1
|
Zheng P, Pan T, Gao Y, Chen J, Li L, Chen Y, Fang D, Li X, Gao F, Li Y. Predicting the exposure of mycophenolic acid in children with autoimmune diseases using a limited sampling strategy: A retrospective study. Clin Transl Sci 2025; 18:e70092. [PMID: 39727288 PMCID: PMC11672284 DOI: 10.1111/cts.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
Mycophenolic acid (MPA) is commonly used to treat autoimmune diseases in children, and therapeutic drug monitoring is recommended to ensure adequate drug exposure. However, multiple blood sampling is required to calculate the area under the plasma concentration-time curve (AUC), causing patient discomfort and waste of human and financial resources. This study aims to use machine learning and deep learning algorithms to develop a prediction model of MPA exposure for pediatric autoimmune diseases with optimizing sampling frequency. Pediatric autoimmune patients' data were collected at Nanfang Hospital between June 2018 and June 2023. Univariate analysis was applied for feature selection. Ten algorithms, including Random Forest, XGBoost, LightGBM, Gradient Boosting Decision Tree, CatBoost, Artificial Neural Network, Grandient Boosting Machine, Transformer, Wide&Deep, and TabNet, were employed for modeling based on two, three, or four concentrations of MPA. A total of 614 MPA AUC0-12h samples from 209 patients were enrolled. Among the 10 models evaluated, the Wide&Deep model exhibited the best predictive performance. The predictive performance of the Wide&Deep model using four and three blood concentration points was similar (R 2 ≈ 1 for four points; R 2 = 0.95 for three points). No significant difference in accuracy within ±30% was observed between models utilizing three and four blood concentration points (p = 0.06). This study demonstrates that in the Wide&Deep model, MPA exposure can be accurately estimated with three sampling points in children with autoimmune diseases. This model could help reduce discomfort in pediatric patients without reducing the accuracy of MPA exposure estimates in clinical practice.
Collapse
Affiliation(s)
- Ping Zheng
- Department of PharmacyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Clinical Pharmacy CenterNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ting Pan
- Second Affiliated Hospital to Naval Medical UniversityShanghaiChina
| | - Ya Gao
- Department of PharmacyFuwai Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Juan Chen
- Department of PharmacyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Clinical Pharmacy CenterNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Liren Li
- Department of PharmacyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Clinical Pharmacy CenterNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yan Chen
- Department of PharmacyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Clinical Pharmacy CenterNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Dandan Fang
- Beijing Medicinovo Technology Co. LtdBeijingChina
| | - Xuechun Li
- Dalian Medicinovo Technology Co. LtdDalianChina
| | - Fei Gao
- Beijing Medicinovo Technology Co. LtdBeijingChina
| | - Yilei Li
- Department of PharmacyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Clinical Pharmacy CenterNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Sobiak J, Resztak M, Sikora W, Zachwieja J, Ostalska-Nowicka D. Liquid chromatography-tandem mass spectrometry method for mycophenolic acid and its glucuronide determination in saliva samples from children with nephrotic syndrome. Pharmacol Rep 2024; 76:600-611. [PMID: 38485859 PMCID: PMC11126467 DOI: 10.1007/s43440-024-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Saliva sampling is one of the methods of therapeutic drug monitoring for mycophenolic acid (MPA) and its metabolite, mycophenolic acid glucuronide (MPAG). The study describes the liquid chromatography tandem mass spectrometry (LC-MS/MS) method developed for saliva MPA and MPAG determination in children with nephrotic syndrome. METHODS The mobile phase consisted of methanol and water at gradient flow, both with 0.1% formic acid. Firstly, 100 µL of saliva was evaporated at 45 °C for 2 h to dryness, secondly, it was reconstituted in the mobile phase, and finally 10 µL was injected into the LC-MS/MS system. Saliva from ten children with nephrotic syndrome treated with mycophenolate mofetil was collected with Salivette®. RESULTS For MPA and MPAG, within the 2-500 ng/mL range, the method was selective, specific, accurate and precise within-run and between-run. No carry-over and matrix effects were observed. Stability tests showed that MPA and MPAG were stable in saliva samples if stored for 2 h at room temperature, 18 h at 4 °C, and at least 5 months at - 80 °C as well as after three freeze-thaw cycles, in a dry extract for 16 h at 4 °C, and for 8 h at 15 °C in the autosampler. The analytes were not adsorbed onto Salivette® cotton swabs. For concentrations above 500 ng/mL, the samples may be diluted twofold. In children, saliva MPA and MPAG were within the ranges of 4.6-531.8 ng/mL and 10.7-183.7 ng/mL, respectively. CONCLUSIONS The evaluated LC-MS/MS method has met the validation requirements for saliva MPA and MPAG determination in children with nephrotic syndrome. Further studies are needed to explore plasma-saliva correlations and assess their potential contribution to MPA monitoring.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Weronika Sikora
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Lai FFY, Chan EYH, Tullus K, Ma ALT. Therapeutic drug monitoring in childhood idiopathic nephrotic syndrome: a state of the art review. Pediatr Nephrol 2024; 39:85-103. [PMID: 37147510 DOI: 10.1007/s00467-023-05974-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
Immunosuppressants are commonly used as steroid-sparing agents in childhood idiopathic nephrotic syndrome (NS) to induce and sustain remissions. These drugs have narrow therapeutic indices with high inter- and intra-patient variability. Therapeutic drug monitoring (TDM) would therefore be essential to guide the prescription. Multiple factors in NS contribute to additional variability in drug concentrations, especially during relapses. In this article, we review the currently available evidence of TDM in NS and suggest a practical approach for clinicians' reference.
