1
|
Zhang Q, Zhao Y, Wu J, Zhong W, Huang W, Pan Y. The progress of small molecules against cannabinoid 2 receptor (CB 2R). Bioorg Chem 2024; 144:107075. [PMID: 38218067 DOI: 10.1016/j.bioorg.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
The two subtypes of cannabinoid receptors (CBR), namely CB1R and CB2R, belong to the G protein-coupled receptor (GPCR) superfamily and are confirmed as potential therapeutic targets for a variety of diseases such as inflammation, neuropathic pain, and immune-related disorders. Since CB1R is mainly distributed in the central nervous system (CNS), it could produce severe psychiatric adverse reactions and addiction. In contrast, CB2R are predominantly distributed in the peripheral immune system with minimal CNS-related side effects. Therefore, more attention has been devoted to the discovery of CB2R ligands. In view of the favorable profile of CB2R, many high-binding affinity and selectivity CB2R ligands have been developed recently. This paper reviews recent research progress on CB2R ligands, including endogenous CB2R ligands, natural compounds, and novel small molecules, in order to provide a reference for subsequent CB2R ligand development.
Collapse
Affiliation(s)
| | - Ying Zhao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianan Wu
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Wenhai Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Youlu Pan
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Haider A, Wang L, Gobbi L, Li Y, Chaudhary A, Zhou X, Chen J, Zhao C, Rong J, Xiao Z, Hou L, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Ahmed H, Crowe R, Honer M, Rominger A, Grether U, Liang SH, Ametamey SM. Evaluation of [ 18F]RoSMA-18-d 6 as a CB2 PET Radioligand in Nonhuman Primates. ACS Chem Neurosci 2023; 14:3752-3760. [PMID: 37788055 DOI: 10.1021/acschemneuro.3c00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 μM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.
Collapse
Affiliation(s)
- Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Whiting ZM, Yin J, de la Harpe SM, Vernall AJ, Grimsey NL. Developing the Cannabinoid Receptor 2 (CB2) pharmacopoeia: past, present, and future. Trends Pharmacol Sci 2022; 43:754-771. [PMID: 35906103 DOI: 10.1016/j.tips.2022.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Cannabinoid Receptor 2 (CB2) is a G protein-coupled receptor (GPCR) with considerable, though as yet unrealised, therapeutic potential. Promising preclinical data supports the applicability of CB2 activation in autoimmune and inflammatory diseases, pain, neurodegeneration, and osteoporosis. A diverse pharmacopoeia of cannabinoid ligands is available, which has led to considerable advancements in the understanding of CB2 function and extensive preclinical evaluation. However, until recently, most CB2 ligands were highly lipophilic and as such not optimal for clinical application due to unfavourable physicochemical properties. A number of strategies have been applied to develop CB2 ligands to achieve closer to 'drug-like' properties and a few such compounds have now undergone clinical trial. We review the current state of CB2 ligand development and progress in optimising physicochemical properties, understanding advanced molecular pharmacology such as functional selectivity, and clinical evaluation of CB2-targeting compounds.
Collapse
Affiliation(s)
- Zak M Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiazhen Yin
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Sara M de la Harpe
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
5
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
6
|
Lemos BC, Westphal R, Filho EV, Fiorot RG, Carneiro JWM, Gomes ACC, Guimarães CJ, de Oliveira FCE, Costa PMS, Pessoa C, Greco SJ. Synthetic enamine naphthoquinone derived from lawsone as cytotoxic agents assessed by in vitro and in silico evaluations. Bioorg Med Chem Lett 2021; 53:128419. [PMID: 34715305 DOI: 10.1016/j.bmcl.2021.128419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
We synthesized ten enamine naphthoquinones with yields ranging from 43 to 76%. These compounds were screened for their in vitro antiproliferative activities by MTT assay against four types of human cancer cell lines: HCT116, PC3, HL60 and SNB19. The naphthoquinones bearing the picolylamine (7) and quinoline (12) moieties were the most actives (IC50 < 24 μM for all the cell lines), which were comparable or better to the values obtained for the control drugs. In silico evaluations allowed us to develop a qualitative Structure-Activity Relationship which suggest that electrostatic features, particularly the C2-C3 internuclear repulsion and the molecular dipole moment, relate to the biological response. Furthermore, Molecular Docking simulations indicate that the synthetic compounds have the potential to act as anticancer molecules by inhibiting topoisomerase-II and thymidylate synthase.
