1
|
Abdelall EKA, Elshemy HAH, Labib MB, Mohamed FEA. Design, synthesis of novel chromene-based scaffolds targeting hepatocellular carcinoma: Cell cycle arrest, cytotoxic effect against resistant cancer cells, apoptosis induction, and c-Src inhibition. Drug Dev Res 2024; 85:e22133. [PMID: 37971069 DOI: 10.1002/ddr.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
New chromene derivatives were synthesized based on 4-(3,4-dimethoxy)-4H-chromene scaffold. All target compounds exhibited cytotoxic activity against HepG2 cells (IC50 = 2.40-141.22 μM). Chromens 5 and 9 showed superior cytotoxicity over staurosporine (IC50 = 18.27 μM) and vinblastine (IC50 = 5.20 μM). c-Src kinase inhibition assay of compounds 5 and 9 displayed the dominant c-Src inhibitory activity of 5 (IC50 = 0.184 μM) over 9 (IC50 = 0.288 μM). The safety of the most potent compound 5 against normal WI-38 cells was confirmed via its IC50 of 115.75 μM comparable with 5-FU (IC50 = 16.28 μM). Moreover, the promising chromene 5 displayed potent cytotoxicity against resistant HepG2 cells with IC50 of 26.03 μM comparable with 5-FU (IC50 = 42.68 μM). The most active chromene 5 arrested the HepG2 cell cycle at the S phase and induced a 29-fold increase in the total number of apoptotic cells indicating pre-G1 apoptosis. The ability of compound 5 to induce apoptosis was supported via elevation of caspase-3, caspase-7, caspase-9 and proapoptotic Bax protein levels in addition to downregulation of the antiapoptotic Bcl2 protein. Molecular docking studies of compound 5 showed good binding interaction pattern inside c-Src kinase enzyme active site.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Alneyadi A, Nizami ZN, Aburawi HE, Hisaindee S, Nawaz M, Attoub S, Ramadan G, Benhalilou N, Al Azzani M, Elmahi Y, Almeqbali A, Muhammad K, Eid AH, Vijayan R, Iratni R. Synthesis of New Chromene Derivatives Targeting Triple-Negative Breast Cancer Cells. Cancers (Basel) 2023; 15:2682. [PMID: 37345018 DOI: 10.3390/cancers15102682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
Breast cancer continues to be the leading cause of cancer-related deaths among women worldwide. The most aggressive type of breast cancer is triple-negative breast cancer (TNBC). Indeed, not only does TNBC not respond well to several chemotherapeutic agents, but it also frequently develops resistance to various anti-cancer drugs, including taxane mitotic inhibitors. This necessitates the search for newer, more efficacious drugs. In this study, we synthesized two novel chromene derivatives (C1 and C2) and tested their efficacy against a battery of luminal type A and TNBC cell lines. Our results show that C1 and C2 significantly and specifically inhibited TNBC cell viability but had no effect on the luminal A cell type. In addition, these novel compounds induced mitotic arrest, cell multinucleation leading to senescence, and apoptotic cell death through the activation of the extrinsic pathway. We also showed that the underlying mechanisms for these actions of C1 and C2 involved inhibition of microtubule polymerization and disruption of the F-actin cytoskeleton. Furthermore, both compounds significantly attenuated migration of TNBC cells and inhibited angiogenesis in vitro. Finally, we performed an in silico analysis, which revealed that these novel variants bind to the colchicine binding site in β-tubulin. Taken together, our data highlight the potential chemotherapeutic properties of two novel chromene compounds against TNBC.
Collapse
Affiliation(s)
- Aysha Alneyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Soleiman Hisaindee
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Gaber Ramadan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nehla Benhalilou
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yassine Elmahi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Aysha Almeqbali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Shabir G, Shafique I, Saeed A. Ultrasound Assisted Synthesis of 5‐7 Membered Heterocyclic Rings in Organic Molecules. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry Quaid‐I‐Azam University Islamabad Pakistan
- College of Arts and Science University of Chakwal Punjab Pakistan
| | - Imran Shafique
- Department of Chemistry Quaid‐I‐Azam University Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry Quaid‐I‐Azam University Islamabad Pakistan
| |
Collapse
|
4
|
Design of a bifunctional TEMPO-tertiary amine mesoporous silica catalyst for the three-step cascade synthesis of a chromene derivative. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Yue X, Festa AA, Storozhenko OA, Varlamov AV, Subramani K, Boccarelli A, Purgatorio R, Altomare CD, Voskressensky LG. Reductive domino reaction to access chromeno[2,3-c]isoquinoline-5-amines with antiproliferative activities against human tumor cells. Bioorg Chem 2020; 104:104169. [PMID: 32920352 DOI: 10.1016/j.bioorg.2020.104169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/04/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
An interaction of homophthalonitrile with salicylaldehydes proceeds as a novel domino reaction and results in the formation of nineteen 12H-chromeno[2,3-c]isoquinoline-5-amine derivatives. Four new bonds and two cycles are forged in a single synthetic operation, employing cheap and eco-friendly ammonium formate, acting both as a catalyst and a reducing agent. The in vitro cytotoxicity tests revealed antiproliferative activities against five human tumor cell lines, including the cisplatin-resistant ovarian carcinoma one (A2780cp8), with inhibitory potency data (IC50) in the low micromolar range in most cases. Molecular docking calculations and fluorescence quenching studies revealed possible binding properties with DNA of the active compounds.
