1
|
Suraweera RK, Spann KM, Izake EL, Wells TJ, Wang X, Islam N. Development and Characterization of Spray-Dried Combined Levofloxacin-Ambroxol Dry Powder Inhaler Formulation. Pharmaceutics 2024; 16:1506. [PMID: 39771486 PMCID: PMC11728515 DOI: 10.3390/pharmaceutics16121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background: This study explores the development and characterization of spray-dried composite microparticles consisting of levofloxacin (LVX, a broad-spectrum antibiotic), and ambroxol (AMB, a mucolytic agent that has antibacterial and antibiofilm properties), for the intended application of the drug against lower respiratory tract infections (LRTIs). Methods: A range of LVX to AMB mass ratios (1:1, 1:0.5, and 1:0.25) were prepared, with and without the use of the dispersibility enhancer leucine (LEU), and spray-dried following pre-optimized parameters to achieve the required particle size (1-5 µm) and flow properties. The formulations were characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and a thermogravimetric analysis (TGA). The in vitro aerosolization performance of the new formulation was evaluated with a twin-stage impinger (TSI) at a flow rate of 60 ± 5 L/min. Using a validated RP-HPLC method, LVX and AMB were quantitatively determined. Results: The combined spray-dried LVX, AMB, and LEU particles were spherically shaped with sizes ranging from 1.9 to 2.9 µm, thus complying with the size requirements for effective deep lung deposition. The dispersibility enhancer leucine produced a high yield and enhanced the flow properties and aerosolization characteristics of the spray-dried formulations. The LVX to AMB mass ratios showed a remarkable impact on the aerosolization properties, with the LVX to AMB 1:1 mass ratio demonstrating the best flow and FPFs for both drugs. There must be a balanced ratio of these components for spray drying the composite particles to obtain composite particles of the required size and with the appropriate flow property. The addition of 5% of LEU significantly (p < 0.005) improved the FPF of all the formulations, probably by enhancing the surface hydrophobicity of the composite particles. Conclusions: The spray-dried combined antibiotics formulation has a strong potential for efficient lung delivery intended for the management of LRTIs.
Collapse
Affiliation(s)
- Ruwani K. Suraweera
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Kirsten M. Spann
- Centre for Immunology and Infection Control (CIIC), Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Timothy J. Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Xiaodong Wang
- Central Analytical Research Facility, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia;
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
2
|
Banat H, Ambrus R, Csóka I. Drug combinations for inhalation: Current products and future development addressing disease control and patient compliance. Int J Pharm 2023; 643:123070. [PMID: 37230369 DOI: 10.1016/j.ijpharm.2023.123070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary delivery is an alternative route of administration with numerous advantages over conventional routes of administration. It provides low enzymatic exposure, fewer systemic side effects, no first-pass metabolism, and concentrated drug amounts at the site of the disease, making it an ideal route for the treatment of pulmonary diseases. Owing to the thin alveolar-capillary barrier, and large surface area that facilitates rapid absorption to the bloodstream in the lung, systemic delivery can be achieved as well. Administration of multiple drugs at one time became urgent to control chronic pulmonary diseases such as asthma and COPD, thus, development of drug combinations was proposed. Administration of medications with variable dosages from different inhalers leads to overburdening the patient and may cause low therapeutic intervention. Therefore, products that contain combined drugs to be delivered via a single inhaler have been developed to improve patient compliance, reduce different dose regimens, achieve higher disease control, and boost therapeutic effectiveness in some cases. This comprehensive review aimed to highlight the growth of drug combinations by inhalation over time, obstacles and challenges, and the possible progress to broaden the current options or to cover new indications in the future. Moreover, various pharmaceutical technologies in terms of formulation and device in correlation with inhaled combinations were discussed in this review. Hence, inhaled combination therapy is driven by the need to maintain and improve the quality of life for patients with chronic respiratory diseases; promoting drug combinations by inhalation to a higher level is a necessity.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary.
