1
|
Park JM, Nguyen HD, Ngo HV, Yun JY, Ha MJ, Lee KW, Lee BJ. Comparative investigation of sublingual tablets containing oleic acid-conjugated leuprolide nanoparticles and permeation enhancers on disintegration, release rate, permeability and pharmacokinetics in beagle dogs. Int J Pharm 2025; 678:125738. [PMID: 40393533 DOI: 10.1016/j.ijpharm.2025.125738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/29/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025]
Abstract
To overcome invasive injectables and low oral bioavailability issues of peptide drug, leuprolide (LEU), sublingual tablets was challenged by forming deformable and self-assembled LEU nanoparticles with permeation enhancers (PEs). LEU-oleic acid (OA) nanoparticles (LON) was prepared via self-assembly of LEU-OA conjugates (LOC), whereas deformable LON (d-LON) was prepared by incorporating α-phosphatidylcholine (PC) into LON. Effect of LEU forms (LEU, LOC, LON, and d-LON) and seven GRAS (Generally Recognized As Safe)-listed permeation enhancers (PEs) were screened using a Franz diffusion cell with PermeaPad® membrane. The permeability was dependent on the types of LEU nanoparticles, giving d-LON was the highest followed by LON, LOC and LEU. Furthermore, PEs synergistically and consistently increased the permeability of all forms of LEU. Among seven PEs screened, lauroyl-ʟ-carnitine (LLC), sodium decanoate (SD), salcaprozate sodium (SNAC) exhibited much higher permeabilities. Then, thin and wide sublingual tablets containing LEU nanoparticles and PE were designed to undergo rapid disintegration approximately within 2 min in the order: LON (31.6 ± 3.5 s) > d-LON (79.3 ± 2.5 s) > d-LON/LLC(99.7 ± 4.0 s) > d-LON/SD(107.3 ± 2.5 s) ≥ d-LON/SNAC(109.0 ± 7.5 s). The dissolution rate was the highest in the order: LEU > LON > LOC > d-LON > d-LON/LLC > d-LON/SD ≥ d-LON/SNAC, completing release over 90 % within 10 min. Three PEs decreased the disintegration time and dissolution rate of sublingual tablet but were effective for enhancing LEU permeability, showing 28.2 ± 0.81 % (LLC), 31.7 ± 0.49 % (SD), 37.3 ± 0.76 % (SNAC), and d-LON without adding PEs (20.9 ± 0.36 %) for 2 h. In pharmacokinetic studies conducted in beagle dogs, d-LON-loaded sublingual tablets with SD exhibited the highest bioavailability followed by LLC and SNAC, whereas LON without adding PEs were under detection limit of LEU. These findings suggest that sublingual tablets simultaneously incorporating LEU nanoparticle and PEs are crucial for maximizing LEU delivery via the sublingual route.
Collapse
Affiliation(s)
- Ji-Min Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hy Dinh Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai Van Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Ji Yeong Yun
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Min Ji Ha
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Kye Wan Lee
- Dongkook Pharmaceutical Co., Ltd., Seoul 06072, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
2
|
Kabedev A, Tønning MH, Teleki A, Bauer-Brandl A, Jacobsen AC. Understanding the transport of drugs across biomimetic barriers of various phospholipid compositions using a combined experimental and computational approach. Colloids Surf B Biointerfaces 2025; 253:114706. [PMID: 40311453 DOI: 10.1016/j.colsurfb.2025.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/03/2025]
Abstract
Permeapad® is an artificial biomimetic barrier for in vitro permeation experiments, which has an intricate nano- and microstructure consisting of two cellulose hydrate sheets enclosing a layer of phospholipids forming multiple, multilamellar vesicles in contact with the assay medium. Due to this structure, transport across this barrier can be regarded as complex deserving further attention. Until now, only Permeapad® with phosphatidylcholine, the most abundant phospholipid in cell membranes, has been described in literature. However, from biological systems and other artificial barriers, it is known that permeation properties can vary with phospholipid composition. This study presents a combination of experimental and computational techniques to study and explain the transport of molecules across the Permeapad® barrier. For this, we investigated Permeapad® variants with other phospholipid compositions including phosphatidylethanolamine, the second most abundant phospholipid in cell membranes, and phosphatidylglycerol, representing a phospholipid with a negatively charged headgroup by measuring the permeability of three drugs, metoprolol (a weak base), naproxen (a weak acid) and hydrocortisone (a non-ionizable drug). Phospholipid composition only affected the permeability of metoprolol significantly. We used molecular dynamics simulations to understand the underlying mechanisms of the permeability differences extracting several descriptors of membrane properties and predicting permeability. Surprisingly, an almost inverse relationship between experimental and computational permeability was observed. Permeapad®'s highly compartmentalized structure was hypothesized to cause this observation. This study offers a deeper understanding of the functionality of the Permeapad® barrier.