Collapse
Affiliation(s)
- Xiaoyi Yue
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Karthikeyan Subramani
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| | - Angelina Boccarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow, Russia
| |
Collapse
|
6
|
Bhatia RK, Singh L, Garg R, Kaur M, Yadav M, Madan J, Kancherla S, Pissurlenkar RRS, Coutinho EC. Novel p-Functionalized Chromen-4-on-3-yl Chalcones Bearing Astonishing Boronic Acid Moiety as MDM2 Inhibitor: Synthesis, Cytotoxic Evaluation and Simulation Studies. Med Chem 2020; 16:212-228. [PMID: 31146672 DOI: 10.2174/1573406415666190531123751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Novel 4-[3-(6/7/8-Substituted 4-Oxo-4H-chromen-3-yl)acryloyl]phenylboronic acid derivatives (5a-h) as well as other 6/7/8-substituted-3-(3-oxo-3-(4-substitutedphenyl) prop-1-enyl)-4H-chromen-4-one derivatives (3a-u) have been designed as p53-MDM2 pathway inhibitors and reported to possess significant cytotoxic properties against several cancer cell lines. OBJECTIVES The current project aims to frame the structure-anticancer activity relationship of chromen-4-on-3-yl chalcones (3a-u/5a-h). In addition, docking studies were performed on these chromeno-chalcones in order to have an insight into their interaction possibilities with MDM2 protein. METHODS Twenty-nine chromen-4-on-3-yl chalcone derivatives (3a-u/5a-h) were prepared by utilizing silica supported-HClO4 (green route with magnificent yield) and tested against four cancer cell lines (HCT116, MCF-7, THP-1, NCIH322). RESULTS Among the series 3a-u, compound 3b exhibited the highest anticancer activity (with IC50 values ranging from 8.6 to 28.4 µM) overall against tested cancer cell lines. Interestingly, para- Boronic acid derivative (5b) showed selective inhibition against colon cancer cell line, HCT-116 with an IC50 value of 2.35 µM. Besides the emblematic hydrophobic interactions of MDM2 inhibitors, derivative 5b was found to exhibit extra hydrogen bonding with GLN59 and GLN72 residues of MDM2 in molecular dynamics (MD) simulation. All the compounds were virtually nontoxic against normal fibroblast cells. CONCLUSION Novel compounds were obtained with good anticancer activity especially 6- Chlorochromen-4-one substituted boronic acid derivative 5b. The molecular docking study proposed good activity as a MDM-2 inhibitor suggesting hydrophobic as well as hydrogen bonding interactions with MDM2.
Collapse
Affiliation(s)
- Richa K Bhatia
- I.K. Gujral Punjab Technical University, Jalandhar-Kapurthala Highway, Near Pushpa Gujral Science City, Kapurthala- 144601, Punjab, India.,Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Landran, Mohali-140307, India.,Pharmaceutical Department, Mir Pharma Consultancy Inc., Vancouver, British Columbia, Canada
| | - Lakhwinder Singh
- Department of Applied Science, Chandigarh Engineering College, Landran, Mohali- 140307, India
| | - Ruchika Garg
- Kota College of Pharmacy, Kota, Rajasthan-324003, India
| | - Maninder Kaur
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Landran, Mohali-140307, India
| | - Manmohan Yadav
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Landran, Mohali-140307, India
| | - Jitender Madan
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Landran, Mohali-140307, India
| | - Satyavathi Kancherla
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Landran, Mohali-140307, India
| | - Raghuvir R S Pissurlenkar
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Santacruz (East) Mumbai 400098, India
| | - Evans C Coutinho
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Santacruz (East) Mumbai 400098, India
| |
Collapse
|
7
|
Raj V, Lee J. 2H/4H-Chromenes-A Versatile Biologically Attractive Scaffold. Front Chem 2020; 8:623. [PMID: 32850645 PMCID: PMC7419998 DOI: 10.3389/fchem.2020.00623] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
2H/4H-chromene (2H/4H-ch) is an important class of heterocyclic compounds with versatile biological profiles, a simple structure, and mild adverse effects. Researchers discovered several routes for the synthesis of a variety of 2H/4H-ch analogs that exhibited unusual activities by multiple mechanisms. The direct assessment of activities with the parent 2H/4H-ch derivative enables an orderly analysis of the structure-activity relationship (SAR) among the series. Additionally, 2H/4H-ch have numerous exciting biological activities, such as anticancer, anticonvulsant, antimicrobial, anticholinesterase, antituberculosis, and antidiabetic activities. This review is consequently an endeavor to highlight the diverse synthetic strategies, synthetic mechanism, various biological profiles, and SARs regarding the bioactive heterocycle, 2H/4H-ch. The presented scaffold work compiled in this article will be helpful to the scientific community for designing and developing potent leads of 2H/4H-ch analogs for their promising biological activities.