| |
Collapse
|
3
|
Lee SH, Yap WX, Jiang CQZ, Ler WX, Teo JWP, Ng SK, Heng D. Designing a ‘Ready-to-Use’ powder formulation platform for the inhaled protein therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
5
|
Alhajj N, O'Reilly NJ, Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov Today 2021; 26:2384-2396. [PMID: 33872799 DOI: 10.1016/j.drudis.2021.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
6
|
Brunaugh AD, Sharma S, Smyth H. Inhaled fixed-dose combination powders for the treatment of respiratory infections. Expert Opin Drug Deliv 2021; 18:1101-1115. [PMID: 33632051 DOI: 10.1080/17425247.2021.1886074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Respiratory infections are a major cause of morbidity and mortality. As an alternative to systemic drug administration, inhaled drug delivery can produce high drug concentrations in the lung tissue to overcome resistant bacteria. The development of inhaled fixed-dose combination powders (I-FDCs) is promising next step in this field, as it would enable simultaneous drug-drug or drug-adjuvant delivery at the site of infection, thereby promoting synergistic activity and improving patient compliance. AREAS COVERED This review covers the clinical and pharmaceutical rationales for the development of I-FDCs for the treatment of respiratory infections, relevant technologies for particle and powder generation, and obstacles which must be addressed to achieve regulatory approval. EXPERT OPINION I-FDCs have been widely successful in the treatment of asthma and chronic obstructive pulmonary disease; however, application of I-FDCs towards the treatment of respiratory infections carries additional challenges related to the high dose requirements and physicochemical characteristics of anti-infective drugs. At present, co-spray drying is an especially promising approach for the development of composite fixed-dose anti-infective particles for inhalation. Though the majority of fixed-dose research has thus far focused on the combination of multiple antibiotics, future work may shift to the additional inclusion of immunomodulatory agents or repurposed non-antibiotics.
Collapse
Affiliation(s)
| | - Shivam Sharma
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Hugh Smyth
- College of Pharmacy, University of Texas at Austin, Austin, USA
| |
Collapse
|
7
|
Lee SH, Heng D, Teo JWP, Toh FKY, Tan RBH. Inhaled mucoactive particles with tailored architecture for enhanced aerodynamicity, stability and efficacy. Int J Pharm 2019; 572:118740. [PMID: 31648015 DOI: 10.1016/j.ijpharm.2019.118740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
In respiratory and genetic disorders such as asthma, chronic obstructive pulmonary disease (COPD), chronic bronchitis and cystic fibrosis (CF), the lungs produce excess mucus, resulting in a thickened mass, which clogs up the airways and reduces airflow. Consequently, breathing becomes more difficult. Medications that break down the structure of mucus will be especially useful in managing the early symptoms of these diseases and preventing their progression into the more severe forms. This work therefore seeks to develop an inhaled mucoactive dry powder formulation that is efficacious on multiple fronts. As an innovative step, sodium chloride was used to tailor the surface architecture of ambroxol hydrochloride particles, such that the resulting angular features on the surfaces contributed to the creation of corrugated particles with enhanced aerodynamicity. The optimized spray-dried powder particles were of respirable-size (d50 of 2.85 ± 0.15 μm) and moderately corrugated. When the crystalline powder was dispersed via an Aerolizer® inhaler at 60 L/min, it gave a fine particle fraction (FPF) of ~31%, which was a ten-fold improvement over the unmodified species (i.e. ambroxol hydrochloride alone). Tests on artificial sputum medium (ASM) showed that the optimized formulation was potentially useful in liquefying the mucus, which favorably pointed towards the effectiveness of the formulation. In addition, the formulation was also stable to moisture ingress (up to ~60% RH) and had good flowability. Hence, the advent of angular adjuvant sodium chloride particles in a mucoactive formulation conferred a three-fold benefit to the product: (1) Improved aerodynamicity and flowability, (2) Enhanced moisture stability and (3) Synergistic mucolytic properties.
Collapse
Affiliation(s)
- Sie Huey Lee
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1, Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Desmond Heng
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1, Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Jeanette W P Teo
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Frederick K Y Toh
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1, Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Reginald B H Tan
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1, Pesek Road, Jurong Island, Singapore 627833, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| |
Collapse
|
8
|
Lee SH, Heng D, Xavier VJ, Chan KP, Ng WK, Zhao Y, Chan HK, Tan RB. Inhaled non-steroidal polyphenolic alternatives for anti-inflammatory combination therapy. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Razuc M, Piña J, Ramírez-Rigo MV. Optimization of Ciprofloxacin Hydrochloride Spray-Dried Microparticles for Pulmonary Delivery Using Design of Experiments. AAPS PharmSciTech 2018; 19:3085-3096. [PMID: 30105497 DOI: 10.1208/s12249-018-1137-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023] Open
Abstract
Ciprofloxacin is a broad-spectrum antibiotic for treatment of pulmonary diseases such as chronic obstructive pulmonary disease and cystic fibrosis. The purpose of this work was to rationally study the spray drying of ciprofloxacin in order to identify the formulation and operating conditions that lead to a product with aerodynamic properties appropriate for dry powder inhalation. A 24 - 1 fractional factorial design was applied to investigate the effect of selected variables (i.e., ciprofloxacin hydrochloride (CIP) concentration, drying air inlet temperature, feed flow rate, and atomization air flow rate) on several product and process parameters (i.e., particle size, aerodynamic diameter, moisture content, densities, porosity, powder flowability, outlet temperature, and process yield) and to determine an optimal condition. The studied factors had a significant effect on the evaluated responses (higher p value 0.0017), except for the moisture content (p value > 0.05). The optimal formulation and operating conditions were as follows: CIP concentration 10 mg/mL, drying air inlet temperature 110°C, feed volumetric flow rate 3.0 mL/min, and atomization air volumetric flow rate 473 L/h. The product obtained under this set had a particle size that guarantees access to the lung, a moisture content acceptable for dry powder inhalation, fair flowability, and high process yield. The PDRX and SEM analysis of the optimal product showed a crystalline structure and round and dimpled particles. Moreover, the product was obtained by a simple and green spray drying method.