Collapse
Affiliation(s)
- Fiona Fung-Yee Lai
- Department of Pharmacy, Hong Kong Children's Hospital, Kowloon City, Hong Kong
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon City, Hong Kong
| | - Eugene Yu-Hin Chan
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon City, Hong Kong.
| | - Kjell Tullus
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Alison Lap-Tak Ma
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon City, Hong Kong
| |
Collapse
|
4
|
Sobiak J, Resztak M, Banasiak J, Zachwieja J, Ostalska-Nowicka D. High-performance liquid chromatography with fluorescence detection for mycophenolic acid determination in saliva samples. Pharmacol Rep 2023; 75:726-736. [PMID: 36905501 PMCID: PMC10007665 DOI: 10.1007/s43440-023-00474-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND For therapeutic drug monitoring (TDM) of mycophenolic acid (MPA), which is frequently proposed, saliva might be a suitable and easy-to-obtain biological matrix. The study aimed to validate an HPLC method with fluorescence detection for determining mycophenolic acid in saliva (sMPA) in children with nephrotic syndrome. METHODS The mobile phase was composed of methanol and tetrabutylammonium bromide with disodium hydrogen phosphate (pH 8.5) at a 48:52 ratio. To prepare the saliva samples, 100 µL of saliva, 50 µL of calibration standards, and 50 µL of levofloxacin (used as an internal standard) were mixed and evaporated to dryness at 45 °C for 2 h. The resulting dry extract was reconstituted in the mobile phase and injected into the HPLC system after centrifugation. Saliva samples from study participants were collected using Salivette® devices. RESULTS The method was linear within the range of 5-2000 ng/mL, was selective with no carry-over effect and met the acceptance criteria for within-run and between-run accuracy and precision. Saliva samples can be stored for up to 2 h at room temperature, for up to 4 h at 4 °C, and for up to 6 months at - 80 °C. MPA was stable in saliva after three freeze-thaw cycles, in dry extract for 20 h at 4 °C, and for 4 h in the autosampler at room temperature. MPA recovery from Salivette® cotton swabs was within the range of 94-105%. The sMPA concentrations in the two children with nephrotic syndrome who were treated with mycophenolate mofetil were within 5-112 ng/mL. CONCLUSIONS The sMPA determination method is specific, selective, and meets the validation requirements for analytic methods. It may be used in children with nephrotic syndrome; however further studies are required to investigate focusing on sMPA and the correlation between sMPA and total MPA and its possible contribution to MPA TDM is required.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Joanna Banasiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
5
|
Sobiak J, Żero P, Zachwieja J, Ostalska-Nowicka D, Pawiński T. Limited sampling strategy to predict free mycophenolic acid area under the concentration-time curve in paediatric patients with nephrotic syndrome. Clin Exp Pharmacol Physiol 2023; 50:486-496. [PMID: 36846865 DOI: 10.1111/1440-1681.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
In paediatric patients, there is no data on the recommended area under the concentration-time curve from 0 to 12 h (AUC0-12 ) for free mycophenolic acid (fMPA), which is the active form of the drug, responsible for the pharmacological effect. We decided to establish the limited sampling strategy (LSS) for fMPA for its use in MPA therapeutic monitoring in children with nephrotic syndrome treated with mycophenolate mofetil (MMF). This study included 23 children (aged 11 ± 4 years) from whom eight blood samples were collected within 12 h after MMF administration. The fMPA was determined using the high-performance liquid chromatography with fluorescence detection method. LSSs were estimated with the use of R software and bootstrap procedure. The best model was chosen based on a number of profiles with AUC predicted within ± 20% of AUC0-12 (good guess), r2 , mean prediction error (%MPE) of ±10% and mean absolute error (%MAE) of less than 25%. The fMPA AUC0-12 was 0.1669 ± 0.0697 μg h/mL and the free fraction was within 0.16%-0.81%. In total, there were 92 equations developed of which five fulfilled the acceptance criteria for %MPE, %MAE, good guess >80% and r2 > 0.900. These equations consisted of three time points: model 1 (C1 , C2 , C6 ), model 2 (C1 , C3 , C6 ), model 3 (C1 , C4 , C6 ), model 5 (C0 , C1 , C2 ), and model 6 (C1 , C2 , C9 ). Although blood sampling up to 9 h after MMF dosing is impractical, it is crucial to include C6 or C9 in LSS to assess fMPA AUCpred correctly. The most practical fMPA LSS, which fulfilled the acceptance criteria in the estimation group, was fMPA AUCpred = 0.040 + 2.220 × C0 + 1.130 × C1 + 1.742 × C2 . Further studies should define the recommended fMPA AUC0-12 value in children with nephrotic syndrome.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Żero
- Department of Drug Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznań, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Therapeutic trials in difficult to treat steroid sensitive nephrotic syndrome: challenges and future directions. Pediatr Nephrol 2023; 38:17-34. [PMID: 35482099 PMCID: PMC9048617 DOI: 10.1007/s00467-022-05520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023]
Abstract
Steroid sensitive nephrotic syndrome is a common condition in pediatric nephrology, and most children have excellent outcomes. Yet, 50% of children will require steroid-sparing agents due to frequently relapsing disease and may suffer consequences from steroid dependence or use of steroid-sparing agents. Several steroid-sparing therapeutic agents are available with few high quality randomized controlled trials to compare efficacy leading to reliance on observational data for clinical guidance. Reported trials focus on short-term outcomes such as time to first relapse, relapse rates up to 1-2 years of follow-up, and few have studied long-term remission. Trial designs often do not consider inter-individual variability, and differing response to treatments may occur due to heterogeneity in pathogenic mechanisms, and genetic and environmental influences. Strategies are proposed to improve the quantity and quality of trials in steroid sensitive nephrotic syndrome with integration of biomarkers, novel trial designs, and standardized outcomes, especially for long-term remission. Collaborative efforts among international trial networks will help move us toward a shared goal of finding a cure for children with nephrotic syndrome.
