1
|
Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, Li N, Hu X. The Culprit Behind HBV-Infected Hepatocytes: NTCP. Drug Des Devel Ther 2024; 18:4839-4858. [PMID: 39494152 PMCID: PMC11529284 DOI: 10.2147/dddt.s480151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for over 250 million cases of chronic liver infections, leading to conditions such as liver inflammation, cirrhosis and hepatocellular carcinoma (HCC). Sodium taurocholate co-transporting polypeptide (NTCP) is a transmembrane protein highly expressed in human hepatocytes and functions as a bile acid (BA) transporter. NTCP has been identified as the receptor that HBV and its satellite virus, hepatitis delta virus (HDV), use to enter hepatocytes. HBV entry into hepatocytes is tightly regulated by various signaling pathways, and NTCP plays an important role as the initial stage of HBV infection. NTCP acts as an initiation signal, causing metabolic changes in hepatocytes and facilitating the entry of HBV into hepatocytes. Thus, a comprehensive understanding of NTCP's role is crucial. In this review, we will examine the regulatory mechanisms governing HBV pre-S1 binding to liver membrane NTCP, the role of NTCP in HBV internalization, and the transcriptional and translational regulation of NTCP expression. Additionally, we will discuss clinical drugs targeting NTCP, including combination therapies involving NTCP inhibitors, and consider the safety of NTCP as a therapeutic target.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, People’s Republic of China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
2
|
Saran C, Ho H, Honkakoski P, Brouwer KLR. Effect of mTOR inhibitors on sodium taurocholate cotransporting polypeptide (NTCP) function in vitro. Front Pharmacol 2023; 14:1147495. [PMID: 37033614 PMCID: PMC10073475 DOI: 10.3389/fphar.2023.1147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
The sodium taurocholate cotransporting polypeptide (NTCP; gene name SLC10A1) is the primary hepatic basolateral uptake transporter for conjugated bile acids and the entry receptor for the hepatitis B and D virus (HBV/HDV). Regulation of human NTCP remains a knowledge gap due to significant species differences in substrate and inhibitor selectivity and plasma membrane expression. In the present study, various kinase inhibitors were screened for inhibition of NTCP function and taurocholate (TCA) uptake using NTCP-transfected HuH-7 cells. This study identified everolimus, an mTOR inhibitor and macrocyclic immunosuppressive drug, as an NTCP inhibitor with modest potency (IC50 = 6.7-8.0 µM). Further investigation in differentiated HuH-7 cells expressing NTCP and NTCP-overexpressing Flp-In T-REx 293 cells revealed that the mechanism of action of everolimus on NTCP is direct inhibition and mTOR-independent. Structural analogs of everolimus inhibited NTCP-mediated TCA uptake, however, functional analogs did not affect NTCP-mediated TCA transport, providing further evidence for direct inhibition. This work contributes to the growing body of literature suggesting that NTCP-mediated bile acid uptake may be inhibited by macrocyclic peptides, which may be further exploited to develop novel medications against HBV/HDV.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
4
|
Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)-In Vitro Testing. Pharmaceutics 2022; 15:pharmaceutics15010029. [PMID: 36678658 PMCID: PMC9866820 DOI: 10.3390/pharmaceutics15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Bile acids and bile salts (BA/BS) are substrates of both influx and efflux transporters on hepatocytes. Canalicular efflux transporters, such as BSEP and MRP2, are crucial for the removal of BA/BS to the bile. Basolateral influx transporters, such as NTCP, OATP1B1/1B3, and OSTα/β, cooperate with canalicular transporters in the transcellular vectorial flux of BA/BS from the sinusoids to the bile. The blockage of canalicular transporters not only impairs the bile flow but also causes the intracellular accumulation of BA/BS in hepatocytes that contributes to, or even triggers, liver injury. In the case of BA/BS overload, the efflux of these toxic substances back to the blood via MRP3, MRP4, and OST α/β is considered a relief function. FXR, a key regulator of defense against BA/BS toxicity suppresses de novo bile acid synthesis and bile acid uptake, and promotes bile acid removal via increased efflux. In drug development, the early testing of the inhibition of these transporters, BSEP in particular, is important to flag compounds that could potentially inflict drug-induced liver injury (DILI). In vitro test systems for efflux transporters employ membrane vesicles, whereas those for influx transporters employ whole cells. Additional in vitro pharmaceutical testing panels usually include cellular toxicity tests using hepatocytes, as well as assessments of the mitochondrial toxicity and accumulation of reactive oxygen species (ROS). Primary hepatocytes are the cells of choice for toxicity testing, with HepaRG cells emerging as an alternative. Inhibition of the FXR function is also included in some testing panels. The molecular weight and hydrophobicity of the drug, as well as the steady-state total plasma levels, may positively correlate with the DILI potential. Depending on the phase of drug development, the physicochemical properties, dosing, and cut-off values of BSEP IC50 ≤ 25-50 µM or total Css,plasma/BSEP IC50 ≥ 0.1 may be an indication for further testing to minimize the risk of DILI liability.
