1
|
Horkovics-Kovats S, László Galata D, Zlatoš P, Nagy B, Alexandra Mészáros L, Kristóf Nagy Z. Raman-based real-time dissolution prediction using a deterministic permeation model. Int J Pharm 2022; 617:121624. [DOI: 10.1016/j.ijpharm.2022.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
2
|
Hofsäss MA, Dressman J. Suitability of the z-Factor for Dissolution Simulation of Solid Oral Dosage Forms: Potential Pitfalls and Refinements. J Pharm Sci 2020; 109:2735-2745. [DOI: 10.1016/j.xphs.2020.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
|
3
|
Yang G, Li Z, Wu F, Chen M, Wang R, Zhu H, Li Q, Yuan Y. Improving Solubility and Bioavailability of Breviscapine with Mesoporous Silica Nanoparticles Prepared Using Ultrasound-Assisted Solution-Enhanced Dispersion by Supercritical Fluids Method. Int J Nanomedicine 2020; 15:1661-1675. [PMID: 32210559 PMCID: PMC7071864 DOI: 10.2147/ijn.s238337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 01/28/2023] Open
Abstract
Background Breviscapine (BRE) has significant efficacy in cardiovascular disease, but the poor water solubility of breviscapine affects its oral absorption and limits its clinical application. In this study, supercritical carbon dioxide (SCF-CO2) technology was used to improve the solubility and bioavailability of BRE loaded into mesoporous silica nanoparticles (MSNs). Methods The solubility of BRE in SCF-CO2 was measured under various conditions to investigate the feasibility of preparing drug-loaded MSNs by using ultrasound-assisted solution-enhanced dispersion by supercritical fluids (USEDS). The preparation process of drug-loaded MSNs was optimized using the central composite design (CCD), and the optimized preparation was comprehensively characterized. Furthermore, the drug-loaded MSNs prepared by the conventional method were compared. Finally, the dissolution and bioavailability of the preparations were evaluated by in vitro release and pharmacokinetics study. Results The solubility of BRE in SCF-CO2 was extremely low which was suitable to prepare BRE-loaded MSNs by USEDS technology. The particle size of the preparation was 177.24 nm, the drug loading was 8.63%, and the specific surface area was 456.3m2/g. As compared to the conventional preparation method of solution impregnation-evaporation (SIV), the formulation prepared by USEDS technology has smaller particle size, higher drug loading, less residual solvent and better stability. The results of the in vitro release study showed that drug-loaded MSNs could significantly improve drug dissolution. The results of pharmacokinetics showed that the bioavailability of drug-loaded MSNs was increased 1.96 times compared to that of the BRE powder. Conclusion Drug-loaded MSNs can significantly improve the solubility and bioavailability of BRE, indicating a good application prospect for MSNs in improving the oral absorption of drugs. In addition, as a solid dispersion preparation technology, USEDS technology has incomparable advantages.
Collapse
Affiliation(s)
- Gang Yang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhe Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Feihua Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Minyan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Hao Zhu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qin Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
4
|
Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L, Hermans A, Neu CM, Alam MA, Cohen MJ, Lu X, Xiong L, Zacour BM. First-Principles and Empirical Approaches to Predicting In Vitro Dissolution for Pharmaceutical Formulation and Process Development and for Product Release Testing. AAPS J 2019; 21:32. [PMID: 30790200 PMCID: PMC6394641 DOI: 10.1208/s12248-019-0297-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 11/30/2022] Open
Abstract
This manuscript represents the perspective of the Dissolution Working Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) and of two focus groups of the American Association of Pharmaceutical Scientists (AAPS): Process Analytical Technology (PAT) and In Vitro Release and Dissolution Testing (IVRDT). The intent of this manuscript is to show recent progress in the field of in vitro predictive dissolution modeling and to provide recommended general approaches to developing in vitro predictive dissolution models for both early- and late-stage formulation/process development and batch release. Different modeling approaches should be used at different stages of drug development based on product and process understanding available at those stages. Two industry case studies of current approaches used for modeling tablet dissolution are presented. These include examples of predictive model use for product development within the space explored during formulation and process optimization, as well as of dissolution models as surrogate tests in a regulatory filing. A review of an industry example of developing a dissolution model for real-time release testing (RTRt) and of academic case studies of enabling dissolution RTRt by near-infrared spectroscopy (NIRS) is also provided. These demonstrate multiple approaches for developing data-rich empirical models in the context of science- and risk-based process development to predict in vitro dissolution. Recommendations of modeling best practices are made, focused primarily on immediate-release (IR) oral delivery products for new drug applications. A general roadmap is presented for implementation of dissolution modeling for enhanced product understanding, robust control strategy, batch release testing, and flexibility toward post-approval changes.
Collapse
Affiliation(s)
- Nikolay Zaborenko
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Technology Center North, B302, Drop 3210, Indianapolis, Indiana, 46285, USA
| | - Zhenqi Shi
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Technology Center North, B302, Drop 3210, Indianapolis, Indiana, 46285, USA.
| | - Claudia C Corredor
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | | | - Limin Zhang
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | - Andre Hermans
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Colleen M Neu
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Md Anik Alam
- Analytical Research and Development, Pfizer Inc., Groton, Connecticut, 06340, USA
| | - Michael J Cohen
- Global Chemistry and Manufacturing Controls, Pfizer Inc., Groton, Connecticut, 06340, USA
| | - Xujin Lu
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| | - Leah Xiong
- Merck & Co., Inc., Kenilworth, New Jersey, 07033, USA
| | - Brian M Zacour
- Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
6
|
Li Z, Zhang Y, Zhang K, Wu Z, Feng N. Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:578-587. [DOI: 10.1080/21691401.2018.1431651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Nianping Feng
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|