Collapse
|
7
|
Sobiak J, Resztak M, Zachwieja J, Ostalska-Nowicka D. Inosine monophosphate dehydrogenase activity and mycophenolate pharmacokinetics in children with nephrotic syndrome treated with mycophenolate mofetil. Clin Exp Pharmacol Physiol 2022; 49:1197-1208. [PMID: 35877984 DOI: 10.1111/1440-1681.13706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
Some studies have shown that the area under the concentration-time curve (AUC) of mycophenolic acid (MPA) should be higher for children with nephrotic syndrome (NS) than after renal transplantation. The pharmacodynamic aspect of MPA, the activity of inosine monophosphate dehydrogenase (IMPDH), has not been studied in children with NS. The study included 21 children (4-16 years) with NS treated with mycophenolate mofetil. MPA and its glucuronide plasma concentrations were determined using validated high-performance liquid chromatography (HPLC-UV). The separate HPLC-UV method was applied for IMPDH activity determination. The variability was expressed by the coefficient of variation (CV). IMPDH activity and MPA concentration (Ctrough ) before the morning dose amounted to 29.95 μmol·s-1 ·mol-1 AMP (range, 6.71-98.60 μmol·s-1 ·mol-1 AMP) and 1.72 μg/mL (range, 0.39-4.34 μg/mL), respectively, whereas the area under the effect-time curve from 0 to 4 h and MPA AUC0-4 were 130.36 μmol·s-1 ·mol-1 AMP∙h (range, 23.58-306.57 μmol·s-1 ·mol-1 AMP∙h) and 24.63 μg·h/mL (range, 12.21-67.48 μg·h/mL), respectively. IMPDH activity decreased concomitantly with MPA concentration increase, however, the variability of the pharmacodynamic parameters was greater than of the pharmacokinetics. The median degree of maximum IMPDH inhibition was 61%. MPA Ctrough and predicted AUC were lower than in our previous study. Only a few MPA pharmacokinetic parameters correlated with the pharmacodynamics. IMPDH activity did not correlate with children's age and did not differ between boys and girls. MPA clearance was the highest in younger children (median 10.54 L/m2 /h) and cholesterol correlated negatively with children's age (r=-0.659, p=0.003). IMPDH minimum activity and the degree of maximum IMPDH inhibition were similar to those obtained in renal transplant recipients. IMPDH activity does not undergo developmental or gender-specific regulation in children with NS. MPA underexposure might be more frequent in younger children, especially with high cholesterol and triglycerides levels due to high MPA clearance.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences
| | | |
Collapse
|
8
|
Nanga TM, Woillard JB, Rousseau A, Marquet P, Prémaud A. Population Pharmacokinetics And Bayesian Estimation of Mycophenolate Mofetil In Patients With Autoimmune Hepatitis. Br J Clin Pharmacol 2022; 88:4732-4741. [PMID: 35514220 DOI: 10.1111/bcp.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mycophenolate mofetil (MMF) is the most widely used second-line agent in auto-immune hepatitis (AIH). Individual dose adjustment of MMF may avoid adverse outcomes while maximizing efficacy. The aim of the present study was to develop population pharmacokinetic (popPK) models and Maximum A-Posteriori Bayesian estimators (MAP-BEs) to estimate MPA inter-dose area under the curve (AUC0-12h ) in AIH patients administered MMF using nonlinear mixed effect modelling. METHODS We analyzed 50 MPA PK profiles from 34 different patients, together with some demographic, clinical, and laboratory test data. The median number of plasma samples per profile, immediately preceding and following the morning MMF dose, was 7 [4 - 10]. PopPK modeling was performed using parametric, top-down, nonlinear mixed effect modelling with NONMEM 7.3. MAP-BEs were developed based on the best popPK model and the best limited sampling strategy (LSS) selected among several. RESULTS The pharmacokinetic data were best described by a 2-compartment model, Erlang distribution to describe the absorption phase, and a proportional error. The mean (RSE) of popPK parameter estimates of clearance, intercompartmental clearance, central volume and absorption rate with the final model were: 21.6 L.h-1 (11%), 22.7 L.h-1 (19%), 35.9 L (21%) and 8.7 h-1 (9%), respectively. The peripheral volume was fixed to 300 L. The best MAP-BE relied on the LSS at 0.33, 1 and 3 hours after mycophenolate mofetil dose administration and was very accurate (bias=5.6%) and precise (RMSE<20%). CONCLUSION The precise and accurate Bayesian estimator developed in this study for AIH patients on MMF can be used to improve the therapeutic management of these patients.
Collapse
Affiliation(s)
- Tom M Nanga
- Pharmacology & Transplantation, UMR1248, INSERM, University of Limoges, Limoges, France
| | - Jean-Baptiste Woillard
- Pharmacology & Transplantation, UMR1248, INSERM, University of Limoges, Limoges, France.,Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
| | - Annick Rousseau
- Pharmacology & Transplantation, UMR1248, INSERM, University of Limoges, Limoges, France
| | - Pierre Marquet
- Pharmacology & Transplantation, UMR1248, INSERM, University of Limoges, Limoges, France.,Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
| | - Aurélie Prémaud
- Pharmacology & Transplantation, UMR1248, INSERM, University of Limoges, Limoges, France
| |
Collapse
|
9
|
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021; 13:1991. [PMID: 34959272 PMCID: PMC8707246 DOI: 10.3390/pharmaceutics13121991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
The review includes studies dated 2011-2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration-time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients' population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (J.S.); (A.C.)