Collapse
Affiliation(s)
- Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
8
|
Storozhenko OA, Festa AA, Bella Ndoutoume DR, Aksenov AV, Varlamov AV, Voskressensky LG. Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction towards annulated imidazo[1,2- a]pyridines. Beilstein J Org Chem 2019; 14:3078-3087. [PMID: 30643585 PMCID: PMC6317425 DOI: 10.3762/bjoc.14.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The sequential three-component reaction between o-hydroxybenzaldehydes, N-(cyanomethyl)pyridinium salts and a nucleophile towards substituted chromenoimidazopyridines under oxidative conditions has been developed. The employment of Mn(OAc)3·2H2O or KMnO4 as stoichiometric oxidants allowed the use of a wide range of nucleophiles, such as nitromethane, (aza)indoles, pyrroles, phenols, pyrazole, indazole and diethyl malonate. The formation of the target compounds presumably proceeds through a domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction sequence.
Collapse
Affiliation(s)
- Olga A Storozhenko
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Alexey A Festa
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Delphine R Bella Ndoutoume
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, Pushkin st. 1a, 355009 Stavropol, Russian Federation
| | - Alexey V Varlamov
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
9
|
Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1468957. [PMID: 29250124 PMCID: PMC5698829 DOI: 10.1155/2017/1468957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
Collapse
|
10
|
Zeng Z, Li X, Zhang S, Huang D. Characterization of Nano Bamboo Charcoal Drug Delivery System for Eucommia ulmoides Extract and Its Anticancer Effect In vitro. Pharmacogn Mag 2017; 13:498-503. [PMID: 28839379 PMCID: PMC5551372 DOI: 10.4103/pm.pm_256_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/11/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Nano bamboo charcoal is being widely used as sustained release carrier for chemicals for its high specific surface area, sound biocompatibility, and nontoxicity; however, there have been no reports on nano bamboo charcoal as sustained release carrier for traditional Chinese medicine (TCM). Objective: To study the effect of nano bamboo charcoal in absorbing and sustained releasing Eucommia ulmoides extract (EUE) and to verify the in vitro anticancer effect of the sustained release liquid, so as to provide a theoretical basis for the development and utilization of nano bamboo charcoal as TCM sustained-release preparation. Materials and Methods: The adsorption capacity for the nano bamboo charcoal on EUE was measured by Langmuir model, and the release experiment was carried out under intestinal fluid condition. Characteristic changes for the nano bamboo charcoal nano-drug delivery system with and without adsorption of E. ulmoides were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and specific surface area. In addition, the anticancer effect from this novel bamboo charcoal E. ulmoides delivery system was evaluated against a human colon cancer cell line (HCT116). Results: It was found that nano bamboo charcoal exhibits good adsorption capacity (up to 462.96 mg/g at 37°C). The cumulative release rate for EUE from this nano bamboo charcoal delivery system was 70.67%, and specific surface area for the nano bamboo charcoal decreased from 820.32 m2/g to 443.80 m2/g after EUE was loaded. An in vitro anticancer study showed that the inhibition rate for E. ulmoides against HCT116 cancer cells was 23.07%, for this novel bamboo charcoal nano-drug delivery system. Conclusion: This study provides a novel strategy for the delivery of traditional Chinese medicine using bamboo charcoal nano-drug delivery system. SUMMARY The adsorption equilibrium was reached after 30 min of ultrasonic treatment The saturated adsorption capacity of Eucommia ulmoides extract by nano bamboo charcoal under ultrosonic condition was 462. 96 mg/g The cumulative release rate of E. ulmoides extract from the nano bamboo charcoal delivery system in artificial intestinal juice was 70.67% The inhibition ratio of HCT116 cancer cells by sustained release liquid was 23.07%.