Collapse
Affiliation(s)
- Bárbara C Lemos
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Regina Westphal
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Eclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Rodolfo G Fiorot
- Chemistry Institute, Federal Fluminense University, Outeiro de São João Batista, 24020-141 Niteroi, RJ, Brazil
| | - José Walkimar M Carneiro
- Chemistry Institute, Federal Fluminense University, Outeiro de São João Batista, 24020-141 Niteroi, RJ, Brazil
| | - Anne Caroline C Gomes
- Faculty of Pharmacy, Federal Institute of Rio de Janeiro, Campus Realengo, Rio de Janeiro CEP.: 21715-000, Brazil
| | - Celina J Guimarães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará., Fortaleza, Ceará CEP.: 60430-275, Brazil; Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Fátima C E de Oliveira
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Pedro Mikael S Costa
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Claudia Pessoa
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Sandro J Greco
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil.
| |
Collapse
|
7
|
Teodoro R, Gündel D, Deuther-Conrad W, Ueberham L, Toussaint M, Bormans G, Brust P, Moldovan RP. Development of [ 18F]LU14 for PET Imaging of Cannabinoid Receptor Type 2 in the Brain. Int J Mol Sci 2021; 22:ijms22158051. [PMID: 34360817 PMCID: PMC8347709 DOI: 10.3390/ijms22158051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Daniel Gündel
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Lea Ueberham
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium;
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- Correspondence: ; Tel.: +49-3412-3417-94634
| |
Collapse
|
8
|
Cannabinoid receptor type 2 ligands: an analysis of granted patents since 2010. Pharm Pat Anal 2021; 10:111-163. [DOI: 10.4155/ppa-2021-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The G-protein-coupled cannabinoid receptor type 2 (CB2R) is a key element of the endocannabinoid (EC) system. EC/CB2R signaling has significant therapeutic potential in major pathologies affecting humans such as allergies, neurodegenerative disorders, inflammation or ocular diseases. CB2R agonism exerts anti-inflammatory and tissue protective effects in preclinical animal models of cardiovascular, gastrointestinal, liver, kidney, lung and neurodegenerative disorders. Existing ligands can be subdivided into endocannabinoids, cannabinoid-like and synthetic CB2R ligands that possess various degrees of potency on and selectivity against the cannabinoid receptor type 1. This review is an account of granted CB2R ligand patents from 2010 up to the present, which were surveyed using Derwent Innovation®.
Collapse
|
9
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
10
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Mangiatordi GF, Intranuovo F, Delre P, Abatematteo FS, Abate C, Niso M, Creanza TM, Ancona N, Stefanachi A, Contino M. Cannabinoid Receptor Subtype 2 (CB2R) in a Multitarget Approach: Perspective of an Innovative Strategy in Cancer and Neurodegeneration. J Med Chem 2020; 63:14448-14469. [PMID: 33094613 DOI: 10.1021/acs.jmedchem.0c01357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cannabinoid receptor subtype 2 (CB2R) represents an interesting and new therapeutic target for its involvement in the first steps of neurodegeneration as well as in cancer onset and progression. Several studies, focused on different types of tumors, report a promising anticancer activity induced by CB2R agonists due to their ability to reduce inflammation and cell proliferation. Moreover, in neuroinflammation, the stimulation of CB2R, overexpressed in microglial cells, exerts beneficial effects in neurodegenerative disorders. With the aim to overcome current treatment limitations, new drugs can be developed by specifically modulating, together with CB2R, other targets involved in such multifactorial disorders. Building on successful case studies of already developed multitarget strategies involving CB2R, in this Perspective we aim at prompting the scientific community to consider new promising target associations involving HDACs (histone deacetylases) and σ receptors by employing modern approaches based on molecular hybridization, computational polypharmacology, and machine learning algorithms.
