1
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Volpe DA. Knockout Transporter Cell Lines to Assess Substrate Potential Towards Efflux Transporters. AAPS J 2024; 26:79. [PMID: 38981917 DOI: 10.1208/s12248-024-00950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance transporter 2 (MRP2) are efflux transporters involved in the absorption, excretion, and distribution of drugs. Bidirectional cell assays are recognized models for evaluating the potential of new drugs as substrates or inhibitors of efflux transporters. However, the assays are complicated by a lack of selective substrates and/or inhibitors, as well simultaneous expression of several efflux transporters in cell lines used in efflux models. This project aims to evaluate an in vitro efflux cell assay employing model substrates and inhibitors of P-gp, BCRP and MRP2 with knockout (KO) cell lines. The efflux ratios (ER) of P-gp (digoxin, paclitaxel), BCRP (prazosin, rosuvastatin), MRP2 (etoposide, olmesartan) and mixed (methotrexate, mitoxantrone) substrates were determined in wild-type C2BBe1 and KO cells. For digoxin and paclitaxel, the ER decreased to less than 2 in the cell lines lacking P-gp expression. The ER decreased to less than 3 for prazosin and less than 2 for rosuvastatin in the cell lines lacking BCRP expression. For etoposide and olmesartan, the ER decreased to less than 2 in the cell lines lacking MRP2 expression. The ER of methotrexate and mitoxantrone decreased in single- and double-KO cells without BCRP and MRP2 expression. These results show that KO cell lines have the potential to better interpret complex drug-transporter interactions without depending upon multi-targeted inhibitors or overlapping substrates. For drugs that are substrates of multiple transporters, the single- and double-KO cells may be used to assess their affinities for the different transporters.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993-0002, USA.
| |
Collapse
|
3
|
Mitra P, Kasliwala R, Iboki L, Madari S, Williams Z, Takahashi R, Taub ME. Mechanistic Static Model based Prediction of Transporter Substrate Drug-Drug Interactions Utilizing Atorvastatin and Rifampicin. Pharm Res 2023; 40:3025-3042. [PMID: 37821766 DOI: 10.1007/s11095-023-03613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE An in vitro relative activity factor (RAF) technique combined with mechanistic static modeling was examined to predict drug-drug interaction (DDI) magnitude and analyze contributions of different clearance pathways in complex DDIs involving transporter substrates. Atorvastatin and rifampicin were used as a model substrate and inhibitor pair. METHODS In vitro studies were conducted with transfected HEK293 cells, hepatocytes and human liver microsomes. Prediction success was defined as predictions being within twofold of observations. RESULTS The RAF method successfully translated atorvastatin uptake from transfected cells to hepatocytes, demonstrating its ability to quantify transporter contributions to uptake. Successful translation of atorvastatin's in vivo intrinsic hepatic clearance (CLint,h,in vivo) from hepatocytes to liver was only achieved through consideration of albumin facilitated uptake or through application of empirical scaling factors to transporter-mediated clearances. Transporter protein expression differences between hepatocytes and liver did not affect CLint,h,in vivo predictions. By integrating cis and trans inhibition of OATP1B1/OATP1B3, atorvastatin-rifampicin (single dose) DDI magnitude could be accurately predicted (predictions within 0.77-1.0 fold of observations). Simulations indicated that concurrent inhibition of both OATP1B1 and OATP1B3 caused approximately 80% of atorvastatin exposure increases (AUCR) in the presence of rifampicin. Inhibiting biliary elimination, hepatic metabolism, OATP2B1, NTCP, and basolateral efflux are predicted to have minimal to no effect on AUCR. CONCLUSIONS This study demonstrates the effective application of a RAF-based translation method combined with mechanistic static modeling for transporter substrate DDI predictions and subsequent mechanistic interpretation.