| | | | | |
Collapse
|
10
|
Sobiak J, Resztak M. A Systematic Review of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid Area Under the Concentration-Time Curve Estimation. Eur J Drug Metab Pharmacokinet 2021; 46:721-742. [PMID: 34480746 PMCID: PMC8599354 DOI: 10.1007/s13318-021-00713-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Background and Objective One approach of therapeutic drug monitoring in the case of mycophenolic acid (MPA) is a limited sampling strategy (LSS), which allows the evaluation of the area under the concentration–time curve (AUC) based on few concentrations. The aim of this systematic review was to review the MPA LSSs and define the most frequent time points for MPA determination in patients with different indications for mycophenolate mofetil (MMF) administration. Methods The literature was comprehensively searched in July 2021 using PubMed, Scopus, and Medline databases. Original articles determining multiple linear regression (MLR)-based LSSs for MPA and its free form (fMPA) were included. Studies on enteric-coated mycophenolic sodium, previously established LSS, Bayesian estimator, and different than twice a day dosing were excluded. Data were analyzed separately for (1) adult renal transplant recipients, (2) adults with other than renal transplantation indication, and (3) for pediatric patients. Results A total of 27, 17, and 11 studies were found for groups 1, 2, and 3, respectively, and 126 MLR-based LSS formulae (n = 120 for MPA, n = 6 for fMPA) were included in the review. Three time-point equations were the most frequent. Four MPA LSSs: 2.8401 + 5.7435 × C0 + 0.2655 × C0.5 + 1.1546 × C1 + 2.8971 × C4 for adult renal transplant recipients, 1.783 + 1.248 × C1 + 0.888 × C2 + 8.027 × C4 for adults after islet transplantation, 0.10 + 11.15 × C0 + 0.42 × C1 + 2.80 × C2 for adults after heart transplantation, and 8.217 + 3.163 × C0 + 0.994 × C1 + 1.334 × C2 + 4.183 × C4 for pediatric renal transplant recipients, plus one fMPA LSS, 34.2 + 1.12 × C1 + 1.29 × C2 + 2.28 × C4 + 3.95 × C6 for adult liver transplant recipients, seemed to be the most promising and should be validated in independent patient groups before introduction into clinical practice. The LSSs for pediatric patients were few and not fully characterized. There were only a few fMPA LSSs although fMPA is a pharmacologically active form of the drug. Conclusions The review includes updated MPA LSSs, e.g., for different MPA formulations (suspension, dispersible tablets), generic form, and intravenous administration for adult and pediatric patients, and emphasizes the need of individual therapeutic approaches according to MMF indication. Five MLR-based MPA LSSs might be implemented into clinical practice after evaluation in independent groups of patients. Further studies are required, e.g., to establish fMPA LSS in pediatric patients.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| |
Collapse
|
11
|
The Evaluation of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid in Children with Nephrotic Syndrome. Molecules 2021; 26:molecules26123723. [PMID: 34207320 PMCID: PMC8235059 DOI: 10.3390/molecules26123723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
We evaluated mycophenolic acid (MPA) limited sampling strategies (LSSs) established using multiple linear regression (MLR) in children with nephrotic syndrome treated with mycophenolate mofetil (MMF). MLR-LSS is an easy-to-determine approach of therapeutic drug monitoring (TDM). We assessed the practicability of different LSSs for the estimation of MPA exposure as well as the optimal time points for MPA TDM. The literature search returned 29 studies dated 1998–2020. We applied 53 LSSs (n = 48 for MPA, n = 5 for free MPA [fMPA]) to predict the area under the time-concentration curve (AUCpred) in 24 children with nephrotic syndrome, for whom we previously determined MPA and fMPA concentrations, and compare the results with the determined AUC (AUCtotal). Nine equations met the requirements for bias and precision ±15%. The MPA AUC in children with nephrotic syndrome was predicted the best by four time-point LSSs developed for renal transplant recipients. Out of five LSSs evaluated for fMPA, none fulfilled the ±15% criteria for bias and precision probably due to very high percentage of bound MPA (99.64%). MPA LSS for children with nephrotic syndrome should include blood samples collected 1 h, 2 h and near the second MPA maximum concentration. MPA concentrations determined with the high performance liquid chromatography after multiplying by 1.175 may be used in LSSs based on MPA concentrations determined with the immunoassay technique. MPA LSS may facilitate TDM in the case of MMF, however, more studies on fMPA LSS are required for children with nephrotic syndrome.
Collapse
|
12
|
Sinha A, Bagga A, Banerjee S, Mishra K, Mehta A, Agarwal I, Uthup S, Saha A, Mishra OP. Steroid Sensitive Nephrotic Syndrome: Revised Guidelines. Indian Pediatr 2021; 58:461-481. [PMID: 33742610 PMCID: PMC8139225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
JUSTIFICATION Steroid sensitive nephrotic syndrome (SSNS) is one of the most common chronic kidney diseases in children. These guidelines update the existing Indian Society of Pediatric Nephrology recommendations on its management. OBJECTIVE To frame revised guidelines on diagnosis, evaluation, management and supportive care of patients with the illness. PROCESS The guidelines combine evidence-based recommendations and expert opinion. Formulation of key questions was followed by review of literature and evaluation of evidence by experts in two face-to-face meetings. RECOMMENDATIONS The initial statements provide advice for evaluation at onset and follow up and indications for kidney biopsy. Subsequent statements provide recommendations for management of the first episode of illness and of disease relapses. Recommendations on the use of immunosuppressive strategies in patients with frequent relapses and steroid dependence are accompanied by suggestions for step-wise approach and plan of monitoring. Guidance is also provided regarding the management of common complications including edema, hypovolemia and serious infections. Advice on immunization and transition of care is given. The revised guideline is intended to improve the management and outcomes of patients with SSNS, and provide directions for future research.