Collapse
Affiliation(s)
| | - Mikkel Højmark Tønning
- Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Box 580, Uppsala, SE 75123, Sweden
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ann-Christin Jacobsen
- Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense, Denmark; Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany.
| |
Collapse
|
3
|
Chakraborty R, Ray P, Barik S, Banik O, Mahapatra C, Banoth E, Kumar P. A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research. ACS APPLIED BIO MATERIALS 2024; 7:8107-8125. [PMID: 39565389 DOI: 10.1021/acsabm.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Epithelial tissue forms a barrier around the human body and visceral organs, providing protection, permeation, sensation, and secretion. It is vital for our sustenance as it protects the tissue from harm and injury by restricting the entry of foreign bodies inside. Furthermore, it is a strong barrier to drugs, nutrients, and other essential deliverables. This layer also houses a large consortium of microbes, which thrive in tandem with human tissue, providing several health benefits. Moreover, the complex interplay of the microbiome with the barrier tissue is poorly understood. Therefore, replicating these barrier tissues on microdevices to generate physiological and pathophysiological models has been a huge interest for researchers over the last few decades. The artificially engineered reconstruction of these epithelial cellular barriers on microdevices could help underpin the host-microbe interaction, generating a physiological understanding of the tissue, tissue remodeling, receptor-based selective diffusion, drug testing, and others. In addition, these devices could reduce the burden of animal sacrifices for similar research and minimize the failure rate in drug discovery due to the use of primary human cells and others. This review discusses the nature of the epithelial barrier at different tissue sites, the recent developments in creating engineered barrier models, and their applications in pathophysiology, host-microbe interactions, drug discovery, and cytotoxicity. The review aims to provide know-how and knowledge behind engineered epithelial barrier tissue to bioengineers, biotechnologists, and scientists in allied fields.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Pragyan Ray
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swagatika Barik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Oindrila Banik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology, Raipur-492010 Chhattisgarh, India
| | - Earu Banoth
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Prasoon Kumar
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
4
|
Machla F, Bekiari C, Monou PK, Kofidou E, Theodosaki AM, Katsamenis OL, Zisis V, Kokoti M, Bakopoulou A, Fatouros D, Andreadis D. Development of an Oral Epithelial Ex Vivo Organ Culture Model for Biocompatibility and Permeability Assessment of Biomaterials. Bioengineering (Basel) 2024; 11:1035. [PMID: 39451410 PMCID: PMC11504994 DOI: 10.3390/bioengineering11101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
In the present study, a customized device (Epi-ExPer) was designed and fabricated to facilitate an epithelial organ culture, allowing for controlled exposure to exogenous chemical stimuli and accommodating the evaluation of permeation of the tissue after treatment. The Epi-ExPer system was fabricated using a stereolithography (SLA)-based additive manufacturing (AM) method. Human and porcine oral epithelial mucosa tissues were inserted into the device and exposed to resinous monomers commonly released by dental restorative materials. The effect of these xenobiotics on the morphology, viability, permeability, and expression of relevant markers of the oral epithelium was evaluated. Tissue culture could be performed with the desired orientation of air-liquid interface (ALI) conditions, and exposure to xenobiotics was undertaken in a spatially guarded and reproducible manner. Among the selected monomers, HEMA and TEGDMA reduced tissue viability at high concentrations, while tissue permeability was increased by the latter. Xenobiotics affected the histological image by introducing the vacuolar degeneration of epithelial cells and increasing the expression of panCytokeratin (pCK). Epi-ExPer device offers a simple, precise, and reproducible study system to evaluate interactions of oral mucosa with external stimuli, providing a biocompatibility and permeability assessment tool aiming to an enhanced in vitro/ex vivo-to-in vivo extrapolation (IVIVE) that complies with European Union (EU) and Food and Durg Administration (FDI) policies.
Collapse
Affiliation(s)
- Foteini Machla
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Chrysanthi Bekiari
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (E.K.)
| | - Paraskevi Kyriaki Monou
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.M.); (D.F.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Evangelia Kofidou
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (E.K.)
| | - Astero Maria Theodosaki
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Vasileios Zisis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Kokoti
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Athina Bakopoulou
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Dimitrios Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.M.); (D.F.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Alhallak M, Karpukhina N, Patel M. Permeability of triamcinolone acetonide, released from mucoadhesive films, through a buccal mucosa-mimetic barrier: Permeapad™. Dent Mater 2024; 40:1372-1377. [PMID: 38902145 DOI: 10.1016/j.dental.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES The permeability of triamcinolone acetonide (TA), from bilayer mucoadhesive buccal films, through a biomimetic membrane, Permeapad™, was investigated employing Franz diffusion cell. The delivery systems composition and ethyl cellulose (EC) backing layer, on drug permeability, were assessed. METHODS Three TA-loaded films were tested; hydroxypropyl methylcellulose (HPMC K4M; bilayer [F1] and monolayer), HPMC K4M/Polyvinylpyrrolidone (PVP): 90/10 [F2], and HPMC K15M film [F3]. All films contained propylene glycol (PG-plasticiser). TA solution alone was used as a control. TA permeability via a Permeapad™ barrier, simulating buccal mucosa, was assessed over 8 h using a Franz diffusion cell. TA permeated into the receptor compartment, released in the donor compartment, and located on/within the Permeapad™ barrier were analysed using UV-spectrophotometer. RESULTS 45.7 % drug retention within the Permeapad™ barrier was delivered from F1 (highest). F1, F2, and F3 significantly improved the TA's permeability through Permeapad™, compared to TA solution alone (e.g., 8.5 % TA-solution, 21.5 %-F1), attributed to the synergy effect of HPMC and propylene glycol acting as penetration enhancers. F1 displayed a significant increase in drug permeability (receptor compartment; 21.5 %) compared to F3 (17.0 %). PVP significantly enhanced drug permeability (27.5 %). Impermeable EC backing layer controlled unidirectional drug release and reduced drug loss into the donor compartment (e.g., ∼28 % for monolayer film to ∼10 % for bilayer film, F1). SIGNIFICANCE The mucoadhesive films demonstrated improved TA permeability via Permeapad™. The findings suggest that these bilayer mucoadhesive films, particularly F1, hold promise for the effective topical treatment of oral mucosa disorders, such as recurrent aphthous stomatitis and oral lichen planus.