Collapse
Affiliation(s)
- Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Old Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Rumanah Kasliwala
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Laeticia Iboki
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Shilpa Madari
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Zachary Williams
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Ryo Takahashi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| |
Collapse
|
4
|
Chicken xenobiotic receptor upregulates the BCRP/ABCG2 transporter. Poult Sci 2022; 102:102278. [PMID: 36402040 PMCID: PMC9673116 DOI: 10.1016/j.psj.2022.102278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The transporter breast cancer resistance protein (BCRP, encoded by ABCG2) influences the bioavailability and elimination of numerous substrate drugs during clinical therapy. The xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) reportedly regulate functional expression of BCRP in mammalian species. However, it is unknown whether chicken xenobiotic receptor (CXR) regulates the expression and activity of BCRP. This study aimed to investigate the role of CXR in regulation of BCRP in chicken using in vitro and in vivo models. CXR was expressed in the main drug-metabolizing tissues of chickens, and its expression correlated well with that of the prototypical target genes CYP2H1 and ABCG2. BCRP expression was upregulated, and transporter activity was increased, in chicken primary hepatocytes exposed to the CXR agonist metyrapone. Using RNA interference and ectopic expression techniques to manipulate the cellular CXR status, we confirmed that ABCG2 gene regulation depended on CXR. In vivo experiments showed that metyrapone induced BCRP in the liver, kidney, duodenum, and jejunum of chickens. Coadministration of metyrapone significantly changed the pharmacokinetic behavior of orally administered florfenicol (substrate of chicken BCRP), with a lower Cmax (4.62 vs. 7.35 µg/mL, P < 0.01) and AUC0-t (15.83 vs. 24.18 h·mg/L, P < 0.01) as well as a higher Tmax (0.96 vs. 0.79 h, P < 0.05) and Cl/F (0.13 vs. 0.08 L/h/kg, P < 0.05). Together, our data suggest that CXR is involved in regulation of BCRP, and consequently, coadministration of a CXR agonist can affect the pharmacokinetic behavior of an orally administered BCRP substrate.
Collapse
|
5
|
Asaumi R, Nunoya K, Yamaura Y, Taskar KS, Sugiyama Y. Robust physiologically based pharmacokinetic model of rifampicin for predicting
drug–drug
interactions via P‐glycoprotein induction and inhibition in the intestine, liver, and kidney. CPT Pharmacometrics Syst Pharmacol 2022; 11:919-933. [PMID: 35570332 PMCID: PMC9286720 DOI: 10.1002/psp4.12807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryuta Asaumi
- Pharmacokinetic Research Laboratories Ono Pharmaceutical Co., Ltd. Ibaraki Japan
| | - Ken‐ichi Nunoya
- Pharmacokinetic Research Laboratories Ono Pharmaceutical Co., Ltd. Ibaraki Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories Ono Pharmaceutical Co., Ltd. Ibaraki Japan
| | - Kunal S. Taskar
- Drug Metabolism and Pharmacokinetics In Vitro In Vivo Translation GlaxoSmithKline R&D Stevenage UK
| | - Yuichi Sugiyama
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of Pharmacy Josai International University Tokyo Japan
| |
Collapse
|
6
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Mizoi K, Kobayashi M, Mashimo A, Matsumoto E, Masuda N, Itoh M, Ueno T, Tachiki H, Ishida S, Ogihara T. Directional Drug Transport through Membrane-Supported Monolayers of Human Liver-Derived Cell Lines. Biol Pharm Bull 2022; 45:150-153. [PMID: 34980776 DOI: 10.1248/bpb.b21-00583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work is to develop a new assay system for screening biliary excretion drugs. When monolayers of human liver-derived cell lines HepG2 and Huh-7 were grown on an insert membrane, the efflux ratio (ER: ratio of the apparent permeability coefficient in the basal-to-apical direction (Papp,B-to-A) to that in the apical to basal direction (Papp,A-to-B)) of sulfobromophthalein (BSP), a model substrate of multidrug resistance-associated protein 2 (MRP2), was greater than 1.0, indicating transport of BSP in the efflux direction. The efflux transport was significantly suppressed by MK-571, an inhibitor of MRPs, in both cell lines. Expression of MRP2 mRNA in HepG2 and Huh-7 was 3.5- and 1.4-fold higher, respectively, than in primary human hepatocytes, while expression of P-glycoprotein and breast cancer resistance protein mRNAs was markedly lower, supporting the idea that MRP2 is the main mediator of directional BSP transport in this assay system. The advantage of our system is the potential to quantitatively evaluate biliary excretion of MRP2 substrates in vitro.