Collapse
Affiliation(s)
| | - Francesca Intranuovo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Haider A, Gobbi L, Kretz J, Ullmer C, Brink A, Honer M, Woltering TJ, Muri D, Iding H, Bürkler M, Binder M, Bartelmus C, Knuesel I, Pacher P, Herde AM, Spinelli F, Ahmed H, Atz K, Keller C, Weber M, Schibli R, Mu L, Grether U, Ametamey SM. Identification and Preclinical Development of a 2,5,6-Trisubstituted Fluorinated Pyridine Derivative as a Radioligand for the Positron Emission Tomography Imaging of Cannabinoid Type 2 Receptors. J Med Chem 2020; 63:10287-10306. [PMID: 32787079 DOI: 10.1021/acs.jmedchem.0c00778] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the broad implications of the cannabinoid type 2 receptor (CB2) in neuroinflammatory processes, a suitable CB2-targeted probe is currently lacking in clinical routine. In this work, we synthesized 15 fluorinated pyridine derivatives and tested their binding affinities toward CB2 and CB1. With a sub-nanomolar affinity (Ki for CB2) of 0.8 nM and a remarkable selectivity factor of >12,000 over CB1, RoSMA-18-d6 exhibited outstanding in vitro performance characteristics and was radiofluorinated with an average radiochemical yield of 10.6 ± 3.8% (n = 16) and molar activities ranging from 52 to 65 GBq/μmol (radiochemical purity > 99%). [18F]RoSMA-18-d6 showed exceptional CB2 attributes as demonstrated by in vitro autoradiography, ex vivo biodistribution, and positron emission tomography (PET). Further, [18F]RoSMA-18-d6 was used to detect CB2 upregulation on postmortem human ALS spinal cord tissues. Overall, these results suggest that [18F]RoSMA-18-d6 is a promising CB2 PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julian Kretz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Christoph Ullmer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Andreas Brink
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Thomas J Woltering
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Dieter Muri
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Hans Iding
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Markus Bürkler
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martin Binder
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Christian Bartelmus
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Irene Knuesel
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, 5625 Fishers Lane, Rockville, 20852 Maryland, United States
| | - Adrienne Müller Herde
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Francesco Spinelli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Kenneth Atz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Ji YY, Wang ZL, Pei FN, Shi JJ, Li JJ, Gunosewoyo H, Yang F, Tang J, Xie X, Yu LF. Introducing nitrogen atoms to amidoalkylindoles: potent and selective cannabinoid type 2 receptor agonists with improved aqueous solubility. MEDCHEMCOMM 2019; 10:2131-2139. [PMID: 32904145 PMCID: PMC7451064 DOI: 10.1039/c9md00411d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Previously we identified a series of amidoalkylindoles as potent and selective CB2 partial agonists. In the present study, we report our continuous effort to improve the aqueous solubility by introducing N atoms to the amidoalkylindole framework. Synthesis, characterization, and pharmacology evaluations were described. Bioisosteric replacements of the indole nucleus with an indazole, azaindole and benzimidazole were explored. Benzimidazole 43 (EC50,CB1 = NA, EC50,CB2 = 0.067 μM) and azaindole 24 (EC50,CB1 = NA, EC50,CB2 = 0.048 μM) were found to be potent and selective CB2 receptor partial agonists, both with improved aqueous solubility.
Collapse
Affiliation(s)
- Yue-Yang Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China .
| | - Zhi-Long Wang
- CAS Key Laboratory of Receptor Research , National Center for Drug Screening , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shou Jing Road , Shanghai 201203 , China .
| | - Fang-Ning Pei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China .
| | - Jun-Jie Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China .
| | - Jiao-Jiao Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China .
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences , Faculty of Health Sciences , Curtin University , Bentley , Perth , WA 6102 , Australia
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China .
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research , National Center for Drug Screening , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shou Jing Road , Shanghai 201203 , China .
