series of 4,6-diaryl-3-cyanopyridine 4a-r and 1,3,5-triaryl-2-pyrazolines 6a-f and were prepared. The new compounds were evaluated for their in vitro COX-2 selectivity and in vivo anti-inflammatory activity. Compounds 4o,r and 6d,f had moderate to high selectivity index (S.I.) compared to celecoxib (selectivity indexes of 4.5, 3.14, 4.79 and 3.21, respectively) and also, showed in vivo anti-inflammatory activity approximately equal to or higher than celecoxib (edema inhibition %=60.5, 64.5, 59.3 and 59.3, after 3h, respectively) and the effective anti-inflammatory doses were (ED50=10.1, 7.8, 8.46 and 10.7mg/kg respectively, celecoxib ED50=10.8mg/kg) and ulcerogenic liability were determined for these compounds which showed promising activity by being more potent than celecoxib with nearly negligible ulcerogenic liability compared to celecoxib (reduction in ulcerogenic liability versus celecoxib=85, 82, 74 and 67%, respectively).
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni Suef University, Beni Suef 62514, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni Suef University, Beni Suef 62514, Egypt; College of Pharmac, Al Jouf University, Sakaka, Al jouf 2014, Saudi Arabia.
| | - Mahmoud S Abdel-Latif
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef 62514, Egypt
| | - Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni Suef University, Beni Suef 62514, Egypt; Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah 21418, Kingdom of Saudi Arabia
| |
Collapse
|
45
|
Abdelazeem AH, El-Saadi MT, Safi El-Din AG, Omar HA, El-Moghazy SM. Design, synthesis and analgesic/anti-inflammatory evaluation of novel diarylthiazole and diarylimidazole derivatives towards selective COX-1 inhibitors with better gastric profile. Bioorg Med Chem 2016; 25:665-676. [PMID: 27916468 DOI: 10.1016/j.bmc.2016.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023]
Abstract
The inhibition of gastric cyclooxygenase 1 (COX-1) enzyme was believed to be the major cause of non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastric ulcer. Recent studies disproved this belief and showed that the gastric tissues vulnerability is not solely connected to COX-1 inhibition. This work aimed at exploring and rationalizing the differential analgesic and anti-inflammatory activities of novel selective COX-1 inhibitors with improved gastric profile. Two novel series of 4,5-diarylthiazole and diarylimidazole were designed, synthesized in analogy to selective COX-1 inhibitors (mofezolac and FR122047) which lack gastric damaging effects. The new compounds were evaluated in vitro for their COXs inhibitory activity and in vivo for their anti-inflammatory and analgesic potentials. Four compounds; diphenylthiazole glycine derivatives (15a, 15b) and diphenylimidazolo acetic acid derivatives (19a, 19b), which possess carboxylic acid group exhibited significant activity and selectivity against COX-1 over COX-2. Of these compounds, (4,5-bis(4-methoxyphenyl)thiazol-2-yl)glycine 15b was the most potent compound against COX-1 with an inhibitory half maximal concentration (IC50) of 0.32μM and a selectivity index (COX-2 IC50/COX-1 IC50) of 28.84. Furthermore, an ulcerogenicity study was performed where the tested compounds demonstrated a significant gastric tolerance. Interestingly, the most selective COX-1 inhibitor showed higher analgesic activity in vivo as expected compared to their moderate anti-inflammatory activity. This study underscores the need for further design and development of novel analgesic agents with low tendency to cause gastric damage based on improving their COX-1 affinity and selectivity profile.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia.