Collapse
|
5
|
Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gaßler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med 2022; 28:84. [PMID: 35907792 PMCID: PMC9338540 DOI: 10.1186/s10020-022-00510-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Liver failure is a life-threatening complication of infections restricting the host's response to infection. The pivotal role of the liver in metabolic, synthetic, and immunological pathways enforces limits the host's ability to control the immune response appropriately, making it vulnerable to ineffective pathogen resistance and tissue damage. Deregulated networks of liver diseases are gradually uncovered by high-throughput, single-cell resolved OMICS technologies visualizing an astonishing diversity of cell types and regulatory interaction driving tolerogenic signaling in health and inflammation in disease. Therefore, this review elucidates the effects of the dysregulated host response on the liver, consequences for the immune response, and possible avenues for personalized therapeutics.
Collapse
Affiliation(s)
- Dustin Beyer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Oliver Sommerfeld
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolaus Gaßler
- Pathology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany.
- Medical Faculty, Friedrich-Schiller-University Jena, Kastanienstr. 1, 07747, Jena, Germany.
| |
Collapse
|
6
|
Tremmel R, Nies AT, van Eijck BAC, Handin N, Haag M, Winter S, Büttner FA, Kölz C, Klein F, Mazzola P, Hofmann U, Klein K, Hoffmann P, Nöthen MM, Gaugaz FZ, Artursson P, Schwab M, Schaeffeler E. Hepatic Expression of the Na+-Taurocholate Cotransporting Polypeptide Is Independent from Genetic Variation. Int J Mol Sci 2022; 23:ijms23137468. [PMID: 35806468 PMCID: PMC9267852 DOI: 10.3390/ijms23137468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Barbara A. C. van Eijck
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Florian A. Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Franziska Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Pascale Mazzola
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Fabienne Z. Gaugaz
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Pharmacy and Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-711-8101-3700
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Kirstgen M, Müller SF, Lowjaga KAAT, Goldmann N, Lehmann F, Alakurtti S, Yli-Kauhaluoma J, Baringhaus KH, Krieg R, Glebe D, Geyer J. Identification of Novel HBV/HDV Entry Inhibitors by Pharmacophore- and QSAR-Guided Virtual Screening. Viruses 2021; 13:v13081489. [PMID: 34452354 PMCID: PMC8402622 DOI: 10.3390/v13081489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
The hepatic bile acid transporter Na+/taurocholate co-transporting polypeptide (NTCP) was identified in 2012 as the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Since then, this carrier has emerged as promising drug target for HBV/HDV virus entry inhibitors, but the synthetic peptide Hepcludex® of high molecular weight is the only approved HDV entry inhibitor so far. The present study aimed to identify small molecules as novel NTCP inhibitors with anti-viral activity. A ligand-based bioinformatic approach was used to generate and validate appropriate pharmacophore and QSAR (quantitative structure–activity relationship) models. Half-maximal inhibitory concentrations (IC50) for binding inhibition of the HBV/HDV-derived preS1 peptide (as surrogate parameter for virus binding to NTCP) were determined in NTCP-expressing HEK293 cells for 150 compounds of different chemical classes. IC50 values ranged from 2 µM up to >1000 µM. The generated pharmacophore and QSAR models were used for virtual screening of drug-like chemicals from the ZINC15 database (~11 million compounds). The 20 best-performing compounds were then experimentally tested for preS1-peptide binding inhibition in NTCP-HEK293 cells. Among them, four compounds were active and revealed experimental IC50 values for preS1-peptide binding inhibition of 9, 19, 20, and 35 µM, which were comparable to the QSAR-based predictions. All these compounds also significantly inhibited in vitro HDV infection of NTCP-HepG2 cells, without showing any cytotoxicity. The best-performing compound in all assays was ZINC000253533654. In conclusion, the present study demonstrates that virtual compound screening based on NTCP-specific pharmacophore and QSAR models can predict novel active hit compounds for the development of HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Michael Kirstgen
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.K.); (S.F.M.); (K.A.A.T.L.)