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China .
| |
Collapse
|
14
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
15
|
Kallinen A, Boyd R, Lane S, Bhalla R, Mardon K, Stimson DHR, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and in vitro evaluation of fluorine-18 benzimidazole sulfones as CB2 PET-radioligands. Org Biomol Chem 2019; 17:5086-5098. [PMID: 31070218 DOI: 10.1039/c9ob00656g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabinoid type 2 receptor (CB2) is up-regulated on activated microglial cells and can potentially be used as a biomarker for PET-imaging of neuroinflammation. In this study the synthesis and pharmacological evaluation of novel fluorinated pyridyl and ethyl sulfone analogues of 2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(2-methylpentyl)-1H-benzo[d]imidazole (rac-1a) are described. In general, the ligands showed low nanomolar potency (CB2 EC50 < 10 nM) and excellent selectivity over the CB1 subtype (>10 000×). Selected ligands 1d, 1e, 1g and 3l showing high CB2 binding affinity (Ki < 10 nM) were radiolabelled with fluorine-18 from chloropyridyl and alkyl tosylate precursors with good to high isolated radioactive yields (25-44%, non-decay corrected, at the end of synthesis). CB2-specific binding of the radioligand candidates [18F]-1d and [18F]-3l was assessed on rat spleen cryosections using in vitro autoradiography. The results warrant further in vivo evaluation of the tracer candidates as prospective CB2 PET-imaging agents.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Rochelle Boyd
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Samuel Lane
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Rajiv Bhalla
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Karine Mardon
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Damion H R Stimson
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
16
|
Frontiers Production Office. Erratum: Cannabinoid Receptor 2 Signalling Bias Elicited by 2,4,6-Trisubstituted 1,3,5-Triazines. Front Pharmacol 2019; 10:418. [PMID: 31024325 PMCID: PMC6460767 DOI: 10.3389/fphar.2019.00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
|
17
|
Ni R, Mu L, Ametamey S. Positron emission tomography of type 2 cannabinoid receptors for detecting inflammation in the central nervous system. Acta Pharmacol Sin 2019; 40:351-357. [PMID: 29921889 PMCID: PMC6460366 DOI: 10.1038/s41401-018-0035-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Cannabinoid receptor CB2 (CB2R) is upregulated on activated microglia and astrocytes in the brain under inflammatory conditions and plays important roles in many neurological diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. The advent of positron emission tomography (PET) using CB2R radiotracers has enabled the visualization of CB2R distribution in vivo in animal models of central nervous system inflammation, however translation to humans has been less successful. Several novel CB2R radiotracers have been developed and evaluated to quantify microglial activation. In this review, we summarize the recent preclinical and clinical imaging results of CB2R PET tracers and discuss the prospects of CB2R imaging using PET.
Collapse
Affiliation(s)
- Ruiqing Ni
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093, Switzerland.
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Simon Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
18
|
Oyagawa CRM, de la Harpe SM, Saroz Y, Glass M, Vernall AJ, Grimsey NL. Cannabinoid Receptor 2 Signalling Bias Elicited by 2,4,6-Trisubstituted 1,3,5-Triazines. Front Pharmacol 2018; 9:1202. [PMID: 30524271 PMCID: PMC6256112 DOI: 10.3389/fphar.2018.01202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is predominantly distributed in immune tissues and cells and is a promising therapeutic target for modulating inflammation. In this study we designed and synthesised a series of 2,4,6-trisubstituted 1,3,5-triazines with piperazinylalkyl or 1,2-diethoxyethane (PEG2) chains as CB2 agonists, all of which were predicted to be considerably more polar than typical cannabinoid ligands. In this series, we found that triazines containing an adamantanyl group were conducive to CB2 binding whereas those with a cyclopentyl group were not. Although the covalent attachment of a PEG2 linker to the adamantyl triazines resulted in a decrease in binding affinity, some of the ligands produced very interesting hCB2 signalling profiles. Six compounds with notable hCB2 orthosteric binding were functionally characterised in three pathways; internalisation, cyclic adenosine monophosphate (cAMP) and ERK phosphorylation (pERK). These were predominantly confirmed to be hCB2 agonists, and upon comparison to a reference ligand (CP 55,940), four compounds exhibited signalling bias. Triazines 14 (UOSD017) and 15 were biased towards internalisation over cAMP and pERK, and 7 was biased away from pERK activation relative to cAMP and internalisation. Intriguingly, the triazine with an amino-PEG2-piperazinyl linker (13 [UOSD008]) was identified to be a mixed agonist/inverse agonist, exhibiting apparent neutral antagonism in the internalisation pathway, transient inverse agonism in the cAMP pathway and weak partial agonism in the pERK pathway. Both the cAMP and pERK signalling were pertussis toxin (PTX) sensitive, implying that 13 is acting as both a weak agonist and inverse agonist at CB2 via Gαi/o. Compound 10 (UOSD015) acted as a balanced high intrinsic efficacy agonist with the potential to produce greater hCB2-mediated efficacy than reference ligand CP 55,940. As 10 includes a Boc-protected PEG2 moiety it is also a promising candidate for further modification, for example with a secondary reporter or fluorophore. The highest affinity compound in this set of relatively polar hCB2 ligands was compound 16, which acted as a slightly partial balanced agonist in comparison with CP 55,940. The ligands characterised here may therefore exhibit unique functional properties in vivo and have the potential to be valuable in the future development of CB2-directed therapeutics.