Collapse
Affiliation(s)
- Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India. Correspondence to: Dr. Arvind Bagga, Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | | | - Kirtisudha Mishra
- Department of Pediatrics, Chacha Nehru Bal Chikitsalaya, Delhi, India
| | - Amarjeet Mehta
- Department of Pediatrics, Sawai Man Singh Medical College, Jaipur, India
| | - Indira Agarwal
- Department of Pediatrics, Christian Medical College, Vellore, India
| | - Susan Uthup
- Department of Pediatrics, Trivandrum Medical College, Thiruvananthapuram, India
| | - Abhijeet Saha
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Om Prakash Mishra
- Department of Pediatrics, Institute of Medical Sciences, Benaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Sinha A, Bagga A, Banerjee S, Mishra K, Mehta A, Agarwal I, Uthup S, Saha A, Mishra OP. Steroid Sensitive Nephrotic Syndrome: Revised Guidelines. Indian Pediatr 2021. [PMID: 33742610 PMCID: PMC8139225 DOI: 10.1007/s13312-021-2217-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Justification Steroid sensitive nephrotic syndrome (SSNS) is one of the most common chronic kidney diseases in children. These guidelines update the existing Indian Society of Pediatric Nephrology recommendations on its management. Objective To frame revised guidelines on diagnosis, evaluation, management and supportive care of patients with the illness. Process The guidelines combine evidence-based recommendations and expert opinion. Formulation of key questions was followed by review of literature and evaluation of evidence by experts in two face-to-face meetings. Recommendations The initial statements provide advice for evaluation at onset and follow up and indications for kidney biopsy. Subsequent statements provide recommendations for management of the first episode of illness and of disease relapses. Recommendations on the use of immunosuppressive strategies in patients with frequent relapses and steroid dependence are accompanied by suggestions for step-wise approach and plan of monitoring. Guidance is also provided regarding the management of common complications including edema, hypovolemia and serious infections. Advice on immunization and transition of care is given. The revised guideline is intended to improve the management and outcomes of patients with SSNS, and provide directions for future research.
Collapse
Affiliation(s)
- Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India. Correspondence to: Dr. Arvind Bagga, Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | | | - Kirtisudha Mishra
- Department of Pediatrics, Chacha Nehru Bal Chikitsalaya, Delhi, India
| | - Amarjeet Mehta
- Department of Pediatrics, Sawai Man Singh Medical College, Jaipur, India
| | - Indira Agarwal
- Department of Pediatrics, Christian Medical College, Vellore, India
| | - Susan Uthup
- Department of Pediatrics, Trivandrum Medical College, Thiruvananthapuram, India
| | - Abhijeet Saha
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Om Prakash Mishra
- Department of Pediatrics, Institute of Medical Sciences, Benaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Generation and Validation of a Limited Sampling Strategy to Monitor Mycophenolic Acid Exposure in Children With Nephrotic Syndrome. Ther Drug Monit 2020; 41:696-702. [PMID: 31425441 DOI: 10.1097/ftd.0000000000000671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mycophenolate mofetil (MMF) plays an increasingly important role in the treatment of children with nephrotic syndrome, especially in steroid sparing protocols. Recent publications show the relationship of exposure to its active moiety mycophenolic acid (MPA) and clinical efficacy. Performance of full-time pharmacokinetic (PK) profiles, however, is inconvenient and laborious. Established limited sampling strategies (LSS) to estimate the area under the concentration (AUC) versus time curve of MPA (MPA-AUC) in pediatric renal transplant recipients cannot be easily transferred to children suffering from nephrotic syndrome, mainly because of the lack of concomitant immunosuppressive therapy. We therefore aimed for the generation and validation of a LSS to estimate MPA exposure to facilitate therapeutic drug monitoring in children with nephrotic syndrome. METHODS We performed 27 complete PK profiles in 23 children in remission [mean age (±SD):12.3 ± 4.26 years] to generate and validate an LSS. Sampling time points were before administration (C0) and 0.5, 1, 1.5, 2, 4, 6, 8, and 12 hours after the administration of MMF. MPA was measured by enzyme multiplied immunoassay technique. There was no concomitant treatment with calcineurin inhibitors. RESULTS Mean daily dose of MMF was 927 ± 209 mg/m of body surface area resulting in a mean MPA-AUC0-12 value of 59.2 ± 29.3 mg × h/L and a predose level of 3.03 ± 2.24 mg/L. Between-patient variability of dose-normalized MPA-AUC0-12 was high (coefficient of variation: 45.5%). Correlation of predose levels with the corresponding MPA-AUC0-12 was moderate (r = 0.59) in a subgroup of 18 patients (20 PK profiles, generation group). An algorithm based on 3 PK sampling time points during the first 2 hours after MMF dosing (estimated AUC0-12 = 8.7 + 4.63 × C0 + 1.90 × C1 + 1.52 × C2) was able to predict MPA-AUC with a low percentage prediction error (3.88%) and a good correlation of determination (r = 0.90). Validation of this algorithm in a randomized separate group of 6 patients (7 PK profiles, validation group) resulted in comparably good correlation (r = 0.95) and low percentage prediction error (5.57%). CONCLUSIONS An abbreviated profile within the first 2 hours after MMF dosing gives a good estimate of MPA exposure in children with nephrotic syndrome and hence has the potential to optimize MMF therapy.
Collapse
|
16
|
The Application of Inosine 5'-Monophosphate Dehydrogenase Activity Determination in Peripheral Blood Mononuclear Cells for Monitoring Mycophenolate Mofetil Therapy in Children with Nephrotic Syndrome. Pharmaceuticals (Basel) 2020; 13:ph13080200. [PMID: 32824803 PMCID: PMC7463457 DOI: 10.3390/ph13080200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/16/2022] Open
Abstract
In pediatric nephrotic syndrome, recommended mycophenolic acid (MPA) pharmacokinetics are higher than those for transplant recipients. In MPA therapeutic monitoring, inosine-5'-monophosphate dehydrogenase (IMPDH) activity may be useful. We modified the method established for renal transplant recipients and determined IMPDH activity in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and children (4-16 years) with nephrotic syndrome treated with mycophenolate mofetil (MMF). From children, four blood samples were collected, and MPA concentrations were also determined. IMPDH activity was calculated using xanthosine monophosphate (XMP) normalized with adenosine monophosphate (AMP), both determined with the HPLC-UV method. The modified method was accurate, precise, and linear for AMP and XMP within 0.50-50.0 μmoL/L. Mean IMPDH activity in volunteers was 45.97 ± 6.24 µmoL·s-1·moL-1 AMP, whereas for children, the values were variable and amounted to 39.23 ± 27.40 µmoL·s-1·moL-1 AMP and 17.97 ± 15.24 µmoL·s-1·moL-1 AMP before the next MMF dose and 1 h afterward, respectively. The modified method may be applied to IMPDH activity determination in children with nephrotic syndrome treated with MMF. IMPDH activity should be determined after one thawing of PBMCs due to the change in AMP and XMP concentrations after subsequent thawing. For children, the lowest IMPDH activity was observed concomitantly with the highest MPA concentration.