Collapse
Affiliation(s)
- Muhannad Alhallak
- Dental Physical Sciences Unit, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Natalia Karpukhina
- Dental Physical Sciences Unit, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mangala Patel
- Dental Physical Sciences Unit, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
6
|
Ma’ali A, Naseef H, Qurt M, Abukhalil AD, Rabba AK, Sabri I. The Preparation and Evaluation of Cyanocobalamin Mucoadhesive Sublingual Tablets. Pharmaceuticals (Basel) 2023; 16:1412. [PMID: 37895883 PMCID: PMC10610133 DOI: 10.3390/ph16101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Cobalamin (vitamin B12), an essential vitamin with low oral bioavailability, plays a vital role in cellular functions. This research aimed to enhance the absorption of vitamin B12 using sublingual mucoadhesive tablets by increasing the residence time of the drug at the administration site. This research involved the preparation of different 50 mg placebo formulas using different methods. Formulas with disintegration times less than one minute and appropriate physical characteristics were incorporated into 1 mg of cyanocobalamin (S1-S20) using the direct compression method. The tablets obtained were evaluated ex vivo for residence time, and only those remaining for >15 min were included. The final formulas (S5, S8, S11, and S20) were evaluated in several ways, including pre- and post-compression, drug content, mucoadhesive strength, dissolution, and Permeapad® permeation test employed in the Franz diffusion cell. After conducting the evaluation, formula S11 (Eudragit L100-55) emerged as the most favorable formulation. It exhibited a mucoadhesive residence time of 118.2 ± 2.89 min, required a detachment force of 26 ± 1 g, maintained a drug content of 99.124 ± 0.001699%, and achieved a 76.85% drug release over 22 h, fitting well with the Peppas-Sahlin kinetic model (R2: 0.9949). This suggests that the drug release process encompasses the Fickian and non-Fickian kinetic mechanisms. Furthermore, Eudragit L100-55 demonstrated the highest permeability, boasting a flux value of 6.387 ± 1.860 µg/h/cm2; over 6 h. These findings indicate that including this polymer in the formulation leads to an improved residence time, which positively impacts bioavailability.
Collapse
Affiliation(s)
| | - Hani Naseef
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine; (A.M.); (M.Q.); (A.D.A.); (A.K.R.); (I.S.)
| | | | | | | | | |
Collapse
|
7
|
Chachlioutaki K, Iordanopoulou A, Bouropoulos N, Meikopoulos T, Gika H, Ritzoulis C, Andreadis D, Karavasili C, Fatouros DG. Pediatric and Geriatric-Friendly Buccal Foams: Enhancing Omeprazole Delivery for Patients Encountering Swallowing Difficulties. J Pharm Sci 2023; 112:2644-2654. [PMID: 37549845 DOI: 10.1016/j.xphs.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Buccal foams containing omeprazole (OME) have been developed as potential drug delivery systems for individuals encountering swallowing difficulties, particularly pediatric and geriatric patients. The buccal foams were formulated from lyophilized aqueous gels of maltodextrin, used as a sweetener, combined with various polymers (alginate, chitosan, gelatin, tragacanth) to fine tune their structural, mechanical, and physicochemical properties. Consistent with the requirements for efficient drug delivery across buccal epithelium, the foam comprised of hydroxypropyl methylcellulose and alginate (HPMC-Alg-OME), exhibited moderate hardness and high mucoadhesion resulting to prolonged residence and increased transport of the active across porcine epithelium. The HPMC-Alg-OME foam induced a 30-fold increase in the drug's apparent permeability across porcine buccal tissue, compared to the drug suspension. The developed buccal foams exhibited excellent stability, as evidenced by the unchanged omeprazole content even after six months of storage under ambient conditions (20 °C and 45% RH). Results indicate that buccal foams of omeprazole may address the stability and ease of administration issues related to oral administration of the drug, particularly for children and elderly patients who have difficulty swallowing solid dosage forms.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Anastasia Iordanopoulou
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Thomas Meikopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Christina Karavasili
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece.