Collapse
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | | | - Arisa Mashimo
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Eiko Matsumoto
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Norio Masuda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | | | | | - Seiichi Ishida
- Center for Biological Safety and Research, National Institute of Health Sciences.,Department of Applied Life Science, Graduate School of Engineering, Sojo University
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare.,Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
8
|
Yu X, Chu Z, Li J, He R, Wang Y, Cheng C. Pharmacokinetic Drug-drug Interaction of Antibiotics Used in Sepsis Care in China. Curr Drug Metab 2021; 22:5-23. [PMID: 32990533 DOI: 10.2174/1389200221666200929115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many antibiotics have a high potential for interactions with drugs, as a perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients. METHODS The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature search was conducted to obtain human pharmacokinetics/ dispositions of the antibiotics, their interactions with drug-metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index ≥ 0.1 for inhibition or a treatedcell/ untreated-cell ratio of enzyme activity being ≥ 2 for induction. RESULTS The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized. CONCLUSION Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibiotics (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rongrong He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
9
|
Bruyère A, Le Vée M, Jouan E, Molez S, Nies AT, Fardel O. Differential in vitro interactions of the Janus kinase inhibitor ruxolitinib with human SLC drug transporters. Xenobiotica 2021; 51:467-478. [PMID: 33455503 DOI: 10.1080/00498254.2021.1875516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interactions of the Janus kinase (JAK) inhibitor ruxolitinib with solute carriers (SLCs) remain incompletely characterised. The present study was therefore designed to investigate this issue.The interactions of ruxolitinib with SLCs were analysed using transporter-overexpressing human embryonic kidney HEK293 cells. Substrate accumulation was detected by spectrofluorimetry, liquid chromatography coupled to tandem mass spectrometry or scintillation counting.Ruxolitinib was found to potently inhibit the activities of organic anion transporter 3 (OAT3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1) and MATE2-K (half maximal inhibitory concentration (IC50) < 10 µM). It blocked OAT1, OAT4, OATP1B1, OATP1B3, OATP2B1 and OCT3, but in a weaker manner (IC50 > 10 µM), whereas OCT1 was not impacted. No time-dependent inhibition was highlighted. When applying the US Food and Drug Administration (FDA) criteria for transporters-related drug-drug interaction risk, OCT2 and MATE2-K, unlike MATE1 and OAT3, were predicted to be in vivo inhibited by ruxolitinib. Cellular uptake studies additionally indicated that ruxolitinib is a substrate for MATE1 and MATE2-K, but not for OAT3 and OCT2.Ruxolitinib in vitro blocked activities of most of SLC transporters. Only OCT2 and MATE-2K may be however clinically inhibited by the JAK inhibitor, with the caution for OCT2 that in vitro inhibition data were generated with an FDA-non recommended fluorescent substrate. Ruxolitinib MATEs-mediated transport may additionally deserve attention for its possible pharmacological consequences in MATE-positive cells.
Collapse
Affiliation(s)
- Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Stephanie Molez
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany.,iFIT Cluster of Excellence (EXC2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
10
|
Chapa R, Li CY, Basit A, Thakur A, Ladumor MK, Sharma S, Singh S, Selen A, Prasad B. Contribution of Uptake and Efflux Transporters to Oral Pharmacokinetics of Furosemide. ACS OMEGA 2020; 5:32939-32950. [PMID: 33403255 PMCID: PMC7774078 DOI: 10.1021/acsomega.0c03930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Furosemide is a widely used diuretic for treating excessive fluid accumulation caused by disease conditions like heart failure and liver cirrhosis. Furosemide tablet formulation exhibits variable pharmacokinetics (PK) with bioavailability ranging from 10 to almost 100%. To explain the variable absorption, we integrated the physicochemical, in vitro dissolution, permeability, distribution, and the elimination parameters of furosemide in a physiologically-based pharmacokinetic (PBPK) model. Although the intravenous PBPK model reasonably described the observed in vivo PK data, the reported low passive permeability failed to capture the observed data after oral administration. To mechanistically justify this discrepancy, we hypothesized that transporter-mediated uptake contributes to the oral absorption of furosemide in conjunction with passive permeability. Our in vitro results confirmed that furosemide is a substrate of intestinal breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), and organic anion transporting polypeptide 2B1 (OATP2B1), but it is not a substrate of P-glycoprotein (P-gp) and MRP2. We then estimated the net transporter-mediated intestinal uptake and integrated it into the PBPK model under both fasting and fed conditions. Our in vitro data and PBPK model suggest that the absorption of furosemide is permeability-limited, and OATP2B1 and MRP4 are important for its permeability across intestinal membrane. Further, as furosemide has been proposed as a probe substrate of renal organic anion transporters (OATs) for assessing clinical drug-drug interactions (DDIs) during drug development, the confounding effects of intestinal transporters identified in this study on furosemide PK should be considered in the clinical transporter DDI studies.