Collapse
|
17
|
Abstract
Podocytopathies are kidney diseases in which direct or indirect podocyte injury drives proteinuria or nephrotic syndrome. In children and young adults, genetic variants in >50 podocyte-expressed genes, syndromal non-podocyte-specific genes and phenocopies with other underlying genetic abnormalities cause podocytopathies associated with steroid-resistant nephrotic syndrome or severe proteinuria. A variety of genetic variants likely contribute to disease development. Among genes with non-Mendelian inheritance, variants in APOL1 have the largest effect size. In addition to genetic variants, environmental triggers such as immune-related, infection-related, toxic and haemodynamic factors and obesity are also important causes of podocyte injury and frequently combine to cause various degrees of proteinuria in children and adults. Typical manifestations on kidney biopsy are minimal change lesions and focal segmental glomerulosclerosis lesions. Standard treatment for primary podocytopathies manifesting with focal segmental glomerulosclerosis lesions includes glucocorticoids and other immunosuppressive drugs; individuals not responding with a resolution of proteinuria have a poor renal prognosis. Renin-angiotensin system antagonists help to control proteinuria and slow the progression of fibrosis. Symptomatic management may include the use of diuretics, statins, infection prophylaxis and anticoagulation. This Primer discusses a shift in paradigm from patient stratification based on kidney biopsy findings towards personalized management based on clinical, morphological and genetic data as well as pathophysiological understanding.
Collapse
|
18
|
Sobiak J, Resztak M, Pawiński T, Żero P, Ostalska-Nowicka D, Zachwieja J, Chrzanowska M. Limited sampling strategy to predict mycophenolic acid area under the curve in pediatric patients with nephrotic syndrome: a retrospective cohort study. Eur J Clin Pharmacol 2019; 75:1249-1259. [PMID: 31172249 DOI: 10.1007/s00228-019-02701-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/27/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Limited sampling strategy (LSS) is a precise and relatively convenient therapeutic drug monitoring method. We evaluated LSSs for mycophenolic acid (MPA) in children with nephrotic syndrome treated with mycophenolic mofetil (MMF) and validated the LSSs using two different approaches. METHODS We measured MPA plasma concentrations in 31 children using HPLC-UV method and received 37 MPA pharmacokinetic profiles (0-12 h). For six children, MPA profiles were estimated twice after two MMF doses. LSSs were developed using multilinear regression with STATISTICA and R software and validated using validation group and bootstrap method, respectively. RESULTS The best three time point equations included C1, C3, C6 (good guess 83%, bias - 2.78%; 95% confidence interval (CI) - 9.85-0.46); C1, C2, C6 (good guess 72%, bias 0.72%; 95% CI - 5.33-7.69); and C1, C2, C4 (good guess 72%, bias 2.05%; 95% CI - 4.92-13.01) for STATISTICA software. For R software, the best equations consisted of C1, C3, C6 (good guess 92%, bias - 2.69%; 95% CI - 27.18-33.75); C0, C1, C3 (good guess 84%, bias - 2.11%; 95% CI - 24.19-22.29); and C0, C1, C2 (good guess 84%, bias - 0.48%; 95% CI - 30.77-54.07). During validation, better results were obtained for R evaluations, i.e., bootstrap method. CONCLUSIONS The most useful equations included C0, C1, C3 and C0, C1, C2 time points; however, the most precise included C1, C3, C6 time points because of MPA enterohepatic recirculation. Better results were obtained for bootstrap validation due to greater number of patients. Validated LSS should be used only in the population for which it was developed. As there is growing evidence that underexposure of MPA is associated with insufficient treatment response, we recommend the introduction of therapeutic drug monitoring for MPA in children with nephrotic syndrome.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha Street, 02-097, Warsaw, Poland
| | - Paweł Żero
- Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha Street, 02-097, Warsaw, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Cardiology, Nephrology and Hypertension, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Cardiology, Nephrology and Hypertension, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572, Poznan, Poland
| | - Maria Chrzanowska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| |
Collapse
|
19
|
Benz MR, Ehren R, Tönshoff B, Weber LT. Nephrotisches Syndrom im Kindesalter. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr Nephrol 2018; 33:2253-2265. [PMID: 29750317 DOI: 10.1007/s00467-018-3970-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
Abstract
The clinical application of mycophenolate mofetil (MMF) has significantly widened beyond the prophylaxis of acute and chronic rejections in solid organ transplantation. MMF has been recognized as an excellent treatment option in many immunologic glomerulopathies. For children with frequently relapsing nephrotic syndrome (FRNS) or steroid-dependent nephrotic syndrome (SDNS) experiencing steroid toxicity, MMF has been recommended as a steroid-sparing drug. Uncontrolled studies in patients with FRNS and SDSN have shown that many patients can achieve sustained remission of proteinuria with MMF monotherapy. Three randomized controlled trials have similarly demonstrated that MMF is beneficial in these patients, but less effective than the calcineurin inhibitors cyclosporin A or tacrolimus. Some, but not all, patients with steroid-resistant nephrotic syndrome (SRNS) may also respond to MMF, usually given in combination with other drugs, with partial or complete remission. There are important limitations to the interpretation and comparability of these studies including study design, sample size, patient selection, clinical endpoints, carry-over effects, and duration of follow-up. In all studies, MMF had relatively few side effects, no nephrotoxicity, or no systemic toxicity. MMF is teratogenic, and contraceptive advice is required in females. There is a poor correlation between MMF dose and mycophenolic acid (MPA) exposure and significant inter- and intra-patient variability in drug pharmacokinetics. A higher estimated MPA-AUC0-12 target range than recommended for pediatric renal transplant recipients is essential to prevent relapses. Therefore, therapy should be guided by drug monitoring to avoid relapses. Further studies are needed to test the efficacy of MMF in inducing remission and, as part of a combination therapy, achieving sustained remission in patients with SRNS.