| |
Collapse
|
8
|
Sena A, Costa A, Bastos F, Pinto AC, Vitorino C, Nunes A, Simões S. Development of a buccal in vitro permeation method - exploring aQbD implementation. Int J Pharm 2023; 643:123255. [PMID: 37482227 DOI: 10.1016/j.ijpharm.2023.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The buccal mucosa is arising within the pharmaceutical landscape as an attractive option for local and systemic drug delivery, mostly due to its high vascularization, inherent permeability and robustness. Still, one of the major challenges in bringing oromucosal preparations to market remains the accurate evaluation of permeability. During pre-clinical drug development, in vitro permeation assessment is essential, and methodologies, based on the selection of a proper membrane in a diffusion cell, have become appealing alternatives to the conventional cell-based models. The development of such methods is being constrained by the number of variables - related to study conditions, setup and formulation - that need to be optimized to accurately estimate buccal permeation. The gap of knowledge over the mentioned variables may lead to long costly developments and poorly accurate methods, especially if the empirical analytical approach is used. In this paper, a systematic risk-based analytical quality by design approach was applied to the development of a buccal in vitro permeation method, ensuring that all sources of variability affecting permeation process were identified, explained and managed by appropriate measures. Researchers are guided through a step by step model, successfully demonstrating with experimental data the impact of critical variables on method's performance.
Collapse
Affiliation(s)
- Ariana Sena
- Bluepharma - Indústria Farmacêutica S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Alain Costa
- Bluepharma - Indústria Farmacêutica S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Francisca Bastos
- Bluepharma - Indústria Farmacêutica S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Catarina Pinto
- Bluepharma - Indústria Farmacêutica S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - António Nunes
- Bluepharma - Indústria Farmacêutica S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal.
| | - Sérgio Simões
- Bluepharma - Indústria Farmacêutica S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
9
|
Zhao Y, Fan Y, Zhang Y, Xu H, Li M, Zhu Y, Yang Z. A method for improving the properties of famotidine. Heliyon 2023; 9:e17494. [PMID: 37416673 PMCID: PMC10320128 DOI: 10.1016/j.heliyon.2023.e17494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
According to crystal engineering, the pharmaceutical intermediate m-nitrobenzoic acid (MNBA), which contains a carboxylic acid group, was selected as a coformer (CCF) for drug cocrystallization with famotidine (FMT), and a new stable FMT salt cocrystal was synthesized. The salt cocrystals were characterized by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, infrared spectroscopy, powder X-ray diffraction and X-ray single crystal diffraction. A single crystal structure of FMT-MNBA (1:1) was successfully obtained, and then the solubility and permeability of the newly synthesized salt cocrystal were studied. The results showed that, compared with free FMT, the FMT from the FMT-MNBA cocrystal showed improved permeability. This study provides a synthetic method to improve the permeability of BCS III drugs, which will contribute to the development of low-permeability drugs.
Collapse
Affiliation(s)
- Yongfeng Zhao
- College of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ying Fan
- Pharmacy Department, Qingdao Special Servicemen Recuperation Center of CPLA Navy, Qingdao, 266071, China
| | - Yan Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Hong Xu
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Min Li
- Anqiu People's Hospital, Weifang, 262199, China
| | - Yunjie Zhu
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Yang
- College of Pharmacy, Qingdao University, Qingdao, 266071, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| |
Collapse
|
10
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
11
|
Jacobsen AC, Visentin S, Butnarasu C, Stein PC, di Cagno MP. Commercially Available Cell-Free Permeability Tests for Industrial Drug Development: Increased Sustainability through Reduction of In Vivo Studies. Pharmaceutics 2023; 15:pharmaceutics15020592. [PMID: 36839914 PMCID: PMC9964961 DOI: 10.3390/pharmaceutics15020592] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Replacing in vivo with in vitro studies can increase sustainability in the development of medicines. This principle has already been applied in the biowaiver approach based on the biopharmaceutical classification system, BCS. A biowaiver is a regulatory process in which a drug is approved based on evidence of in vitro equivalence, i.e., a dissolution test, rather than on in vivo bioequivalence. Currently biowaivers can only be granted for highly water-soluble drugs, i.e., BCS class I/III drugs. When evaluating poorly soluble drugs, i.e., BCS class II/IV drugs, in vitro dissolution testing has proved to be inadequate for predicting in vivo drug performance due to the lack of permeability interpretation. The aim of this review was to provide solid proofs that at least two commercially available cell-free in vitro assays, namely, the parallel artificial membrane permeability assay, PAMPA, and the PermeaPad® assay, PermeaPad, in different formats and set-ups, have the potential to reduce and replace in vivo testing to some extent, thus increasing sustainability in drug development. Based on the literature review presented here, we suggest that these assays should be implemented as alternatives to (1) more energy-intense in vitro methods, e.g., refining/replacing cell-based permeability assays, and (2) in vivo studies, e.g., reducing the number of pharmacokinetic studies conducted on animals and humans. For this to happen, a new and modern legislative framework for drug approval is required.