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.K.); (S.F.M.); (K.A.A.T.L.)
| | - Kira Alessandra Alicia Theresa Lowjaga
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.K.); (S.F.M.); (K.A.A.T.L.)
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Sami Alakurtti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014 Helsinki, Finland; (S.A.); (J.Y.-K.)
- VTT Technical Research Centre of Finland, Biologinkuja 7, FI-02044 Espoo, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014 Helsinki, Finland; (S.A.); (J.Y.-K.)
| | | | - Reimar Krieg
- Institute of Anatomy II, University Hospital Jena, Teichgraben 7, 07743 Jena, Germany;
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.K.); (S.F.M.); (K.A.A.T.L.)
- Correspondence: ; Tel.: +49-641-99-38404; Fax: +49-641-99-38409
| |
Collapse
|
9
|
Evaluation for Potential Drug-Drug Interaction of MT921 Using In Vitro Studies and Physiologically-Based Pharmacokinetic Models. Pharmaceuticals (Basel) 2021; 14:ph14070654. [PMID: 34358080 PMCID: PMC8308925 DOI: 10.3390/ph14070654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
MT921 is a new injectable drug developed by Medytox Inc. to reduce submental fat. Cholic acid is the active pharmaceutical ingredient, a primary bile acid biosynthesized from cholesterol, endogenously produced by liver in humans and other mammals. Although individuals treated with MT921 could be administered with multiple medications, such as those for hypertension, diabetes, and hyperlipidemia, the pharmacokinetic drug–drug interaction (DDI) has not been investigated yet. Therefore, we studied in vitro against drug-metabolizing enzymes and transporters. Moreover, we predicted the potential DDI between MT921 and drugs for chronic diseases using physiologically-based pharmacokinetic (PBPK) modeling and simulation. The magnitude of DDI was found to be negligible in in vitro inhibition and induction of cytochrome P450s and UDP-glucuronosyltransferases. Organic anion transporting polypeptide (OATP)1B3, organic anion transporter (OAT)3, Na+-taurocholate cotransporting polypeptide (NTCP), and apical sodium-dependent bile acid transporter (ASBT) are mainly involved in MT921 transport. Based on the result of in vitro experiments, the PBPK model of MT921 was developed and evaluated by clinical data. Furthermore, the PBPK model of amlodipine was developed and evaluated. PBPK DDI simulation results indicated that the pharmacokinetics of MT921 was not affected by the perpetrator drugs. In conclusion, MT921 could be administered without a DDI risk based on in vitro study and related in silico simulation. Further clinical studies are needed to validate this finding.