Collapse
|
21
|
Lu Z, Song J, Mao J, Xia Y, Wang C. Evaluation of Mycophenolate Mofetil and Low-Dose Steroid Combined Therapy in Moderately Severe Henoch-Schönlein Purpura Nephritis. Med Sci Monit 2017; 23:2333-2339. [PMID: 28515415 PMCID: PMC5444683 DOI: 10.12659/msm.904206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The most appropriate management of Henoch-Schönlein Purpura (HSP) nephritis with nephrotic-range proteinuria remains uncertain. The aim of this study was to evaluate the clinical therapeutic effects of mycophenolate mofetil and low-dose steroid in Henoch-Schönlein purpura nephritis (HSPN) with nephrotic-range proteinuria and pathological classification less than IV in children. Material/Methods The clinical effects of MMF and low-dose steroid therapy were studied in children with Henoch-Schönlein purpura nephritis manifested with nephrotic-range proteinuria, normal kidney function, and <50% crescents or sclerosing lesions on renal biopsy. We enrolled 32 boys and 29 girls with nephrotic-range proteinuria, normal kidney function, and pathological classification less than IV on renal biopsy. We treated 41 cases (67.2%) with mycophenolate mofetil and low-dose prednisone combined therapy and 20 cases (32.8%) were treated with full-dose prednisone alone. Results Short-term response was significantly different between 2 groups (χ2=4.371, P=0.037), while no significant difference was found in long-term prognosis (χ2=0.419, P=0.522) after follow-up. The ROC curve showed that the most appropriate cutoff value was 30.67 μg·h/ml for MPA-AUC and the area under the ROC curve was 0.731, with 85.2% sensitivity and 64.3% specificity. Conclusions Mycophenolate mofetil and low-dose prednisone combined therapy is a reasonable treatment choice which can promote the remission of proteinuria without increasing obvious adverse reactions in pediatric HSPN with nephrotic state and pathological classification less than grade IV. MPA-AUC more than 30 μg·h/ml was an appropriate value for MMF in the combined therapy with MMF and steroid for treating children with HSPN.
Collapse
Affiliation(s)
- Zhihong Lu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Junfeng Song
- Department of Pediatrics, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Yonghui Xia
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Caiyun Wang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
22
|
Sinha A, Gupta A, Kalaivani M, Hari P, Dinda AK, Bagga A. Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Kidney Int 2017; 92:248-257. [PMID: 28318625 DOI: 10.1016/j.kint.2017.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/04/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
Abstract
Studies of nephrotic syndrome show that substitution of calcineurin inhibitors by mycophenolate mofetil (MMF) enables sustained remission and corticosteroid sparing and avoids therapy associated adverse effects. However, controlled studies in patients with steroid resistance are lacking. Here we examined the effect of switching from therapy with tacrolimus to MMF on disease course in an open-label, one-to-one randomized, controlled trial on children (one to 18 years old), recently diagnosed with steroid-resistant nephrotic syndrome, at a referral center in India. Following six months of therapy with tacrolimus, patients with complete or partial remission were randomly assigned such that 29 received MMF while 31 received tacrolimus along with tapering prednisolone on alternate days for 12 months. On intention-to-treat analyses, the proportion of patients with a favorable outcome (sustained remission, infrequent relapses) at one year was significantly lower (44.8%) in the MMF group than in the tacrolimus group (90.3%). The incidence of relapses was significantly higher for patients treated with MMF than tacrolimus (mean difference: 1.05 relapses per person-year). While there was no difference in the proportion of patients with sustained remission, the risk of recurrence of steroid resistance was significantly higher for patients receiving MMF compared to tacrolimus (mean difference: 20.7%). Compared to tacrolimus, patients receiving MMF had a significantly (71%) lower likelihood of a favorable outcome and significantly increased risk of treatment failure (frequent relapses, steroid resistance). Thus, replacing tacrolimus with MMF after six months of tacrolimus therapy for steroid-resistant nephrotic syndrome in children is associated with significant risk of frequent relapses or recurrence of resistance. These findings have implications for guiding the duration of therapy with tacrolimus for steroid-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aarti Gupta
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Hari
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
23
|
Parant F, Ranchin B, Gagnieu MC. The Roche Total Mycophenolic Acid® assay: An application protocol for the ABX Pentra 400 analyzer and comparison with LC-MS in children with idiopathic nephrotic syndrome. Pract Lab Med 2017; 7:19-26. [PMID: 28856214 PMCID: PMC5575364 DOI: 10.1016/j.plabm.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
Background For TDM of mycophenolate acid (MPA), the Roche Total Mycophenolic Acid® assay based on the inhibition of recombinant inosine monophosphate dehydrogenase (IMPDH) has been shown to be a simple and reliable alternative to chromatographic methods. We have adapted this assay on the ABX Pentra 400 analyzer (HORIBA). Objective To investigate the analytical performances of the Roche Total Mycophenolic Acid® assay on the ABX Pentra 400 and to compare it to an LC-MS method using samples from children with nephrotic syndrome treated with mycophenolate mofetil (MMF). Material and methods Configuration of the open-channel on the ABX Pentra 400 was based on the Roche MPA assay package insert. Precision was determined as described in the CLSI protocol EP5-A2. Comparison with the LC-MS method was performed using 356 plasma samples from 42 children with nephrotic syndrome (8 h pharmacokinetic profiles). Results The enzymatic assay demonstrated high precision. The %CV for Within Run Imprecision ranged from 5.5% at 1.2 mg/L to 1.5% at 14.1 mg/L and Total Imprecision ranged from 9.3% to 2.5%. The method comparison with plasma samples from children yielded overall a good correlation and a good agreement between both methods. The Passing Bablok regression analysis showed the following results: [Roche MPA assay]=1.058 [MPA LC-MS] −0.06; rho=0.996. Conclusion The Roche Total Mycophenolic Acid® assay is adaptable to the ABX Pentra 400 analyzer, and demonstrates accurate and precise measurement of MPA in plasma obtained from children with nephrotic syndrome. Adaptation of the Roche Total Mycophenolic Acid® assay to the Pentra 400 analyzer. Comparison with LC-MS in children with idiopathic nephrotic syndrome. Therapeutic drug monitoring of mycophenolate mofetil.