Collapse
Affiliation(s)
- Caitlin R. M. Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Yurii Saroz
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Prandi C, Blangetti M, Namdar D, Koltai H. Structure-Activity Relationship of Cannabis Derived Compounds for the Treatment of Neuronal Activity-Related Diseases. Molecules 2018; 23:molecules23071526. [PMID: 29941830 PMCID: PMC6099582 DOI: 10.3390/molecules23071526] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cannabis sativa active compounds are extensively studied for their therapeutic effects, beyond the well-known psychotropic activity. C. Sativa is used to treat different medical indications, such as multiple sclerosis, spasticity, epilepsy, ulcerative colitis and pain. Simultaneously, basic research is discovering new constituents of cannabis-derived compounds and their receptors capable of neuroprotection and neuronal activity modulation. The function of the various phytochemicals in different therapeutic processes is not fully understood, but their significant role is starting to emerge and be appreciated. In this review, we will consider the structure-activity relationship (SAR) of cannabinoid compounds able to bind to cannabinoid receptors and act as therapeutic agents in neuronal diseases, e.g., Parkinson’s disease.
Collapse
Affiliation(s)
- Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Torino, Italy.
| | - Marco Blangetti
- Department of Chemistry, University of Turin, 10125 Torino, Italy.
| | - Dvora Namdar
- ARO, Volcani Center, Rishon LeZion 7505101, Israel.
| | | |
Collapse
|
20
|
Slater S, Lasonkar PB, Haider S, Alqahtani MJ, Chittiboyina AG, Khan IA. One-step, stereoselective synthesis of octahydrochromanes via the Prins reaction and their cannabinoid activities. Tetrahedron Lett 2018; 59:807-810. [PMID: 29880989 PMCID: PMC5986293 DOI: 10.1016/j.tetlet.2018.01.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Novel, functionalized octahydrochromene derivatives were synthesized in a single step via the Prins reaction. Enantiomerically pure (+)-isopulegol was reacted with benzaldehyde to stereoselectively yield the corresponding octahydro-2H-chromen-4-ol derivative containing five stereocenters. A total of 10 compounds were synthesized by altering the enantiomer of isopulegol and the substituted benzaldehyde, and the resulting enantiopure octahydrochromenes were screened in vitro against the cannabinoid receptor isoforms CB1 and CB2. Compounds containing an olefin at the C4 position [(+)-3c, (-)-3c, (-)-7c, (-)-9c and (-)-11c] of the octahydrochromene scaffold were found to exhibit reasonable displacement of [3H] CP55,940 from the CB receptors, whereas the corresponding hydroxy analogs [(+)-3a, (+)-3b, (-)-3a, (-)-3b and (+)-5a] had very little or no effect.
Collapse
Affiliation(s)
- Shuneize Slater
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Pradeep B Lasonkar
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Saqlain Haider
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Moneerah J Alqahtani
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
21
|
Spinelli F, Mu L, Ametamey SM. Radioligands for positron emission tomography imaging of cannabinoid type 2 receptor. J Labelled Comp Radiopharm 2017; 61:299-308. [PMID: 29110331 DOI: 10.1002/jlcr.3579] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 01/11/2023]
Abstract
The cannabinoid type 2 (CB2) receptor is an immunomodulatory receptor mainly expressed in peripheral cells and organs of the immune system. The expression level of CB2 in the central nervous system under physiological conditions is negligible, however under neuroinflammatory conditions an upregulation of CB2 protein or mRNA mainly colocalized with activated microglial cells has been reported. Consequently, CB2 agonists have been confirmed to play a role in neuroprotective and anti-inflammatory processes. A suitable positron emission tomography radioligand for imaging CB2 would provide an invaluable research tool to explore the role of CB2 receptor expression in inflammatory disorders. In this review, we provide a summary of so far published CB2 radioligands as well as their in vitro and in vivo binding characteristics.