Collapse
|
10
|
Floerl S, Kuehne A, Geyer J, Brockmoeller J, Tzvetkov MV, Hagos Y. Functional and Pharmacological Comparison of Human and Mouse Na +/Taurocholate Cotransporting Polypeptide (NTCP). SLAS DISCOVERY 2021; 26:1055-1064. [PMID: 34060352 DOI: 10.1177/24725552211017500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Na+/taurocholate cotransporting polypeptide (NTCP) is located in the basolateral membrane of hepatocytes, where it transports bile acids from the portal blood back into hepatocytes. Furthermore, NTCP has a role for the hepatic transport of some drugs. Extrapolation of drug transport data from rodents to humans is not always possible, because species differences in the expression level, localization, affinity, and substrate selectivity of relevant transport proteins must be considered. In the present study, a functional comparison of human NTCP (hNTCP) and mouse Ntcp (mNtcp) showed similar Km values of 67 ± 10 µM and 104 ± 9 µM for the probe substrate estrone-3-sulfate as well as of 258 ± 42 µM and 199 ± 13 µM for the drug rosuvastatin, respectively. IC50 values for the probe inhibitor cyclosporine A were 3.1 ± 0.3 µM for hNTCP and 1.6 ± 0.4 µM for mNtcp. In a drug and pesticide inhibitory screening on both transporters, 4 of the 15 tested drugs (cyclosporine A, benzbromarone, MK571, and fluvastatin) showed high inhibitory potency, but only slight inhibition was observed for the 13 tested pesticides. Among these compounds, only four drugs and three pesticides showed significant differences in their inhibition pattern on hNTCP and mNtcp. Most pronounced was the difference for benzbromarone with a fivefold higher IC50 for mNtcp (27 ± 10 µM) than for hNTCP (5.5 ± 0.6 µM).In conclusion, we found a strong correlation between the transport kinetics and inhibition pattern among hNTCP and mNtcp. However, specific compounds, such as benzbromarone, showed clear species differences. Such species differences have to be considered when pharmacokinetic data are transferred from rodent to humans.
Collapse
Affiliation(s)
| | | | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Gießen, Germany
| | - Juergen Brockmoeller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology Center of Drug Absorption and Transport (C_DAT), University Greifswald, Greifswald, Germany
| | | |
Collapse
|
11
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
12
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
13
|
Sakai Y, Iwao T, Susukida T, Nukaga T, Takemura A, Sekine S, Ito K, Matsunaga T. In vitro bile acid-dependent hepatocyte toxicity assay system using human induced pluripotent stem cell-derived hepatocytes: Current status and disadvantages to overcome. Drug Metab Pharmacokinet 2019; 34:264-271. [PMID: 31285099 DOI: 10.1016/j.dmpk.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/12/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
Cholestatic drug-induced liver injury (DILI) is a type of hepatotoxicity. Its underlying mechanisms are dysfunction of bile salt export pump (BSEP) and multidrug resistance-associated protein 2/3/4 (MRP2/3/4), which play major roles in bile acid (BA) excretion into the bile canaliculi and blood, resulting in accumulation of BAs in hepatocytes. The sandwich-cultured hepatocyte (SCH) model can simultaneously analyze hepatic uptake and biliary excretion. Therefore, we investigated whether sandwich-cultured human induced pluripotent stem cell (iPS cell)-derived hepatocytes (SCHiHs) are suitable for evaluating cholestatic DILI. Fluorescent N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2'-aminoethanesulfonate (tauro-nor-THCA-24-DBD, a BSEP substrate) was accumulated in bile canaliculi, which supports the presence of a functional bile canaliculi lumen. MRP2 was highly expressed in the Western blot analysis, whereas the mRNA expression of BSEP was hardly detectable. MRP3/4 mRNA levels were maintained. Of the 22 compounds known to cause DILI with BAs, 7 showed significant cytotoxicity. Most high-risk drugs were detected using the developed SCHiH system. However, a shortcoming was the considerably low expression level of BSEP, which prevented the detection of some relevant drugs whose risks should be detected in primary human hepatocytes.
Collapse
Affiliation(s)
- Yoko Sakai
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Takeshi Susukida
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Takumi Nukaga
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
14
|
Yu Y, Li S, Liang W. Bona fide receptor for hepatitis B and D viral infections: Mechanism, research models and molecular drug targets. Emerg Microbes Infect 2018; 7:134. [PMID: 30050063 PMCID: PMC6062556 DOI: 10.1038/s41426-018-0137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B infections have become a serious public health issue globally, and the current first-line antiviral treatment for this disease is not a true cure. Recently, sodium taurocholate cotransporting polypeptide (NTCP), a liver-specific bile acid transporter, was identified as a bona fide receptor for hepatitis B virus (HBV) and its satellite virus, hepatitis delta virus (HDV). Identification of the HBV receptor has led to the development of robust cell cultures and provides a potential target for new treatments. This review summarizes the process by which NTCP was discovered and describes its clinical significance as the receptor for HBV and HDV entry.