Collapse
Affiliation(s)
- Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Paul C. Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
- Correspondence:
| |
Collapse
|
12
|
Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J Control Release 2022; 352:1071-1092. [PMID: 36351519 DOI: 10.1016/j.jconrel.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
The potential of the mucoadhesive film technology is hard to ignore, owing to perceived superior patient acceptability versus buccal tablets, and significant therapeutic opportunities compared to conventional oral drug delivery systems, especially for those who suffer from dysphagia. In spite of this, current translation from published literature into the commercial marketplace is virtually non-existent, with no authorised mucoadhesive buccal films available in the UK and very few available in the USA. This review seeks to provide an overview of the mucoadhesive buccal film technology and identify key areas upon which to focus scientific efforts to facilitate the wider adoption of this patient-centric dosage form. Several indications and opportunities for development were identified, while discussing the patient-related factors influencing the use of these dosage forms. In addition, an overview of the technologies behind the manufacturing of these films was provided, highlighting manufacturing methods like solvent casting, hot melt extrusion, inkjet printing and three-dimensional printing. Over thirty mucoadhesive polymers were identified as being used in film formulations, with details surrounding their mucoadhesive capabilities as well as their inclusion alongside other key formulation constituents provided. Lastly, the importance of physiologically relevant in vitro evaluation methodologies was emphasised, which seek to improve in vivo correlations, potentially leading to better translation of mucoadhesive buccal films from the literature into the commercial marketplace.
Collapse
|
13
|
Validation and testing of a new artificial biomimetic barrier for estimation of transdermal drug absorption. Int J Pharm 2022; 628:122266. [DOI: 10.1016/j.ijpharm.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
14
|
Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, Luppi B. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci 2022; 179:106294. [PMID: 36116696 DOI: 10.1016/j.ejps.2022.106294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
The objective of this work was to optimize a thermosensitive in situ gelling formulation to improve intranasal and nose-to-brain delivery of the antiepileptic drug carbamazepine (CBZ). A preliminary procedure of vehicles obtained just mixing different fractions of poloxamer 407 (P407) and poloxamer 188 (P188) revealed preparations with phase transition temperatures, times to gelation and pH values suitable for nasal delivery. Subsequently, the mucoadhesive properties of the most promising formulations were tuned by adding hydroxypropylmethylcellulose types of different viscosity grades, and the effect of the adhesive polymers was evaluated by testing in vitro time and strength of mucoadhesion on specimens of sheep nasal mucosa. The formulation that showed the greatest mucoadhesive potential in vitro, with a time and force of mucoadhesion equal to 1746,75 s and 3.66 × 10-4 N, respectively, was that composed of 22% P407, 5% P188 and 0.8% HPMC low-viscous and it was further investigated for its ability to increase drug solubility and to control the release of the drug. Lastly, the capability of the candidate vehicle to ensure drug permeation across the biomimetic membrane Permeapad®, an artificial phospholipid-based barrier with a stratified architecture, and the same barrier enriched with a mucin layer was verified. The final formulation was characterized by a pH value of 6.0, underwent gelation at 32.33°C in 37.85 s, thus showing all the features required by in situ gelling thermosensitive preparations designed for nasal delivery and, more notably, it conserved the ability to favor drug permeation in the presence of mucin. These findings suggest that the optimized gelling system could be a promising and easy to realize strategy to improve CBZ delivery to the brain exploiting both a direct and indirect pathway.
Collapse
Affiliation(s)
- Elisa Corazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, Oslo 0371, Norway.
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
15
|
Garibyan A, Delyagina E, Agafonov M, Khodov I, Terekhova I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Zhao Z, Li M, Zheng L, Yang Y, Cui X, Xu T, Zhang W, Wang C. Noninvasive transdermal delivery of mesoporous silica nanoparticles using deep eutectic solvent. J Control Release 2022; 343:43-56. [DOI: 10.1016/j.jconrel.2022.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/31/2023]
|
17
|
Human Lactobacillus Biosurfactants as Natural Excipients for Nasal drug Delivery of Hydrocortisone. Pharmaceutics 2022; 14:pharmaceutics14030524. [PMID: 35335901 PMCID: PMC8952429 DOI: 10.3390/pharmaceutics14030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
The inclusion of a chemical permeation enhancer in a dosage form is considered an effective approach to improve absorption across the nasal mucosa. Herein we evaluated the possibility of exploiting biosurfactants (BS) produced by Lactobacillus gasseri BC9 as innovative natural excipients to improve nasal delivery of hydrocortisone (HC). BC9-BS ability to improve HC solubility and the BS mucoadhesive potential were investigated using the surfactant at a concentration below and above the critical micelle concentration (CMC). In vitro diffusion studies through the biomimetic membrane PermeaPad® and the same synthetic barrier functionalized with a mucin layer were assessed to determine BC9-BS absorption enhancing properties in the absence and presence of the mucus layer. Lastly, the diffusion study was performed across the sheep nasal mucosa using BC9-BS at a concentration below the CMC. Results showed that BC9-BS was able to interact with the main component of the nasal mucosa, and that it allowed for a greater solubilization and also permeation of the drug when it was employed at a low concentration. Overall, it seems that BC9-BS could be a promising alternative to chemical surfactants in the nasal drug delivery field.