Collapse
Affiliation(s)
- Revathi Chapa
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195-0005, United States
| | - Cindy Yanfei Li
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195-0005, United States
| | - Abdul Basit
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Aarzoo Thakur
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Mayur K Ladumor
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195-0005, United States
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Sheena Sharma
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Saranjit Singh
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Arzu Selen
- Office
of Testing and Research, Office of Pharmaceutical Quality, CDER/ FDA, Silver
Spring, Maryland 20903-1058, United States
| | - Bhagwat Prasad
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
11
|
Otsuka Y, Choules MP, Bonate PL, Komatsu K. Physiologically-Based Pharmacokinetic Modeling for the Prediction of a Drug-Drug Interaction of Combined Effects on P-glycoprotein and Cytochrome P450 3A. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:659-669. [PMID: 33030266 PMCID: PMC7679072 DOI: 10.1002/psp4.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
Direct oral anticoagulants, such as apixaban and rivaroxaban, are important for the treatment and prophylaxis of venous thromboembolism and to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation. Because apixaban and rivaroxaban are predominantly eliminated by cytochrome P450 (CYP) 3A and P‐glycoprotein (P‐gp), concomitant use of combined P‐gp and strong CYP3A4 inhibitors and inducers should be avoided. Physiologically‐based pharmacokinetic models for apixaban and rivaroxaban were developed to estimate the net effect of CYP3A induction, P‐gp inhibition, and P‐gp induction by rifampicin. The disposition of rivaroxaban is more complex compared with apixaban because both hepatic and renal P‐gp is considered to contribute to rivaroxaban elimination. Furthermore, organic anion transporter‐3, a renal uptake transporter, may also contribute the elimination of rivaroxaban from systemic circulation. The models were verified with observed clinical drug–drug interactions with CYP3A and P‐gp inhibitors. With the developed models, the predicted area under the concentration time curve and maximum concentration ratios were 0.43 and 0.48, respectively, for apixaban, and 0.50–0.52 and 0.72–0.73, respectively, for rivaroxaban when coadministered with 600 mg multiple doses of rifampicin and that were very close to observed data. The impact of each of the elimination pathways was assessed for rivaroxaban, and inhibition of CYP3A led to a larger impact over intestinal and hepatic P‐gp. Inhibition of renal organic anion transporter‐3 or P‐gp led to an overall modest interaction. The developed apixaban and rivaroxaban models can be further applied to the investigation of interactions with other P‐gp and/or CYP3A4 inhibitors and inducers.
Collapse
Affiliation(s)
- Yukio Otsuka
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Inc., Tokyo, Japan
| | - Mary P Choules
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Peter L Bonate
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Kanji Komatsu
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Inc., Tokyo, Japan
| |
Collapse
|
12
|
Sáfár Z, Kecskeméti G, Molnár J, Kurunczi A, Szabó Z, Janáky T, Kis E, Krajcsi P. Inhibition of ABCG2/BCRP-mediated transport-correlation analysis of various expression systems and probe substrates. Eur J Pharm Sci 2020; 156:105593. [PMID: 33059043 DOI: 10.1016/j.ejps.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
BCRP / ABCG2 is a key determinant of pharmacokinetics of substrate drugs. Several BCRP substrates and inhibitors are of low passive permeability, and the vesicular transport assay works well in this permeability space. Membranes were prepared from BCRP-HEK293, MCF-7/MX, and baculovirus-infected Sf9 cells with (BCRP-Sf9-HAM), and without (BCRP-Sf9) cholesterol loading. Km values for three substrates - estrone-3-sulfate, sulfasalazine, topotecan - correlated well between the four expression systems. In contrast, a 10-20-fold range in Vmax values was observed, with BCRP-HEK293 membranes possessing the largest dynamic range. IC50 values of the different test systems were similar to each other, with 94.4% of pairwise comparisons being within 3-fold. Substrate dependent inhibition showed somewhat greater variation, as 81.4% of IC50 values in the BCRP-HEK293 membranes were within 3-fold in pairwise comparisons. Overall, BCRP-HEK293 membranes demonstrated the highest activity. The IC50 values showed good concordance but substrate dependent inhibition was observed for some drugs.
Collapse
Affiliation(s)
- Zsolt Sáfár
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Judit Molnár
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Anita Kurunczi
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Zoltán Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Emese Kis
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary.
| | - Péter Krajcsi
- Solvo Biotechnology, a Charles River Company, 52 Közép fasor, Szeged H-6726, Hungary; Solvo Biotechnology, a Charles River Company, 4-20 Irinyi J str, Budapest H-1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter str 50/a, Budapest H-1083, Hungary; Semmelweis University, Faculty of Health Sciences, Vas str 17, Budapest H-1088, Hungary.
| |
Collapse
|
13
|
Park JE, Shitara Y, Lee W, Morita S, Sahi J, Toshimoto K, Sugiyama Y. Improved Prediction of the Drug-Drug Interactions of Pemafibrate Caused by Cyclosporine A and Rifampicin via PBPK Modeling: Consideration of the Albumin-Mediated Hepatic Uptake of Pemafibrate and Inhibition Constants With Preincubation Against OATP1B. J Pharm Sci 2020; 110:517-528. [PMID: 33058894 DOI: 10.1016/j.xphs.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Pemafibrate (PMF) is highly albumin-bound (>99.8%) and a substrate for hepatic uptake transporters (OATP1B) and CYP enzymes. Here, we developed a PBPK model of PMF to capture drug-drug interactions (DDI) incurred by cyclosporine (CsA) and rifampicin (RIF), the two OATP1B inhibitors. Initial PBPK modeling of PMF utilized in vitro hepatic uptake clearance (PSinf) obtained in the absence of albumin, but failed in capturing the blood PMF pharmacokinetic (PK) profiles. Based on the results that in vitro PSinf of unbound PMF was enhanced in the presence of albumin, we applied the albumin-facilitated dissociation model and the resulting PSinf parameters improved the prediction of the blood PMF PK profiles. In refining our PBPK model toward improved prediction of the observed DDI data (PMF co-administered with single dosing of CsA or RIF; PMF following multiple RIF dosing), we adjusted the previously obtained in vivo OATP1B inhibition constants (Ki,OATP1B) of CsA or RIF for pitavastatin by correcting for substrate-dependency. We also incorporated the induction of OATP1B and CYP enzymes after multiple RIF dosing. Sensitivity analysis informed that the higher gastrointestinal absorption rate constant could further improve capturing the observed DDI data, suggesting the possible inhibition of intestinal ABC transporter(s) by CsA or RIF.