Collapse
Affiliation(s)
- Yueran Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, 312400, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weifeng Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, 312400, China.
| |
Collapse
|
15
|
Jani M, Beéry E, Heslop T, Tóth B, Jagota B, Kis E, Kevin Park B, Krajcsi P, Weaver RJ. Kinetic characterization of bile salt transport by human NTCP (SLC10A1). Toxicol In Vitro 2018; 46:189-193. [DOI: 10.1016/j.tiv.2017.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 02/03/2023]
|
16
|
Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. Mol Pharm 2017; 14:4462-4475. [PMID: 29096442 PMCID: PMC5741413 DOI: 10.1021/acs.molpharmaceut.7b00578] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further using multiple metrics with much larger scale comparisons, prospective testing as well as assessment of different fingerprints and DNN architectures beyond those used.
Collapse
Affiliation(s)
- Alexandru Korotcov
- Science Data Software, LLC, 14914 Bradwill Court, Rockville, MD 20850, USA
| | - Valery Tkachenko
- Science Data Software, LLC, 14914 Bradwill Court, Rockville, MD 20850, USA
| | - Daniel P Russo
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, 08102, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
17
|
Donkers JM, Zehnder B, van Westen GJP, Kwakkenbos MJ, IJzerman AP, Oude Elferink RPJ, Beuers U, Urban S, van de Graaf SFJ. Reduced hepatitis B and D viral entry using clinically applied drugs as novel inhibitors of the bile acid transporter NTCP. Sci Rep 2017; 7:15307. [PMID: 29127322 PMCID: PMC5681660 DOI: 10.1038/s41598-017-15338-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/24/2017] [Indexed: 01/05/2023] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) is the main hepatic transporter of conjugated bile acids, and the entry receptor for hepatitis B virus (HBV) and hepatitis delta virus (HDV). Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, effectively blocks HBV and HDV infection. In addition, Myrcludex B inhibits NTCP-mediated bile acid uptake, suggesting that also other NTCP inhibitors could potentially be a novel treatment of HBV/HDV infection. This study aims to identify clinically-applied compounds intervening with NTCP-mediated bile acid transport and HBV/HDV infection. 1280 FDA/EMA-approved drugs were screened to identify compounds that reduce uptake of taurocholic acid and lower Myrcludex B-binding in U2OS cells stably expressing human NTCP. HBV/HDV viral entry inhibition was studied in HepaRG cells. The four most potent inhibitors of human NTCP were rosiglitazone (IC50 5.1 µM), zafirlukast (IC50 6.5 µM), TRIAC (IC50 6.9 µM), and sulfasalazine (IC50 9.6 µM). Chicago sky blue 6B (IC50 7.1 µM) inhibited both NTCP and ASBT, a distinct though related bile acid transporter. Rosiglitazone, zafirlukast, TRIAC, sulfasalazine, and chicago sky blue 6B reduced HBV/HDV infection in HepaRG cells in a dose-dependent manner. Five out of 1280 clinically approved drugs were identified that inhibit NTCP-mediated bile acid uptake and HBV/HDV infection in vitro.