Collapse
|
18
|
De Simone A, Davani L, Montanari S, Tumiatti V, Avanessian S, Testi F, Andrisano V. Combined Methodologies for Determining In Vitro Bioavailability of Drugs and Prediction of In Vivo Bioequivalence From Pharmaceutical Oral Formulations. Front Chem 2021; 9:741876. [PMID: 34805090 PMCID: PMC8597939 DOI: 10.3389/fchem.2021.741876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
With the aim of developing an in vitro model for the bioavailability (BA) prediction of drugs, we focused on the study of levonorgestrel (LVN) released by 1.5 mg generic and brand-name tablets. The developed method consisted in combining a standard dissolution test with an optimized parallel artificial membrane permeability assay (PAMPA) to gain insights into both drug release and gastrointestinal absorption. Interestingly, the obtained results revealed that the tablet standard dissolution test, combined with an optimized PAMPA, highlighted a significant decrease in the release (15 ± 0.01 μg min−1 vs 30 ± 0.01 μg min−1) and absorption (19 ± 7 × 10–6 ± 7 cm/s Pe vs 41 ± 15 × 10–6 cm/s Pe) profiles of a generic LVN tablet when compared to the brand-name formulation, explaining unbalanced in vivo bioequivalence (BE). By using this new approach, we could determine the actual LVN drug concentration dissolved in the medium, which theoretically can permeate the gastrointestinal (GI) barrier. In fact, insoluble LVN/excipient aggregates were found in the dissolution media giving rise to non-superimposable dissolution profiles between generic and brand-name LVN tablets. Hence, the results obtained by combining the dissolution test and PAMPA method provided important insights confirming that the combined methods can be useful in revealing crucial issues in the prediction of in vivo BE of drugs.
Collapse
Affiliation(s)
- A De Simone
- Department of Drug Science and Technology, University of Turin, Torino, Italy
| | - L Davani
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - S Montanari
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - V Tumiatti
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | | - F Testi
- Valpharma International S.p.A., Rimini, Italy
| | - V Andrisano
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
19
|
Salama AH, Basha M, Salama AAA. Micellar buccal film for safe and effective control of seizures: Preparation, in vitro characterization, ex vivo permeation studies and in vivo assessment. Eur J Pharm Sci 2021; 166:105978. [PMID: 34418574 DOI: 10.1016/j.ejps.2021.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
The current research article focused on formulating an easily applied, water-based buccal film loaded with the antiepileptic drug, lamotrigine (LTG). The designed film can be comfortably administered by epileptic patients to ensure a controllable therapeutic efficacy against seizures. The solubility of LTG in water was significantly improved by micellar solubilization. Upon testing several surfactants, three of them (Synperonic PE/P84, Brij L23, and Brij 78) achieved maximum possible solubility for LTG and were characterized for their micellar size, cloud point, and % transmittance. Selected micellar systems were incorporated within a buccal film prepared using solvent casting method based on either gelatin or polyvinylpyrrolidone (3%w/v) with 1.5%w/v propylene glycol as a plasticizer. Different micellar films were characterized for their physicochemical characteristics, swelling index, folding endurance, drug content uniformity, and in vitro LTG release. From the tested formulations, one formulation; LTG-BF1 (in which Brij 78 was used for the micellar solubilization and gelatin as the matrix former), was selected as the optimum and extensively studied for mucoadhesion, ex vivo permeation studies by Franz diffusion cells and confocal laser scanning microscopy. Results showed superior enhanced permeation of micellar film. LTG-BF1 was evaluated for the in vivo performance using rats. Status epilepticus was induced in rats by injecting Pentylenetetrazol (PTZ) i.p. at an initial dose of 30 mg/kg, followed by 10 mg/kg every10 min till 60 min. A group of rats receiving the designed buccal formulation (20 mg/kg) was compared with a group receiving the same dose of the oral market product and the normal control and PTZ groups. Rats receiving LTG-BF1 recorded reduced seizure scores at all stages, longer latency time, and higher threshold PTZ dose compared to PTZ and market product groups. In addition, LTG-BF1 reduced brain concentrations of TNF-α and TGF-β with an elevation of EAAT2 and GABA brain contents compared to PTZ and market product groups and ameliorated neuronal damage. In conclusion, LTG-loaded buccal micellar film proved a superior antiepileptic effect in PTZ induced acute epileptic model.
Collapse
Affiliation(s)
- Alaa H Salama
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, 12622 Egypt.
| | - Mona Basha
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Abeer A A Salama
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo, 12622 Egypt
| |
Collapse
|
20
|
HPV Lesions and Other Issues in the Oral Cavity Treatment and Removal without Pain. Int J Mol Sci 2021; 22:ijms222011158. [PMID: 34681818 PMCID: PMC8538847 DOI: 10.3390/ijms222011158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Due to different oral and dental conditions, oral mucosa lesions such as those caused by the human papilloma virus and temporomandibular joint pathologies often have to be treated by surgical, ablative or extractive procedures. The treatment and control of pain and inflammation during these procedures is essential to guarantee the patient's well-being. For the foregoing reason, a hydrogel based on sodium alginate and hyaluronic acid containing 2% of ketorolac tromethamine has been developed. We characterized it physically, mechanically and morphologically. The rheological results suggest that the formulation can be easily and gently applied. Ex vivo permeation studies show that Ketorolac Tromethamine is able to penetrate through the buccal and sublingual mucosae, in addition to being retained in the mucosae's structure. Through an in vitro test, we were able to evaluate the role that saliva plays in the bioavailability of the drug, observing that more than half of the applied dose is eliminated in an hour. The histological and cytotoxic studies performed on pigs in vivo showed the excellent safety profile of the formulation, as well as its high tolerability. In parallel, a biomimetic artificial membrane (PermeaPad®) was evaluated, and it showed a high degree of correlation with the oral and sublingual mucosa.