Collapse
Affiliation(s)
- Francesco Spinelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "A. Moro", Bari, Italy.,Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, University Hospital Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Hytti M, Andjelic S, Josifovska N, Piippo N, Korhonen E, Hawlina M, Kaarniranta K, Nevalainen TJ, Petrovski G, Parkkari T, Kauppinen A. CB 2 receptor activation causes an ERK1/2-dependent inflammatory response in human RPE cells. Sci Rep 2017; 7:16169. [PMID: 29170454 PMCID: PMC5701010 DOI: 10.1038/s41598-017-16524-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
A chronic low-level inflammation contributes to the pathogenesis of age-related macular degeneration (AMD), the most common cause of blindness in the elderly in Western countries. The loss of central vision results from attenuated maintenance of photoreceptors due to the degeneration of retinal pigment epithelium (RPE) cells beneath the photoreceptor layer. It has been proposed that pathologic inflammation initiated in RPE cells could be regulated by the activation of type 2 cannabinoid receptors (CB2). Here, we have analysed the effect of CB2 activation on cellular survival and inflammation in human RPE cells. RPE cells were treated with the selective CB2 agonist JWH-133 in the presence or absence of the oxidative stressor 4-hydroxynonenal. Thereafter, cellular viability as well as the release of pro-inflammatory cytokines and potential underlying signalling pathways were analysed. Our results show that JWH-133 led to increased intracellular Ca2+ levels, suggesting that RPE cells are capable of responding to a CB2 agonist. JWH-133 could not prevent oxidative stress-induced cell death. Instead, 10 µM JWH-133 increased cell death and the release of proinflammatory cytokines in an ERK1/2-dependent manner. In contrast to previous findings, CB2 activation increased, rather than reduced inflammation in RPE cells.
Collapse
Affiliation(s)
- M Hytti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland. .,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - S Andjelic
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - N Josifovska
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - N Piippo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - E Korhonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - M Hawlina
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Kaarniranta
- Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - T J Nevalainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - G Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Centre of Eye Research, Department of Ophthalmology and the Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - T Parkkari
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - A Kauppinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
24
|
Spinelli F, Capparelli E, Abate C, Colabufo NA, Contino M. Perspectives of Cannabinoid Type 2 Receptor (CB2R) Ligands in Neurodegenerative Disorders: Structure-Affinity Relationship (SAfiR) and Structure-Activity Relationship (SAR) Studies. J Med Chem 2017; 60:9913-9931. [PMID: 28608697 DOI: 10.1021/acs.jmedchem.7b00155] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Up-regulation of CB2R on activated microglial cells, the first step in neurodegeneration, has been widely demonstrated, and this finding makes the receptor a promising target in the early diagnosis and treatment of several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS). The development of CB2R PET ligands could help demonstrate the neurodegenerative pathogenesis, thus providing useful tools for characterizing the role of neuroinflammation in the progression of these disorders. CB2R agonists and inverse agonists have emerged as neuroprotective agents, and CB2R agonists have entered several clinical trials. CB2R ligands have therefore received great attention, and different molecular scaffolds have been selected to target CB2R subtypes. This review is focused on structure-activity relationship (SAR) and structure-affinity relationship (SAfiR) studies performed on different scaffolds with the aim to identify the molecular features useful for the design of both therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Francesco Spinelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy
| | - Elena Capparelli
- Biofordrug srl, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.,Catholic University "Our Lady of Good Counsel", Kompleksi Spitalor Universitar "Zoja e Këshillit të Mirë" , Rr. Dritan Hoxha, Laprakë, 1000, Tirana, Albania
