1
|
Mochizuki K, Mitova V, Makino K, Terada H, Takeuchi I, Troev K. pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers. Int J Mol Sci 2024; 25:4518. [PMID: 38674103 PMCID: PMC11049995 DOI: 10.3390/ijms25084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers.
Collapse
Affiliation(s)
- Kasumi Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Faculty of Pharmaceutical Science, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kolio Troev
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
2
|
Nifant’ev IE, Ivchenko PV. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 1. Polyphosphodiesters. Int J Mol Sci 2022; 23:14857. [PMID: 36499185 PMCID: PMC9738169 DOI: 10.3390/ijms232314857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Among natural and synthetic polymers, main-chain phosphorus-containing polyacids (PCPAs) (polyphosphodiesters), stand in a unique position at the intersection of chemistry, physics, biology and medicine. The structural similarity of polyphosphodiesters PCPAs to natural nucleic and teichoic acids, their biocompatibility, mimicking to biomolecules providing the 'stealth effect', high bone mineral affinity of polyphosphodiesters resulting in biomineralization at physiological conditions, and adjustable hydrolytic stability of polyphosphodiesters are the basis for various biomedical, industrial and household applications of this type of polymers. In the present review, we discuss the synthesis, properties and actual applications of polyphosphodiesters.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
3
|
Thermoresponsive Polyphosphoester via Polycondensation Reactions: Synthesis, Characterization, and Self-Assembly. Molecules 2022; 27:molecules27186006. [PMID: 36144742 PMCID: PMC9505623 DOI: 10.3390/molecules27186006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Using a novel strategy, amphiphilic polyphosphoesters based on poly(oxyethylene H-phosphonate)s (POEHP) with different poly(ethylene glycol) segment lengths and aliphatic alcohols with various alkyl chain lengths were synthesized using polycondensation reactions. They were characterized by 1H NMR, 13C {H} NMR 31P NMR, IR, and size exclusion chromatography (SEC). The effects of the polymer structure on micelle formation and stability, micelle size, and critical micelle temperature were studied via dynamic light scattering (DLS). The hydrophilic/hydrophobic balance of these polymers can be controlled by changing the chain lengths of hydrophilic PEG and hydrophobic alcohols. A solubilizing test, using Sudan III, revealed that hydrophobic substances can be incorporated inside the hydrophobic core of polymer associates. Loading capacity depends on the length of alkyl side chains. The results obtained indicate that these structurally flexible polymers have the potential as drug carriers.
Collapse
|
4
|
Todorova Z, Tumurbaatar O, Todorova J, Ugrinova I, Koseva N. Phosphorus-containing star-shaped polymer conjugates for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Molkentine JM, Fujimoto TN, Horvath TD, Grossberg AJ, Garcia CJG, Deorukhkar A, de la Cruz Bonilla M, Lin D, Samuel ELG, Chan WK, Lorenzi PL, Piwnica-Worms H, Dantzer R, Tour JM, Mason KA, Taniguchi CM. Enteral Activation of WR-2721 Mediates Radioprotection and Improved Survival from Lethal Fractionated Radiation. Sci Rep 2019; 9:1949. [PMID: 30760738 PMCID: PMC6374382 DOI: 10.1038/s41598-018-37147-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Unresectable pancreatic cancer is almost universally lethal because chemotherapy and radiation cannot completely stop the growth of the cancer. The major problem with using radiation to approximate surgery in unresectable disease is that the radiation dose required to ablate pancreatic cancer exceeds the tolerance of the nearby duodenum. WR-2721, also known as amifostine, is a well-known radioprotector, but has significant clinical toxicities when given systemically. WR-2721 is a prodrug and is converted to its active metabolite, WR-1065, by alkaline phosphatases in normal tissues. The small intestine is highly enriched in these activating enzymes, and thus we reasoned that oral administration of WR-2721 just before radiation would result in localized production of the radioprotective WR-1065 in the small intestine, providing protective benefits without the significant systemic side effects. Here, we show that oral WR-2721 is as effective as intraperitoneal WR-2721 in promoting survival of intestinal crypt clonogens after morbid irradiation. Furthermore, oral WR-2721 confers full radioprotection and survival after lethal upper abdominal irradiation of 12.5 Gy × 5 fractions (total of 62.5 Gy, EQD2 = 140.6 Gy). This radioprotection enables ablative radiation therapy in a mouse model of pancreatic cancer and nearly triples the median survival compared to controls. We find that the efficacy of oral WR-2721 stems from its selective accumulation in the intestine, but not in tumors or other normal tissues, as determined by in vivo mass spectrometry analysis. Thus, we demonstrate that oral WR-2721 is a well-tolerated, and quantitatively selective, radioprotector of the intestinal tract that is capable of enabling clinically relevant ablative doses of radiation to the upper abdomen without unacceptable gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jessica M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Thomas D Horvath
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Aaron J Grossberg
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
- Department of Symptoms Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carolina J Garcia Garcia
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Amit Deorukhkar
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Marimar de la Cruz Bonilla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Errol L G Samuel
- Department of Chemistry, Smalley-Curl Institute and the NanoCarbon Center, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, United States of America
| | - Wai Kin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Robert Dantzer
- Department of Symptoms Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James M Tour
- Department of Chemistry, Smalley-Curl Institute and the NanoCarbon Center, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, United States of America
| | - Kathryn A Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America.
| |
Collapse
|
6
|
Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, Sioli M, Zoccoli A, Durante M. Hibernation for space travel: Impact on radioprotection. LIFE SCIENCES IN SPACE RESEARCH 2016; 11:1-9. [PMID: 27993187 DOI: 10.1016/j.lssr.2016.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Hibernation is a state of reduced metabolic activity used by some animals to survive in harsh environmental conditions. The idea of exploiting hibernation for space exploration has been proposed many years ago, but in recent years it is becoming more realistic, thanks to the introduction of specific methods to induce hibernation-like conditions (synthetic torpor) in non-hibernating animals. In addition to the expected advantages in long-term exploratory-class missions in terms of resource consumptions, aging, and psychology, hibernation may provide protection from cosmic radiation damage to the crew. Data from over half century ago in animal models suggest indeed that radiation effects are reduced during hibernation. We will review the mechanisms of increased radioprotection in hibernation, and discuss possible impact on human space exploration.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S.Donato 2, 40126 Bologna, Italy; National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Walter Tinganelli
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Matteo Negrini
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Alexander Helm
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Emanuele Scifoni
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Francesco Tommasino
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy; Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Maximiliano Sioli
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy ; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Antonio Zoccoli
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy ; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Marco Durante
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy.
| |
Collapse
|
7
|
Yang X, Ding Y, Ji T, Zhao X, Wang H, Zhao X, Zhao R, Wei J, Qi S, Nie G. Improvement of the in vitro safety profile and cytoprotective efficacy of amifostine against chemotherapy by PEGylation strategy. Biochem Pharmacol 2016; 108:11-21. [DOI: 10.1016/j.bcp.2016.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
|