Collapse
Affiliation(s)
- Joanne M Donkers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerard J P van Westen
- Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Adriaan P IJzerman
- Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands.,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands.,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands. .,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Zhao DS, Jiang LL, Fan YX, Dong LC, Ma J, Dong X, Xu XJ, Li P, Li HJ. Identification of urine tauro-β-muricholic acid as a promising biomarker in Polygoni Multiflori Radix-induced hepatotoxicity by targeted metabolomics of bile acids. Food Chem Toxicol 2017; 108:532-542. [DOI: 10.1016/j.fct.2017.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
19
|
Takehara I, Terashima H, Nakayama T, Yoshikado T, Yoshida M, Furihata K, Watanabe N, Maeda K, Ando O, Sugiyama Y, Kusuhara H. Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers. Pharm Res 2017; 34:1601-1614. [PMID: 28550384 DOI: 10.1007/s11095-017-2184-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/15/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE To assess the use of glycochenodeoxycholate-3-sulfate (GCDCA-S) and chenodeoxycholate 3- or 24-glucuronide (CDCA-3G or -24G) as surrogate endogenous substrates in the investigation of drug interactions involving OATP1B1 and OATP1B3. METHODS Uptake of GCDCA-S and CDCA-24G was examined in HEK293 cells transfected with cDNA for OATP1B1, OATP1B3, and NTCP and in cryopreserved human hepatocytes. Plasma concentrations of bile acids and their metabolites (GCDCA-S, CDCA-3G, and CDCA-24G) were determined by LC-MS/MS in eight healthy volunteers with or without administration of rifampicin (600 mg, po). RESULTS GCDCA-S and CDCA-24G were substrates for OATP1B1, OATP1B3, and NTCP. The uptake of [3H]atorvastatin, GCDCA-S, and CDCA-24G by human hepatocytes was significantly inhibited by both rifampicin and pioglitazone, whereas that of taurocholate was inhibited only by pioglitazone. Rifampicin elevated plasma concentrations of GCDCA-S more than those of other bile acids. The area under the plasma concentration-time curve for GCDCA-S was 20.3 times higher in rifampicin-treated samples. CDCA-24G could be detected only in plasma from the rifampicin-treatment phase, and CDCA-3G was undetectable in both phases. CONCLUSIONS We identified GCDCA-S and CDCA-24G as substrates of NTCP, OATP1B1, and OATP1B3. GCDCA-S is a surrogate endogenous probe for the assessment of drug interactions involving hepatic OATP1B1 and OATP1B3.
Collapse
Affiliation(s)
- Issey Takehara
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hanano Terashima
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nakayama
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Miwa Yoshida
- P-One Clinic, Keikokai Medical Corp, Tokyo, Japan
| | | | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Ando
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Guo C, Yang K, Brouwer KR, St Claire RL, Brouwer KLR. Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simulation. J Pharmacol Exp Ther 2016; 358:324-33. [PMID: 27233294 PMCID: PMC4959093 DOI: 10.1124/jpet.116.231928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
Transporter-mediated alterations in bile acid disposition may have significant toxicological implications. Current methods to predict interactions are limited by the interplay of multiple transporters, absence of protein in the experimental system, and inaccurate estimates of inhibitor concentrations. An integrated approach was developed to predict altered bile acid disposition due to inhibition of multiple transporters using the model bile acid taurocholate (TCA). TCA pharmacokinetic parameters were estimated by mechanistic modeling using sandwich-cultured human hepatocyte data with protein in the medium. Uptake, basolateral efflux, and biliary clearance estimates were 0.63, 0.034, and 0.074 mL/min/g liver, respectively. Cellular total TCA concentrations (Ct,Cells) were selected as the model output based on sensitivity analysis. Monte Carlo simulations of TCA Ct,Cells in the presence of model inhibitors (telmisartan and bosentan) were performed using inhibition constants for TCA transporters and inhibitor concentrations, including cellular total inhibitor concentrations ([I]t,cell) or unbound concentrations, and cytosolic total or unbound concentrations. For telmisartan, the model prediction was accurate with an average fold error (AFE) of 0.99-1.0 when unbound inhibitor concentration ([I]u) was used; accuracy dropped when total inhibitor concentration ([I]t) was used. For bosentan, AFE was 1.2-1.3 using either [I]u or [I]t This difference was evaluated by sensitivity analysis of the cellular unbound fraction of inhibitor (fu,cell,inhibitor), which revealed higher sensitivity of fu,cell,inhibitor for predicting TCA Ct,Cells when inhibitors exhibited larger ([I]t,cell/IC50) values. In conclusion, this study demonstrated the applicability of a framework to predict hepatocellular bile acid concentrations due to drug-mediated inhibition of transporters using mechanistic modeling and cytosolic or cellular unbound concentrations.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kenneth R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Robert L St Claire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| |