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy.,Biofordrug srl, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
25
|
Zhang HY, Gao M, Shen H, Bi GH, Yang HJ, Liu QR, Wu J, Gardner EL, Bonci A, Xi ZX. Expression of functional cannabinoid CB 2 receptor in VTA dopamine neurons in rats. Addict Biol 2017; 22:752-765. [PMID: 26833913 DOI: 10.1111/adb.12367] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022]
Abstract
We have recently reported the expression of functional cannabinoid CB2 receptors (CB2 Rs) in midbrain dopamine (DA) neurons in mice. However, little is known whether CB2 Rs are similarly expressed in rat brain because significant species differences in CB2 R structures and expression are found. In situ hybridization and immunohistochemical assays detected CB2 gene and receptors in DA neurons of the ventral tegmental area (VTA), which was up-regulated in cocaine self-administration rats. Electrophysiological studies demonstrated that activation of CB2 Rs by JWH133 inhibited VTA DA neuronal firing in single dissociated neurons. Systemic administration of JWH133 failed to alter, while local administration of JWH133 into the nucleus accumbens inhibited cocaine-enhanced extracellular DA and i.v. cocaine self-administration. This effect was blocked by AM630, a selective CB2 R antagonist. These data suggest that CB2 Rs are expressed in VTA DA neurons and functionally modulate DA neuronal activities and cocaine self-administration behavior in rats.
Collapse
Affiliation(s)
- Hai-Ying Zhang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
| | - Ming Gao
- Divisions of Neurology and Neurobiology; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center; Phoenix AZ 85013 USA
| | - Hui Shen
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
| | - Guo-Hua Bi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Hong-Ju Yang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Qing-Rong Liu
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Jie Wu
- Divisions of Neurology and Neurobiology; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center; Phoenix AZ 85013 USA
| | - Eliot L. Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| | - Antonello Bonci
- Synaptic Plasticity Section; National Institute on Drug Abuse, Intramural Research Program; Baltimore MD 21224 USA
- Solomon H. Snyder Neuroscience Institute; Johns Hopkins University School of Medicine; Baltimore MD 21205 USA
- Department of Psychiatry; Johns Hopkins University School of Medicine; Baltimore MD 21205 USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse; Intramural Research Program; Baltimore MD 21224 USA
| |
Collapse
|
26
|
Khan MI, Sobocińska AA, Czarnecka AM, Król M, Botta B, Szczylik C. The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory. Curr Pharm Des 2016; 22:1756-66. [PMID: 26654588 PMCID: PMC5412000 DOI: 10.2174/1381612822666151211094901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) is a group of neuromodulatory lipids and their receptors, which are widely distributed in mammalian tissues. ECS regulates various cardiovascular, nervous, and immune system functions inside cells. In recent years, there has been a growing body of evidence for the use of synthetic and natural cannabinoids as potential anticancer agents. For instance, the CB1 and CB2 receptors are assumed to play an important role inside the endocannabinoid system. These receptors are abundantly expressed in the brain and fatty tissue of the human body. Despite recent developments in molecular biology, there is still a lack of knowledge about the distribution of CB1 and CB2 receptors in the human kidney and their role in kidney cancer. To address this gap, we explore and demonstrate the role of the endocannabinoid system in renal cell carcinoma (RCC). In this brief overview, we elucidate the therapeutic aspects of the endocannabinoid system for various cancers and explain how this system can be used for treating kidney cancer. Overall, this review provides new insights into cannabinoids' mechanisms of action in both in vivo and in vitro models, and focuses on recent discoveries in the field.
Collapse
Affiliation(s)
- Mohammed I Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
27
|
Ahamed M, van Veghel D, Ullmer C, Van Laere K, Verbruggen A, Bormans GM. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [ 11C]MA2 and [ 18F]MA3. Front Neurosci 2016; 10:431. [PMID: 27713686 PMCID: PMC5031696 DOI: 10.3389/fnins.2016.00431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.