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Asmaa G Safi El-Din
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Samir M El-Moghazy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
46
|
Abdelrahman MH, Youssif BGM, Abdelgawad MA, Abdelazeem AH, Ibrahim HM, Moustafa AEGA, Treamblu L, Bukhari SNA. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur J Med Chem 2016; 127:972-985. [PMID: 27837994 DOI: 10.1016/j.ejmech.2016.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/02/2023]
Abstract
A series of novel quinoline-2-carboxamides 15-28 was synthesized and evaluated in vitro as dual COXs/LOX inhibitors. Compounds 19 and 27 exhibited the highest potency and selectivity for COX-2 inhibitory activity (IC50 = 1.21 and 1.13 μM, respectively; selectivity index (COX-1/COX-2) = 6.52 and 7.61, respectively) in comparison to the reference drug celecoxib (COX-2 IC50 = 0.88 μM; selectivity index (COX-1/COX-2) = 8.31). The anti-inflammatory activity of the newly synthesized compounds was further assessed in vivo using carrageenan induced paw edema assay. Interestingly, the in vitro results of COXs inhibitory assay were consistent with that of the in vivo assay where compounds 19 and 27 showed the highest anti-inflammatory activity with edema inhibition percentages of 59.38% and 65.03%, respectively compared to celecoxib (71.21%) after 5 h. Moreover, it was found that compounds 19 and 27 have a superior gastric safety profile comparable to indomethacin. The molecular docking study of compounds 19 and 27 into COX-2 active site suggested that these hits assumed binding pattern and interactions similar to that of bromocelecoxib (S-58) as a cocrystallized ligand explaining their remarkable COX-2 inhibitory activity and selectivity. Taken together, these results indicated that these derivatives are good leads for subsequent development into potential anti-inflammatory agents with least gastric damage.
Collapse
Affiliation(s)
- Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka2014, Saudi Arabia.
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka2014, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Hussein M Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Aljouf, Sakaka2014, Saudi Arabia
| | - Abd El Ghany A Moustafa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Aljouf, Sakaka2014, Saudi Arabia; Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Laurent Treamblu
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen, AB243UE, Ireland
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka2014, Saudi Arabia.
| |
Collapse
|
47
|
Belaroussi R, El Hakmaoui A, Akssira M, Guillaumet G, Routier S. Regioselective Synthesis of 2,4-Substituted Pyrido[1′,2′:1,5]pyrazolo[3,4-d
]pyrimidines through Sequential Pd-Catalyzed Arylation and SN
Ar Reactions. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rabia Belaroussi
- Univ Orleans; CNRS; Institut de Chimie Organique et Analytique; UMR 7311; BP 6759 45067 Orléans Cedex 2 France
- Laboratoire de Chimie Physique et Chimie Bioorganique; Université Hassan II-Mohammedia-Casablanca; B. P. 146 28800 Mohammedia Morocco
| | - Ahmed El Hakmaoui
- Laboratoire de Chimie Physique et Chimie Bioorganique; Université Hassan II-Mohammedia-Casablanca; B. P. 146 28800 Mohammedia Morocco
| | - Mohamed Akssira
- Laboratoire de Chimie Physique et Chimie Bioorganique; Université Hassan II-Mohammedia-Casablanca; B. P. 146 28800 Mohammedia Morocco
| | - Gérald Guillaumet
- Univ Orleans; CNRS; Institut de Chimie Organique et Analytique; UMR 7311; BP 6759 45067 Orléans Cedex 2 France
| | - Sylvain Routier
- Univ Orleans; CNRS; Institut de Chimie Organique et Analytique; UMR 7311; BP 6759 45067 Orléans Cedex 2 France
| |
Collapse
|
48
|
Bakr RB, Azouz AA, Abdellatif KRA. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4-d]pyrimidine derivatives. J Enzyme Inhib Med Chem 2016; 31:6-12. [DOI: 10.1080/14756366.2016.1186018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt, and
| | - Amany A. Azouz
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
49
|
Zídek Z, Kverka M, Dusilová A, Kmoníčková E, Jansa P. Dual inhibition of nitric oxide and prostaglandin E2 production by polysubstituted 2-aminopyrimidines. Nitric Oxide 2016; 57:48-56. [PMID: 27133739 DOI: 10.1016/j.niox.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022]
Abstract