Collapse
Affiliation(s)
- Ji Eun Park
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshihisa Shitara
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Bldg 21 Rm 309, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, S. Korea
| | - Shigemichi Morita
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jasminder Sahi
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi China, 1228 Yan'an Middle Road, Jing'an District, Shanghai, China
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
14
|
Chen Y, Zhou H, Yang S, Su D. Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. Cell Biochem Funct 2020; 39:277-286. [PMID: 32815556 PMCID: PMC7983913 DOI: 10.1002/cbf.3577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/23/2022]
Abstract
Long-term use of platinum-based drugs can cause non-small cell lung cancer (NSCLC) to develop extremely strong drug resistance. Increasing the drug dosage does not have better treatment effects and could lead to serious complications. High levels of drug resistance are considered to be characteristic of human tumours and are usually mediated by genes related to multidrug resistance. Multidrug resistance-associated protein 2 (ABCC2), an ATP-binding cassette multidrug resistance transporter, was found to be overexpressed in various human cancers. In this study, we found that ABCC2 was also upregulated in cisplatin (DDP)-resistant A549 cells (A549/DDP). Functional studies demonstrated that ABCC2 knockdown reversed DDP resistance and promoted G1 phase arrest in A549/DDP cells, and PARP and caspase-3 were activated in A549/DDP cells following ABCC2 knockdown. In vivo, ABCC2 knockdown enhanced the cytotoxicity of DDP to subcutaneous A549 tumours. Together, these results suggest that ABCC2 may be a potential therapeutic strategy for overcoming DDP resistance in NSCLC patients. SIGNIFICANCE OF THE STUDY: In this study, we investigated the role of ABCC2 in cisplatin resistance of NSCLC cells. Our data show that ABCC2 expression was associated with resistance to cisplatin and that knockdown ABCC2 could reverse cisplatin resistance in NSCLC cells. Taken together, our study suggests that reducing the expression of ABCC2 could become an important strategy for enhancing the sensitivity of NSCLC cells to cisplatin.
Collapse
Affiliation(s)
- Yun Chen
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hongying Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sifu Yang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dan Su
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Chan G, Houle R, Lin M, Yabut J, Cox K, Wu J, Chu X. Role of transporters in the disposition of a novel β-lactamase inhibitor: relebactam (MK-7655). J Antimicrob Chemother 2020; 74:1894-1903. [PMID: 30891606 DOI: 10.1093/jac/dkz101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To identify the transporters involved in renal elimination of relebactam, and to assess the potential of relebactam as a perpetrator or victim of drug-drug interactions (DDIs) for major drug transporters. METHODS A series of bidirectional transport, uptake and inhibition studies were conducted in vitro using transfected cell lines and membrane vesicles. The inhibitory effects of relebactam on major drug transporters, as well as the inhibitory effects of commonly used antibiotics/antifungals on organic anion transporter (OAT) 3-mediated uptake of relebactam, were assessed. RESULTS Relebactam was shown to be a substrate of OAT3, OAT4, and multidrug and toxin extrusion (MATE) proteins MATE1 and MATE2K. Relebactam did not show profound inhibition across a panel of transporters, including organic anion-transporting polypeptides 1B1 and 1B3, OAT1, OAT3, organic cation transporter 2, MATE1, MATE2K, breast cancer resistance protein, multidrug resistance protein 1 and the bile salt export pump. Among the antibiotics/antifungals assessed for potential DDIs, probenecid demonstrated the most potent in vitro inhibition of relebactam uptake; however, such in vitro data did not translate into clinically relevant DDIs, suggesting that relebactam can be co-administered with OAT inhibitors, such as probenecid. CONCLUSIONS Overall, relebactam has low potential to be a victim or perpetrator of DDIs with major drug transporters.