Collapse
|
21
|
Majid H, Bartel A, Burckhardt BB. Predictivity of Standardized and Controlled Permeation Studies: Ex vivo - In vitro - In vivo Correlation for Sublingual Absorption of Propranolol. Eur J Pharm Biopharm 2021; 169:12-19. [PMID: 34508807 DOI: 10.1016/j.ejpb.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
In preclinical drug development, ex vivo and in vitro permeability studies are a decisive element for specifying subsequent development steps. In this context, reliability, physiological alignment and appropriate in vivo correlation are mandatory for predictivity regarding drug absorption. Especially in oromucosal drug delivery, these prerequisites are not adequately met, which hinders its progressive development and results in the continuous need for animal experiments. To address current limitations, an innovative, standardized, and controlled ex vivo permeation model was applied. It is based on Kerski diffusion cells embedded in automated sampling and coupled to mass spectrometric quantification under physiologically relevant conditions. This study aimed to evaluate the predictivity of the developed model using porcine mucosa (ex vivo) in relation to data of sublingual propranolol absorption (in vivo). In addition, the usefulness of biomimetic barriers (in vitro) as a replacement for porcine mucosa was investigated. Therefore, solubility and permeability studies considering microenvironmental conditions were conducted and achieved good predictivity (R2=0.997) for pH-dependent permeability. A multiple level C correlation (R2≥0.860) between obtained permeability and reported pharmacokinetic animal data (AUC, Cmax) was revealed. Furthermore, a point-to-point correlation was demonstrated for several sublingual formulations. The successful IVIVC confirms the standardized ex vivo model as a viable alternative to animal testing for estimating the in vivo absorption behavior of oromucosal pharmaceuticals.
Collapse
Affiliation(s)
- Haidara Majid
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany.
| |
Collapse
|
22
|
Exploring the transmucosal permeability of cyclobenzaprine: A comparative preformulation by standardized and controlled ex vivo and in vitro permeation studies. Int J Pharm 2021; 601:120574. [PMID: 33831487 DOI: 10.1016/j.ijpharm.2021.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
As part of early drug development, preformulation studies are used to comprehensively explore the properties of new drugs. In particular, this includes the biopharmaceutical characterization and evaluation of impacting factors (e.g. excipients, microenvironmental conditions etc.) by permeation studies. To overcome the limitations of current studies, a novel standardized ex vivo procedure using esophageal mucosa as surrogate has been established successfully and applied to preformulation studies for oromucosal delivery of cyclobenzaprine hydrochloride, a tricyclic muscle relaxant with potential for psychopharmacotherapeutic use. By using the standardized ex vivo permeation process, a twofold enhancement of permeability (0.98 ± 0.16 to 1.96 ± 0.10 * 10-5 cm/s) was observed by adjustment and controlling of microenvironmental pH, empowering a targeted and effective development of sublingual formulations. Predictivity and suitability were superior compared to in vitro experiments using artificial biomimetic membranes, revealing a determination coefficient (R2) of 0.995 vs. 0.322 concerning pH-dependent permeability of cyclobenzaprine. In addition, diffusion properties were extensively examined (e.g. influence of mucosal thicknesses, tissue freezing etc.). The alignment of the study design regarding physiologically/clinically relevant conditions resulted in ex vivo data that allowed for the estimation of plasma AUC levels in the extend of reported in vivo ranges.
Collapse
|
23
|
Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Farias S, Boateng JS. In vitro, ex vivo and in vivo evaluation of taste masked low dose acetylsalicylic acid loaded composite wafers as platforms for buccal administration in geriatric patients with dysphagia. Int J Pharm 2020; 589:119807. [PMID: 32882368 DOI: 10.1016/j.ijpharm.2020.119807] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
This study reports the development and characterization of taste masked, freeze-dried composite wafers for potential oral and buccal delivery of low dose aspirin (acetylsalicylic acid) to prevent thrombosis in elderly patients with dysphagia. The wafers were formulated by combining metolose (MET) with carrageenan (CAR), MET with chitosan (CS) at low molecular weight or CAR with CS using 45% v/v ethanol as solvent for complete solubilization of acetylsalicylic acid. Each wafer contained 75 mg of acetylsalicylic acid and sweetener (sucralose, stevia or aspartame) with a drug: sweetener ratio of 1:1 w/w. The formulations were characterized for physical properties using texture analyzer (hardness and mucoadhesion), scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, swelling capacity, and in vitro drug dissolution. Further, permeation studies with three different models (Permeapad™ artificial barrier, EpiOral™ and porcine buccal mucosa) using HPLC, cell viability using MTT assay and in vivo taste masking evaluation using human volunteers were undertaken. The sweeteners increased the hardness and adhesion of the wafers, XRD showed the crystalline nature of the samples which was attributed to acetylsalicylic acid, SEM confirmed a compacted polymer matrix due to recrystallized acetylsalicylic acid and sweeteners dispersed over the surface. Drug dissolution studies showed that acetylsalicylic acid was rapidly released in the first 20 min and then continuously over 1 h. EpiOral™ had a higher cumulative permeation than porcine buccal tissue and Permeapad™ artificial barrier, while MTT assay using Vero cells (ATCC® CCL-81) showed that the acetylsalicylic acid loaded formulations were non-toxic. In vivo taste masking study showed the ability of sucralose and aspartame to mask the bitter taste of acetylsalicylic acid and confirm that acetylsalicylic acid loaded MET:CAR, CAR:CS and MET:CS composite wafers containing sucralose or aspartame have potential for buccal delivery of acetylsalicylic acid in geriatric patients with dysphagia.