Collapse
|
21
|
Ekins S, Mietchen D, Coffee M, Stratton TP, Freundlich JS, Freitas-Junior L, Muratov E, Siqueira-Neto J, Williams AJ, Andrade C. Open drug discovery for the Zika virus. F1000Res 2016; 5:150. [PMID: 27134728 PMCID: PMC4841202 DOI: 10.12688/f1000research.8013.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
The Zika virus (ZIKV) outbreak in the Americas has caused global concern that we may be on the brink of a healthcare crisis. The lack of research on ZIKV in the over 60 years that we have known about it has left us with little in the way of starting points for drug discovery. Our response can build on previous efforts with virus outbreaks and lean heavily on work done on other flaviviruses such as dengue virus. We provide some suggestions of what might be possible and propose an open drug discovery effort that mobilizes global science efforts and provides leadership, which thus far has been lacking. We also provide a listing of potential resources and molecules that could be prioritized for testing as
in vitro assays for ZIKV are developed. We propose also that in order to incentivize drug discovery, a neglected disease priority review voucher should be available to those who successfully develop an FDA approved treatment. Learning from the response to the ZIKV, the approaches to drug discovery used and the success and failures will be critical for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry Inc, Fuquay-Varina, NC, USA; Collaborations Pharmaceuticals Inc., Fuquay-Varina, NC, USA; Collaborative Drug Discovery Inc., Burlingame, CA, USA
| | | | - Megan Coffee
- The International Rescue Committee , NY, NY, USA
| | - Thomas P Stratton
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, USA; Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Lucio Freitas-Junior
- Chemical Biology and Screening Platform, Brazilian Laboratory of Biosciences (LNBio), CNPEM, Campinas, Brazil
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jair Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | | | - Carolina Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|
22
|
Wang JP, Zhang MY, Li B, Xia XM. Ntcp expression in bile duct cancer tissues in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:4694-4699. [DOI: 10.11569/wcjd.v23.i29.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a rat model of bile duct cancer and detect sodium/taurocholate cotransporting polypeptide (Ntcp) expression in bile duct cancer tissues of this model, in order to provide a new method for the prevention and treatment of bile duct cancer.
METHODS: Seventy Wistar rats were randomly divided into either a control group or an experimental group, with 35 rats in each group. The control group was fed an ordinary diet, and the experimental group was fed a 3'-Me-DAB diet. After 20 wk, the bile duct cancer model was successfully established. Bile duct tissues were taken from rats of the control group and bile duct cancer tissues were taken from rats of the experimental group to detect the mRNA expression of Ntcp by real-time quantitative PCR (qRT-PCR), and protein expression by immunohistochemistry.
RESULTS: qRT-PCR analysis showed that in the bile duct tissues the Ntcp/GAPDH ratio was 12, but in the bile duct cancer tissues it was 39, which had an obvious difference. Immunohistochemistry showed that in the experimental group, the positive expression rate of Ntcp was 69.2%, significantly higher than 15.3% in the control group (χ2 = 10.28, P < 0.05).
CONCLUSION: The expression of the Ntcp gene increases significantly in rats with bile duct cancer, which suggests that drugs targeting Ntcp may be a new therapeutic strategy for bile duct cancer.
Collapse
|
23
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
24
|
Ekins S, Clark AM, Wright SH. Making Transporter Models for Drug-Drug Interaction Prediction Mobile. Drug Metab Dispos 2015; 43:1642-5. [PMID: 26199424 PMCID: PMC4576675 DOI: 10.1124/dmd.115.064956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/21/2015] [Indexed: 11/22/2022] Open
Abstract
The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, Inc., and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.); Collaborative Drug Discovery, Burlingame, California (S.E.); Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.); and Department of Physiology, University of Arizona, Tucson, Arizona (S.H.W.)
| | - Alex M Clark
- Collaborations Pharmaceuticals, Inc., and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.); Collaborative Drug Discovery, Burlingame, California (S.E.); Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.); and Department of Physiology, University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- Collaborations Pharmaceuticals, Inc., and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.); Collaborative Drug Discovery, Burlingame, California (S.E.); Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.); and Department of Physiology, University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
25
|
Zhang MY, Wang JP, Xia XM. Sodium/taurocholate cotransporting polypeptide expression in hepatocellular carcinoma in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:3587-3591. [DOI: 10.11569/wcjd.v23.i22.3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of sodium/taurocholate cotransporting polypeptide (Ntcp) in hepatocellular carcinoma in rats.