Collapse
|
10
|
Antimicrobial molecules in the lung: formulation challenges and future directions for innovation. Future Med Chem 2018; 10:575-604. [PMID: 29473765 DOI: 10.4155/fmc-2017-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhaled antimicrobials have been extremely beneficial in treating respiratory infections, particularly chronic infections in a lung with cystic fibrosis. The pulmonary delivery of antibiotics has been demonstrated to improve treatment efficacy, reduce systemic side effects and, critically, reduce drug exposure to commensal bacteria compared with systemic administration, reducing selective pressure for antimicrobial resistance. This review will explore the specific challenges of pulmonary delivery of a number of differing antimicrobial molecules, and the formulation and technological approaches that have been used to overcome these difficulties. It will also explore the future challenges being faced in the development of inhaled products and respiratory infection treatment, and identify future directions of innovation, with a particular focus on respiratory infections caused by multiple drug-resistant pathogens.
Collapse
|
11
|
[More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases]. MMW Fortschr Med 2017. [PMID: 28643291 DOI: 10.1007/s15006-017-9805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug. OBJECTIVE What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available? METHOD The review is based on a systematic literature research in medline with the search term "ambroxol" during the publication period 2006-2015. Non-relevant publications were excluded manually. RESULTS AND CONCLUSIONS Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.
Collapse
|
12
|
Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled Antibiotics for Gram-Negative Respiratory Infections. Clin Microbiol Rev 2016; 29:581-632. [PMID: 27226088 PMCID: PMC4978611 DOI: 10.1128/cmr.00101-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena.
Collapse
Affiliation(s)
- Eric Wenzler
- University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois, USA
| | - Dustin R Fraidenburg
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tonya Scardina
- Loyola University Medical Center, Chicago, Illinois, USA
| | - Larry H Danziger
- University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois, USA University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
13
|
Lee SH, Teo J, Heng D, Ng WK, Zhao Y, Tan RB. Tailored Antibiotic Combination Powders for Inhaled Rotational Antibiotic Therapy. J Pharm Sci 2016; 105:1501-12. [DOI: 10.1016/j.xphs.2016.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/28/2022]
|
14
|
Seto Y, Suzuki G, Leung SSY, Chan HK, Onoue S. Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling. Pharm Res 2016; 33:1447-55. [DOI: 10.1007/s11095-016-1887-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
|
15
|
Sugianto TD, Chan HK. Inhaled antibiotics in the treatment of non-cystic fibrosis bronchiectasis: clinical and drug delivery perspectives. Expert Opin Drug Deliv 2015; 13:7-22. [DOI: 10.1517/17425247.2015.1078309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Antoniu S. Novel inhaled combined antibiotic formulations in the treatment of Pseudomonas aeruginosa airways infections in cystic fibrosis. Expert Rev Anti Infect Ther 2015; 13:897-905. [PMID: 25921312 DOI: 10.1586/14787210.2015.1041925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In cystic fibrosis, chronic airways infection caused by Pseudomonas aeruginosa can be treated with inhaled antibiotics such as inhaled tobramycin, aztreonam or colistin. However, biofilm formation induced by this bacterium can reduce the effectiveness of such therapies and can contribute to antibiotic resistance. Inhaled antibiotic combination might represent an optimal antibiofilm strategy in this setting. This review discusses the rationale for combining the antibiotics as well as some emerging or existing combinations. Most of the combinations except for fosfomycin/tobramycin are at an early stage of development. The latter combination was found to be effective in Phase II clinical studies and is planned to be tested in Phase III trials. The clinical data on long-term efficacy are currently missing, but the existing evidence as well as the unmet therapeutic need can prompt the further evaluation of such compounds.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department of Interdisciplinary - Palliative Care Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Romania, 16 Universităţii Str, Iasi, 700115
| |
Collapse
|