Collapse
Affiliation(s)
- François Parant
- Hospices Civils de Lyon, GHS - Centre de Biologie Sud, UM Pharmacologie - Toxicologie, Pierre Bénite F-69495, France
| | - Bruno Ranchin
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Service de Néphrologie et Rhumatologie Pédiatriques, Bron F-69677, France
| | - Marie-Claude Gagnieu
- Hospices Civils de Lyon, GHS - Centre de Biologie Sud, UM Pharmacologie - Toxicologie, Pierre Bénite F-69495, France
| |
Collapse
|
24
|
Tellier S, Dallocchio A, Guigonis V, Saint-Marcoux F, Llanas B, Ichay L, Bandin F, Godron A, Morin D, Brochard K, Gandia P, Bouchet S, Marquet P, Decramer S, Harambat J. Mycophenolic Acid Pharmacokinetics and Relapse in Children with Steroid-Dependent Idiopathic Nephrotic Syndrome. Clin J Am Soc Nephrol 2016; 11:1777-1782. [PMID: 27445161 PMCID: PMC5053778 DOI: 10.2215/cjn.00320116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid-dependent nephrotic syndrome. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This was a retrospective multicenter study including 95 children with steroid-dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. RESULTS In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30-60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P=0.01). CONCLUSIONS Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid-dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population.
Collapse
Affiliation(s)
- Stéphanie Tellier
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest and
| | - Aymeric Dallocchio
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest and
| | - Vincent Guigonis
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest and
| | - Frank Saint-Marcoux
- Service de Pharmacologie et Toxicologie, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Brigitte Llanas
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest et Centre d'Investigation Clinique, Centre d'Investigation Clinique 1401, INSERM, and
| | - Lydia Ichay
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Flavio Bandin
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest and
| | - Astrid Godron
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest et Centre d'Investigation Clinique, Centre d'Investigation Clinique 1401, INSERM, and
| | - Denis Morin
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Karine Brochard
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest and
| | - Peggy Gandia
- Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane Bouchet
- Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; and
| | - Pierre Marquet
- Service de Pharmacologie et Toxicologie, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Stéphane Decramer
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest and
| | - Jérôme Harambat
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud Ouest et Centre d'Investigation Clinique, Centre d'Investigation Clinique 1401, INSERM, and
| |
Collapse
|
25
|
Tong K, Mao J, Fu H, Shen H, Liu A, Shu Q, Du L. The Value of Monitoring the Serum Concentration of Mycophenolate Mofetil in Children with Steroid-Dependent/Frequent Relapsing Nephrotic Syndrome. Nephron Clin Pract 2016; 132:327-34. [PMID: 26991496 DOI: 10.1159/000445070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/24/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycophenolate mofetil (MMF) is an alternative treatment strategy in children with steroid sensitivity who have frequent relapses or steroid-dependent nephrotic syndrome (FRNS/SDNS). METHODS From January 2009 to January 2015, 31 cases of children with FRNS/SDNS were prospectively recruited and administered MMF and prednisone; then, serum samples were collected, and the area under the curve (AUC) of mycophenolic acid (MPA-AUC) was calculated. RESULTS A MPA-AUC of 27.99 μg·h/ml had a diagnostic sensitivity of 65.2% and a specificity of 87.5% in discriminating relapsing from non-relapsing patients (receiver operating characteristic-AUC 0.848). The 31 patients were then grouped according to the results of the MPA-AUC as follows: low-AUC group, <30 μg·h/ml and high-AUC group, ≥30 μg·h/ml. The results indicated that there was a significant difference in the remission rate between the groups (x03C7;2 = 6.645, p = 0.01) during the 6 months of follow-up. Compared with the results before MMF therapy, the steroid dosage in both groups was significantly reduced at the 6- and 12-month follow-ups. Furthermore, the steroid dose was reduced more significantly in the high-AUC group than in the low-AUC group (0.447 ± 0.254 vs. 0.219 ± 0.161 mg/kg/day, p = 0.006) at the 6-month follow-up. Compared with the low-AUC group at the 6-month follow-up, the number of patients with relapse and relapse episodes in the high-AUC group were also significantly reduced (7/16 vs. 1/15, p = 0.037, and 15/27 vs. 1/29, p = 0.014, respectively). CONCLUSIONS MMF is a reasonable treatment choice to reduce the number of relapse episodes and steroid administration in children with FRNS/SDNS. Moreover, children in the high-AUC group (MPA-AUC ≥30 μg·h/ml) tended to require lower steroid doses and had greater remission rates than the patients in the low-AUC group (<30 μg·h/ml) at the 6-month follow-up.
Collapse
Affiliation(s)
- Kezhen Tong
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|