Collapse
Affiliation(s)
- Grace Chan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Robert Houle
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Meihong Lin
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jocelyn Yabut
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Kathleen Cox
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jin Wu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
16
|
Interactions between Oroxylin A with the solute carrier transporters and ATP-binding cassette transporters: Drug transporters profile for this flavonoid. Chem Biol Interact 2020; 324:109097. [PMID: 32305507 DOI: 10.1016/j.cbi.2020.109097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
Oroxylin A is a flavonoid monomer extracted from Scutellaria baicalensis Georgi with neuroprotective, anti-tumor activity and many other biological functions. However, the interaction between Oroxylin A and the drug transporters has not been clearly reported. The purpose of this study is to investigate the interaction between Oroxylin A and the solute carrier transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT2, MATE1, and MATE2K), and ATP-binding cassette transporters (BCRP, MDR1). The HEK293 cell lines (HEK293-OATP1B1, HEK293-OATP1B3, HEK293-OAT1, HEK293-OAT3, HEK293-OCT2, HEK293-MATE1, and HEK293-MATE2K) that stably expressing previous listed human-derived transporters were employed to evaluate the solute carrier transporters. Vesicles expressing human BCRP and MDR1 transporters was employed to research ATP-binding cassette transporters. Our work suggested that Oroxylin A was a substrate of OATP1B1, OATP1B3, but not a substrate of the other transporters in the concentration range of our study. Oroxylin A shows concentration-dependent inhibition of OATP1B1, OAT1, OAT3 and BCRP transportation with the half-inhibitory concentration (IC50) of 7.03, 0.961, 0.112 μM, and 0.477 μM, respectively. No inhibitory effects on the transport activities of other transporters were observed for Oroxylin A. Drug transporters profile of Oroxylin A was first confirmed by our work, which provides important information for its pharmacokinetics, pharmacodynamics, and drug-drug interactions studies.
Collapse
|
17
|
Wang J, Wang JQ, Cai CY, Cui Q, Yang Y, Wu ZX, Dong X, Zeng L, Zhao L, Yang DH, Chen ZS. Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Front Oncol 2020; 10:228. [PMID: 32175279 PMCID: PMC7056829 DOI: 10.3389/fonc.2020.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Failure of cancer chemotherapy is mostly due to multidrug resistance (MDR). Overcoming MDR mediated by overexpression of ATP binding cassette (ABC) transporters in cancer cells remains a big challenge. In this study, we explore whether NVP-TAE684, a novel ALK inhibitor which has the potential to inhibit the function of ABC transport, could reverse ABC transporter-mediated MDR. MTT assay was carried out to determine cell viability and reversal effect of NVP-TAE684 in parental and drug resistant cells. Drug accumulation and efflux assay was performed to examine the effect of NVP-TAE684 on the cellular accumulation and efflux of chemotherapeutic drugs. The ATPase activity of ABCG2 transporter in the presence or absence of NVP-TAE684 was conducted to determine the impact of NVP-TAE684 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate protein molecules related to MDR. In addition, the interaction between NVP-TAE684 and ABCG2 transporter was investigated via in silico analysis. MTT assay showed that NVP-TAE684 significantly decreased MDR caused byABCG2-, but not ABCC1-transporter. Drug accumulation and efflux tests indicated that the effect of NVP-TAE684 in decreasing MDR was due to the inhibition of efflux function of ABCG2 transporter. However, NVP-TAE684 did not alter the expression or change the subcellular localization of ABCG2 protein. Furthermore, ATPase activity analysis indicated that NVP-TAE684 could stimulate ABCG2 ATPase activity. Molecular in silico analysis showed that NVP-TAE684 interacts with the substrate binding sites of the ABCG2 transporter. Taken together, our study indicates that NVP-TAE684 could reduce the resistance of MDR cells to chemotherapeutic agents, which provides a promising strategy to overcome MDR.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Xingduo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
18
|
Rozanski M, Studzian M, Pulaski L. Direct Measurement of Kinetic Parameters of ABCG2-Dependent Transport of Natural Flavonoids Using a Fluorogenic Substrate. J Pharmacol Exp Ther 2019; 371:309-319. [PMID: 31501221 DOI: 10.1124/jpet.119.261347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 03/08/2025] Open
Abstract
Flavonoids are an important part of the human diet since plant-derived polyphenols and the mechanisms governing their pharmacokinetics are important both due to their own nutriceutical activity and the potential for food-drug interactions. A central determinant of absorption and distribution of flavonoids in the human body is the ATP-binding cassette transporter ABCG2, expressed in gut epithelium and other barrier tissues. While flavonoids were previously identified as substrates and/or inhibitors of this protein, precise enzyme kinetic calculations of affinity and activity parameters are rare due to the lack of suitable experimental models. We present a novel method that allows the direct measurement of kinetic constants for ABCG2-mediated cellular efflux of natural flavonoids thanks to the application of fluorogenic 2-aminoethyl diphenylborinate, which reacts with intracellular flavonoids forming a fluorescent, nonmembrane-permeable conjugate, thus making it possible to measure the intracellular substrate concentration throughout the experiment. Our studies were performed in Madin-Darby canine kidney II-derived cell lines expressing human ABCG2 and involve substrate efflux from whole, unmodified cells, precluding the need for plasma membrane vesicle preparation. We present methods for calculation of enzyme kinetic constants by measuring substrate concentration at efflux-influx equilibrium or during efflux from preloaded cells, and we obtained K m values of 137 µM for quercetin, 36 µM for kaempferol, and 348 µM for luteolin. Our method also allows direct verification of the transport inhibition mechanism and potentially the structure-activity relationship in substrates. SIGNIFICANCE STATEMENT: The study presents the first direct calculation of kinetic constants for enzyme-mediated active transport of natural flavonoids in a whole-cell assay, using a fluorogenic compound to measure intracellular substrate concentrations at specific time points. It has implications for nutriceutical use of polyphenols, mechanisms of food-drug interactions, and studies on absorption/distribution-determining membrane transporters, allowing a quantitative approach to pharmacokinetics of flavonoid transport across barrier tissues.