Collapse
Affiliation(s)
- Smirna Farias
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent ME4 4TB, UK
| | - Joshua S Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
25
|
Itin C, Komargodski R, Domb AJ, Hoffman A. Controlled Delivery of Apomorphine Through Buccal Mucosa, Towards a Noninvasive Administration Method in Parkinson's Disease: A Preclinical Mechanistic Study. J Pharm Sci 2020; 109:2729-2734. [DOI: 10.1016/j.xphs.2020.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
26
|
Nazir I, Ghezzi M, Asim MH, Phan TNQ, Bernkop-Schnürch A. Self-emulsifying drug delivery systems: About the fate of hydrophobic ion pairs on a phospholipid bilayer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Drug Permeability Profiling Using the Novel Permeapad® 96-Well Plate. Pharm Res 2020; 37:93. [DOI: 10.1007/s11095-020-02807-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
|
28
|
Oromucosal drug delivery: Trends in in-vitro biopharmaceutical assessment of new chemical entities and formulations. Eur J Pharm Sci 2019; 128:112-117. [DOI: 10.1016/j.ejps.2018.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
29
|
Berben P, Bauer-Brandl A, Brandl M, Faller B, Flaten GE, Jacobsen AC, Brouwers J, Augustijns P. Drug permeability profiling using cell-free permeation tools: Overview and applications. Eur J Pharm Sci 2018; 119:219-233. [PMID: 29660464 DOI: 10.1016/j.ejps.2018.04.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
Cell-free permeation systems are gaining interest in drug discovery and development as tools to obtain a reliable prediction of passive intestinal absorption without the disadvantages associated with cell- or tissue-based permeability profiling. Depending on the composition of the barrier, cell-free permeation systems are classified into two classes including (i) biomimetic barriers which are constructed from (phospho)lipids and (ii) non-biomimetic barriers containing dialysis membranes. This review provides an overview of the currently available cell-free permeation systems including Parallel Artificial Membrane Permeability Assay (PAMPA), Phospholipid Vesicle-based Permeation Assay (PVPA), Permeapad®, and artificial membrane based systems (e.g. the artificial membrane insert system (AMI-system)) in terms of their barrier composition as well as their predictive capacity in relation to well-characterized intestinal permeation systems. Given the potential loss of integrity of cell-based permeation barriers in the presence of food components or pharmaceutical excipients, the superior robustness of cell-free barriers makes them suitable for the combined dissolution/permeation evaluation of formulations. While cell-free permeation systems are mostly applied for exploring intestinal absorption, they can also be used to evaluate non-oral drug delivery by adjusting the composition of the membrane.
Collapse
Affiliation(s)
- Philippe Berben
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Annette Bauer-Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Martin Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Bernard Faller
- Novartis Institutes for BioMedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø the Arctic University of Norway, Universitetsveien 57, Tromsø 9037, Norway
| | - Ann-Christin Jacobsen
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Sironi D, Christensen M, Rosenberg J, Bauer-Brandl A, Brandl M. Evaluation of a dynamic dissolution/permeation model: Mutual influence of dissolution and barrier-flux under non-steady state conditions. Int J Pharm 2017; 522:50-57. [PMID: 28263834 DOI: 10.1016/j.ijpharm.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/24/2022]
Abstract
Combined dissolution/permeation testing is gaining increasing attention as an in vitro tool for predictive performance ranking of enabling oral formulations. The current aim was to study how in vitro drug permeation evolves under conditions, where the donor concentration is changing (non-steady state). To this end, a model case was construed: compacts of pure crystalline hydrocortisone methanolate (HC·MeOH) of slow release rates were prepared, and their dissolution and permeation determined simultaneously in a side-by-side setup, separated by a biomimetic barrier (Permeapad®). This was compared to a corresponding setup for a suspension of micronized hydrocortisone (HC). The HC suspension showed constant dissolved HC concentration and constant flux across the barrier, representing the permeation-limited situation. For the HC·MeOH compacts, various dynamic scenarios were observed, where dissolution rate and flux influenced each other. Interestingly, for all the dynamic scenarios, the incremental flux values obtained correlated nicely with the corresponding actual donor concentrations. Furthermore, donor depletion was tested using a HC solution. The dynamic interplay between decrease in donor concentration (down to less than 10% of the initial concentration) and flux was studied. The experiences gained are discussed in terms of further developing combined dissolution/permeation setups.
Collapse
Affiliation(s)
- Daniel Sironi
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Mette Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jörg Rosenberg
- AbbVie GmbH & Co. KG, Knollstraße 50, D-67061 Ludwigshafen, Germany
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|