METHODS: Sixty Wistar rats were randomly divided into a control group and an experimental group, with 30 rats in each group. The control group was fed an ordinary diet, and the experimental group was fed diethylnitrosamine for 20 wk to induce primary liver cancer. After successful induction, liver tissues were taken to detect the expression of Ntcp protein by immunohistochemistry and Western blot.
RESULTS: Both immunohistochemistry and Western blot analysis showed that the expression of Ntcp protein was significantly higher in the experiment group than in the control group (P < 0.05).
CONCLUSION: The expression of Ntcp protein increases significantly in primary liver cancer in rats, which suggests that drugs targeting Ntcp may provide a new treatment method for primary liver cancer.
Collapse
|
26
|
Zhang MY, Wang JP, Xia XM. Na +/taurocholate cotransporting polypeptide expression in liver tissue of hyperlipidemia rats. Shijie Huaren Xiaohua Zazhi 2015; 23:3123-3128. [DOI: 10.11569/wcjd.v23.i19.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a rat model of hyperlipidemia, detect the expression of Na+/taurocholate cotransporting polypeptide (Ntcp) in this model, and explore the role of Ntcp in bile acid and cholesterol metabolism in hyperlipidemia rats.
METHODS: Sixty Wistar rats were randomly divided into two groups, a control group (control group) that was fed an ordinary diet, and a high fat diet group (experimental group) that was fed a high fat diet. Regular detection of cholesterol and bile acid content was conducted to assess whether the hyperlipidemia model was successfully established. After successful induction of hyperlipidemia, liver tissues were taken to detect the mRNA expression of Ntcp by reverse transcription-polymerase chain reaction (RT-PCR) and protein expression by immunohistochemistry (streptavidin-peroxidase).
RESULTS: In the experiment group the contents of cholesterol and bile acid were significantly higher than those in the control group. RT-PCR analysis showed that the mRNA expression of Ntcp in the liver tissue was significantly lower in the experimental group than in the control group. Immunohistochemistry showed that in the experimental group, the positive expression rate of Ntcp was 23.6%, significantly lower than 75.2% in the control group (χ2 = 9.858, P < 0.05).
CONCLUSION: Ntcp expression decreases significantly in rats with hyperlipidemia, suggesting that Ntcp may be used as a target for treatment of hyperlipidemia and related diseases.
Collapse
|
27
|
Abstract
In the search for treatments for the Ebola Virus, multiple screens of FDA drugs have led to the identification of several with promising in vitro activity. These compounds were not originally developed as antivirals and some have been further tested in mouse in vivo models. We put forward the opinion that some of these drugs could be evaluated further and move into the clinic as they are already FDA approved and in many cases readily available. This may be important if there is a further outbreak in future and no other therapeutic is available.
Collapse
|
28
|
Abstract
In the search for treatments for the Ebola Virus, multiple screens of FDA drugs have led to the identification of several with promising
in vitro activity. These compounds were not originally developed as antivirals and some have been further tested in mouse
in vivo models. We put forward the opinion that some of these drugs could be evaluated further and move into the clinic as they are already FDA approved and in many cases readily available. This may be important if there is a further outbreak in future and no other therapeutic is available.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC, 27526, USA
| | - Megan Coffee
- Center for Infectious Diseases and Emergency Readiness, University of California at Berkeley, 1918 University Ave, Berkeley, CA, 94704, USA
| |
Collapse
|
29
|
Ekins S, Freundlich JS, Coffee M. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000Res 2014; 3:277. [PMID: 25653841 PMCID: PMC4304229 DOI: 10.12688/f1000research.5741.2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/01/2023] Open
Abstract
We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus
in vitro and
in vivo and we propose that this hypothesis could be readily tested.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA ; Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ - New Jersey Medical School, NJ, 07103, USA
| | - Megan Coffee
- Center for Infectious Diseases and Emerging Readiness, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
30
|
Ekins S, Freundlich JS, Coffee M. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000Res 2014; 3:277. [PMID: 25653841 DOI: 10.12688/f1000research.5741.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 01/05/2023] Open
Abstract
We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA ; Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ - New Jersey Medical School, NJ, 07103, USA
| | - Megan Coffee
- Center for Infectious Diseases and Emerging Readiness, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|