Collapse
Affiliation(s)
- Michal Rozanski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland (M.R., L.P.); Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland (M.S., L.P.); and Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland (M.R.)
| | - Maciej Studzian
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland (M.R., L.P.); Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland (M.S., L.P.); and Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland (M.R.)
| | - Lukasz Pulaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland (M.R., L.P.); Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland (M.S., L.P.); and Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland (M.R.)
| |
Collapse
|
19
|
Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 2019; 26:792-801. [PMID: 31451804 DOI: 10.1038/s41594-019-0280-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Shen H, Yao M, Sinz M, Marathe P, Rodrigues AD, Zhu M. Renal Excretion of Dabigatran: The Potential Role of Multidrug and Toxin Extrusion (MATE) Proteins. Mol Pharm 2019; 16:4065-4076. [PMID: 31335150 DOI: 10.1021/acs.molpharmaceut.9b00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following oral administration, dabigatran etexilate (DABE) is rapidly hydrolyzed to its active form, dabigatran. DABE, but not dabigatran, presents as a P-glycoprotein (P-gp) substrate and has increasingly been used as a probe drug. Therefore, although dosed as DABE, a P-gp drug-drug interaction (DDI) is reported as a dabigatran plasma concentration ratio (perpetrator versus placebo). Because the majority of a DABE dose (80 to 85%) is recovered in urine as unchanged dabigatran (renal active secretion is ∼25% of total clearance), dabigatran was evaluated in vitro as a substrate of various human renal transporters. Active (pyrimethamine-sensitive) dabigatran uptake was observed with human embryonic kidney (HEK) 293 cells expressing multidrug and toxin extrusion protein 1 (MATE1) and 2K (MATE2K), with Michaelis-Menten constant (Km) values of 4.0 and 8.0 μM, respectively. By comparison, no uptake of 2 μM dabigatran (versus mock-transfected HEK293 cells) was evident with HEK293 cells transfected with organic cation transporters (OCT1 and OCT2) and organic anion transporters (OAT1, 2, 3, and 4). The efflux ratios of dabigatran across P-gp- and BCRP (breast cancer resistance protein)-MDCK (Madin-Darby canine kidney) cell monolayers were 1.5 and 2.0 (versus mock-MDCK cell monolayers), suggesting dabigatran is a relatively poor P-gp and BCRP substrate. Three of five drugs (verapamil, ketoconazole, and quinidine) known to interact clinically with dabigatran, as P-gp inhibitors, presented as MATE inhibitors in vitro (IC50 = 1.0 to 25.2 μM). Taken together, although no basolateral transporter was identified for dabigatran, the results suggest that apical MATE1 and MATE2K could play an important role in its renal clearance. MATE-mediated renal secretion of dabigatran needs to be considered when interpreting the results of P-gp DDI studies following DABE administration.