The present in vitro experiments demonstrate inhibitory effects of polysubstituted 2-aminopyrimidines on high output production of nitric oxide (NO) and prostaglandin E2 (PGE2) stimulated by interferon-γ and lipopolysaccharide (LPS) in peritoneal macrophages of mouse and rat origin. PGE2 production was inhibited also in LPS-activated human peripheral blood mononuclear cells. A tight dependence of the suppressive activities on chemical structure of pyrimidines was observed. Derivatives containing hydroxyl groups at the C-4 and C-6 positions of pyrimidine ring were devoid of any influence on NO and PGE2. Remarkable inhibitory potential was acquired by the replacement of hydroxyl groups with chlorine, the 4,6-dichloro derivatives being more effective than the monochloro analogues. The effects were further intensified by modification of the amino group at the C-2 position, changing it to the (N,N-dimethylamino)methyleneamino or the formamido ones. There was no substantial difference in the expression of NO-inhibitory effects among derivatives containing distinct types of substituents at the C-5 position (hydrogen, methyl, ethyl, propyl, butyl, phenyl, and benzyl). In contrast to NO, larger substituents then methyl were required to inhibit PGE2 production. Overall, no significant correlation between the extent of NO and PGE2 suppression was observed. The IC50s of derivatives with the strongest effects on both NO and PGE2 were within the range of 2-10 μM. Their NO-inhibitory potential of pyrimidines was stronger than that of non-steroidal anti-inflammatory drugs (NSAIDs) aspirin and indomethacin. The PGE2-inhibitory effectiveness of pyrimidines was about the same as that of aspirin, but weaker as compared to indomethacin. The NO- and PGE2-inhibitory activity of tested pyrimidines has been found associated with decreased expression of iNOS mRNA and COX-2 mRNA, respectively, and with post-translation interactions. Selected NO-/PGE2-inhibitory derivatives decreased severity of intestinal inflammation in murine model of ulcerative colitis.
Collapse
Affiliation(s)
- Zdeněk Zídek
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Miloslav Kverka
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic; Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Adéla Dusilová
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic; Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Eva Kmoníčková
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
50
|
Shen B, Zhang L, Lian C, Lu C, Zhang Y, Pan Q, Yang R, Zhao Z. Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells. Int J Mol Sci 2016; 17:200. [PMID: 26901190 PMCID: PMC4783934 DOI: 10.3390/ijms17020200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
Abstract
Milk fat is a key factor affecting milk quality and is also a major trait targeted in dairy cow breeding. To determine how the synthesis and the metabolism of lipids in bovine milk is regulated at the miRNA level, primary mammary epithelial cells (pMEC) derived from two Chinese Holstein dairy cows that produced extreme differences in milk fat percentage were cultured by the method of tissue nubbles culture. Small RNA libraries were constructed from each of the two pMEC groups, and Solexa sequencing and bioinformatics analysis were then used to determine the abundance of miRNAs and their differential expression pattern between pMECs. Target genes and functional prediction of differentially expressed miRNAs by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis illustrated their roles in milk fat metabolism. Results show that a total of 292 known miRNAs and 116 novel miRNAs were detected in both pMECs. Identification of known and novel miRNA candidates demonstrated the feasibility and sensitivity of sequencing at the cellular level. Additionally, 97 miRNAs were significantly differentially expressed between the pMECs. Finally, three miRNAs including bta-miR-33a, bta-miR-152 and bta-miR-224 whose predicted target genes were annotated to the pathway of lipid metabolism were screened and verified by real-time qPCR and Western-blotting experiments. This study is the first comparative profiling of the miRNA transcriptome in pMECs that produce different milk fat content.
Collapse
Affiliation(s)
- Binglei Shen
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Liying Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Chuanjiang Lian
- National Key Laboratory of Veterinary Biotechnology and Laboratory Animal and Comparative Medicine Unit, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Chunyan Lu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Yonghong Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Qiqi Pan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|