Abbreviation used: EUE: Eucommia ulmoides extract.
Collapse
Affiliation(s)
- Zhaoyan Zeng
- Department of Chemical Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangzhou Li
- Department of Chemical Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.,State Key Laboratory of Ecological Applied Technology in Forest Area of South China, Changsha 410004, China
| | - Sheng Zhang
- Department of Chemical Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dan Huang
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
11
|
Synthesis of chromenoimidazocarbolines by a reaction of quaternary iminium salts with o-hydroxybenzaldehydes. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2083-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yang P, Yang Y, An W, Xu J, Zhang G, Jie J, Zhang Q. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol 2017; 32:837-845. [PMID: 27696511 DOI: 10.1111/jgh.13606] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Long intergenic noncoding RNAs (lincRNAs) have critical roles in elevating efficacy of anticancer therapy and tumor progression. Recent studies show that Regulator of Reprogramming (ROR) is aberrantly expressed in several types of cancer, including colorectal cancer (CRC). Radiotherapy is considered as a standard preoperative treatment. However, a considerable number of CRCs are resistant to radiotherapy. In this study, we evaluated the role of lincRNA-ROR in radiotherapy for CRC and detected the underlying molecular mechanism. METHODS Real-time polymerase chain reaction was employed to quantify the expression level of lincRNA-ROR in different CRC cell lines and tissue samples. Cell viability and apoptosis assays were used to confirm the radiotherapy-mediated effects by lincRNA-ROR altered expression. The direct impact of lincRNA-ROR on the expression of p53/miR-145 by loss-of-function and gain-of-function strategy was also analyzed. A xenograft mouse model was used to evaluate the role of linc-ROR in CRC treatment. RESULTS We discovered that lincRNA-ROR was upregulated in CRC cell lines and tissue samples. We further showed that knockdown of lincRNA-ROR enhanced the sensitivity to radiotherapy for CRC by inhibiting cell viability and promoting apoptosis. Activity of the p53/miR-145 pathway may help explain the role of lincRNA-ROR for stress-induced regulation in CRC therapy. Combined specific knockdown of lincRNA-ROR and radiotherapy treatment in xenograft model resulted in a significant reduction in the tumor growth. CONCLUSION LincRNA-ROR decreases sensitivity to radiotherapy via the negative regulation of p53/miR-145 and may represent a potential target for the treatment of CRC.
Collapse
Affiliation(s)
- Pengxiang Yang
- Department of Cancer Molecular and Biology, Cancer Research Institute of Harbin Medical University, Harbin, China
- Department of Cancer Molecular and Biology, Cancer Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Yang
- Department of Cancer Molecular and Biology, Cancer Research Institute of Harbin Medical University, Harbin, China
- Department of Cancer Molecular and Biology, Cancer Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Weiwei An
- Department of Cancer Molecular and Biology, Cancer Research Institute of Harbin Medical University, Harbin, China
- Department of Cancer Molecular and Biology, Cancer Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jianyu Xu
- Department of Radiation Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| | - Gan Zhang
- Department of Gastrointestinal Surgery, The Third Hospital of Harbin Medical University, Harbin, China
| | - Jing Jie
- Department of Immunology, College of Basic Medical Science, Changchun, China
| | - Qingyuan Zhang
- Department of Cancer Molecular and Biology, Cancer Research Institute of Harbin Medical University, Harbin, China
- Department of Cancer Molecular and Biology, Cancer Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Medical Oncology, The Third Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Yang B, Tao C, Shao T, Gong J, Che C. One-pot synthesis of tetracyclic fused imidazo[1,2-a]pyridines via a three-component reaction. Beilstein J Org Chem 2016; 12:1487-92. [PMID: 27559401 PMCID: PMC4979633 DOI: 10.3762/bjoc.12.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/29/2016] [Indexed: 12/25/2022] Open
Abstract
A novel three-component reaction has been developed to assemble biologically and pharmaceutically important tetracyclic fused imidazo[1,2-a]pyridines in a one-pot fashion utilizing readily available 2-aminopyridines, isatins and isocyanides. The three-component coupling proceeds through the Groebke–Blackburn–Bienaymé reaction followed by a retro-aza-ene reaction and subsequent nucleophilic reaction of the in-situ generated imidazo[1,2-a]pyridines bearing an isocyanate functional group.
Collapse
Affiliation(s)
- Bo Yang
- Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chuanye Tao
- Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Taofeng Shao
- Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianxian Gong
- Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chao Che
- Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|