Collapse
Affiliation(s)
- Muneer Ahamed
- Laboratory for Radiopharmacy, KU Leuven Leuven, Belgium
| | | | - Christoph Ullmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd Basel, Switzerland
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospital and KU Leuven Leuven, Belgium
| | | | - Guy M Bormans
- Laboratory for Radiopharmacy, KU Leuven Leuven, Belgium
| |
Collapse
|
28
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
29
|
Wang LL, Zhao R, Li JY, Li SS, Liu M, Wang M, Zhang MZ, Dong WW, Jiang SK, Zhang M, Tian ZL, Liu CS, Guan DW. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. Eur J Pharmacol 2016; 786:128-136. [PMID: 27268717 DOI: 10.1016/j.ejphar.2016.06.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
Abstract
Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Wen-Wen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Chang-Sheng Liu
- Institute of Forensic Science, Anshan Municipal People's Procuratorate, Anshan, China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China.
| |
Collapse
|
30
|
Moldovan RP, Teodoro R, Gao Y, Deuther-Conrad W, Kranz M, Wang Y, Kuwabara H, Nakano M, Valentine H, Fischer S, Pomper MG, Wong DF, Dannals RF, Brust P, Horti AG. Development of a High-Affinity PET Radioligand for Imaging Cannabinoid Subtype 2 Receptor. J Med Chem 2016; 59:7840-55. [PMID: 27500461 DOI: 10.1021/acs.jmedchem.6b00554] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid receptors type 2 (CB2) represent a target with increasing importance for neuroimaging due to its upregulation under various pathological conditions. Encouraged by preliminary results obtained with [(11)C](Z)-N-(3-(2-methoxyethyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethyl-cyclopropanecarboxamide ([(11)C]A-836339, [(11)C]1) in a mouse model of acute neuroinflammation (induced by lipopolysaccharide, LPS), we designed a library of fluorinated analogues aiming for an [(18)F]-labeled radiotracer with improved CB2 binding affinity and selectivity. Compound (Z)-N-(3-(4-fluorobutyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethyl-cyclopropanecarboxamide (29) was selected as the ligand with the highest CB2 affinity (Ki = 0.39 nM) and selectivity over those of CB1 (factor of 1000). [(18)F]29 was prepared starting from the bromo precursor (53). Specific binding was shown in vitro, whereas fast metabolism was observed in vivo in CD-1 mice. Animal PET revealed a brain uptake comparable to that of [(11)C]1. In the LPS-treated mice, a 20-30% higher uptake in brain was found in comparison to that in nontreated mice (n = 3, P < 0.05).
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Yongjun Gao
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Yuchuan Wang
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Hiroto Kuwabara
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Masayoshi Nakano
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Heather Valentine
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Martin G Pomper
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Dean F Wong
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Robert F Dannals
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research , Leipzig, Germany
| | - Andrew G Horti
- Johns Hopkins School of Medicine , Department of Radiology, Baltimore, 21287 United States
| |
Collapse
|
31
|
|
32
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
33
|
Airas L, Rissanen E, Rinne JO. Imaging neuroinflammation in multiple sclerosis using TSPO-PET. Clin Transl Imaging 2015; 3:461-473. [PMID: 27331049 PMCID: PMC4887541 DOI: 10.1007/s40336-015-0147-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
Conventional MR imaging (MRI) techniques form the cornerstone of multiple sclerosis (MS) diagnostics and clinical follow-up today. MRI is sensitive in demonstrating focal inflammatory lesions and diffuse atrophy. However, especially in progressive MS, there is increasingly widespread diffuse pathology also outside the plaques, often related to microglial activation and neurodegeneration. This cannot be detected using conventional MRI. Positron emission tomography (PET) imaging using 18-kDa translocator protein (TSPO) binding radioligands has recently shown promise as a tool to detect this diffuse pathology in vivo, and for the first time allows one to follow its development longitudinally. It is becoming evident that the more advanced the MS disease is, the more pronounced is microglial activation. PET imaging allows the detection of MS-related pathology at molecular level in vivo. It has potential to enable measurement of effects of new disease-modifying drugs aimed at reducing neurodegeneration and neuroinflammation. PET imaging could thus be included in the design of future clinical trials of progressive MS. There are still technical issues related to the quality of TSPO radioligands and post-processing methodology, and comparison of studies from different PET centres is challenging. In this review, we summarise the main evidence supporting the use of TSPO-PET as a tool to explore the diffuse inflammation in MS.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha O. Rinne
- Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|