Collapse
Affiliation(s)
- Hong Shen
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Ming Yao
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - A David Rodrigues
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| | - Mingshe Zhu
- Department of Metabolism and Pharmacokinetics , Bristol-Myers Squibb Research and Development , Princeton , New Jersey 08543 , United States
| |
Collapse
|
21
|
Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, Gouws C. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019; 145:1949-1976. [PMID: 31292714 DOI: 10.1007/s00432-019-02973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters. RESULTS This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. CONCLUSIONS It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Collapse
Affiliation(s)
- Clarissa Willers
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hanna Svitina
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Michael J Rossouw
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roan A Swanepoel
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Josias H Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
22
|
Bonnaventure P, Cusin F, Pastor CM. Hepatocyte Concentrations of Imaging Compounds Associated with Transporter Inhibition: Evidence in Perfused Rat Livers. Drug Metab Dispos 2019; 47:412-418. [PMID: 30674615 DOI: 10.1124/dmd.118.084624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
In the liver, several approaches are used to investigate and predict the complex issue of drug-induced transporter inhibition. These approaches include in vitro assays and pharmacokinetic models that predict how inhibitors modify the systemic and liver concentrations of the victim drugs. Imaging is another approach that shows how inhibitors might alter liver concentrations stronger than systemic concentrations. In perfused rat livers associated with a gamma counter that measures liver concentrations continuously, we previously showed how fluxes across transporters generate the hepatocyte concentrations of two clinical imaging compounds, one with a low extraction ratio [gadobenate dimeglumine (BOPTA)] and one with a high extraction ratio [mebrofenin (MEB)]. BOPTA and MEB are transported by rat organic anion transporting polypeptide and multiple resistance-associated protein 2, which are both inhibited by rifampicin. The aim of the study is to measure how rifampicin modifies the hepatocyte concentrations and membrane clearances of BOPTA and MEB and to determine whether these compounds might be used to investigate transporter-mediated drug-drug interactions in clinical studies. We show that rifampicin coperfusion greatly decreases BOPTA hepatocyte concentrations, but increases those of MEB. Rifampicin strongly decreases BOPTA hepatic clearance. In contrast, rifampicin decreases moderately MEB hepatic clearance and blocks the biliary intrinsic clearance, increasing MEB hepatocyte concentrations. In conclusion, low concentrations prevent the quantification of BOPTA biliary intrinsic clearance, while MEB is a promising imaging probe substrate to evidence transporter-mediated drug-drug interactions when inhibitors act on influx and efflux transporters.
Collapse
Affiliation(s)
- Pierre Bonnaventure
- Department of Radiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland (P.B., F.C., C.M.P.); and Laboratory of Imaging Biomarkers, Centre of Research on Inflammation, Unité Mixte de Recherche 1149, Institut National de la santé et de la Recherche Médicale and University Paris Diderot, Paris, France (C.M.P.)
| | - Fabien Cusin
- Department of Radiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland (P.B., F.C., C.M.P.); and Laboratory of Imaging Biomarkers, Centre of Research on Inflammation, Unité Mixte de Recherche 1149, Institut National de la santé et de la Recherche Médicale and University Paris Diderot, Paris, France (C.M.P.)
| | - Catherine M Pastor
- Department of Radiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland (P.B., F.C., C.M.P.); and Laboratory of Imaging Biomarkers, Centre of Research on Inflammation, Unité Mixte de Recherche 1149, Institut National de la santé et de la Recherche Médicale and University Paris Diderot, Paris, France (C.M.P.)
| |
Collapse
|
23
|
Fang Y, Cao W, Liang F, Xia M, Pan S, Xu X. Structure affinity relationship and docking studies of flavonoids as substrates of multidrug-resistant associated protein 2 (MRP2) in MDCK/MRP2 cells. Food Chem 2019; 291:101-109. [PMID: 31006447 DOI: 10.1016/j.foodchem.2019.03.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
This study was aimed to determine the relationship of flavonoid structures to their affinity for an important efflux transporter, multidrug-resistant associated protein 2 (MRP2). The cellular uptake (CU) of 35 flavonoids was investigated in MRP2 overexpression MDCK/MRP2 cells. Resulting data identified 8 flavonoids as MRP2 substrates based on their high CUMK with MK-571 in MDCK/MRP2 cells. Also, three substrates showed better CUMD in MDCK cells than did CUMRP in MDCK/MRP2 cells. Docking analyses showed a good correlation (R = 0.926, p = 0.003) between efflux-fold of flavonoid substrates and their docking S_scoring with the MRP2 model, indicating consistency between in silico and in vitro approaches. A structure affinity relationship (SAR) study indicated that 3-OH, 5-OH, 6-OH, 3'-OH, and 4'-OCH3 substituents were favourable while, 8-OCH3, 2'-OH, 3'-OCH3, 4'-OH and 5'-OH were unfavourable for flavonoid affinity to MRP2. Our study provides valuable information for dietary application of flavonoids with specific structures for high absorption.
Collapse
Affiliation(s)
- Yajing Fang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Mengmeng Xia
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| |
Collapse
|
24
|
Hu Y, Smith DE. In Silico Prediction of the Absorption and Disposition of Cefadroxil in Humans using an Intestinal Permeability Method Scaled from Humanized PepT1 Mice. Drug Metab Dispos 2019; 47:173-183. [PMID: 30593545 PMCID: PMC6367690 DOI: 10.1124/dmd.118.084236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
It is difficult to predict the pharmacokinetics and plasma concentration-time profiles of new chemical entities in humans based on animal data. Some pharmacokinetic parameters, such as clearance and volume of distribution, can be scaled allometrically from rodents, mammals, and nonhuman primates with good success. However, it is far more challenging to predict the oral pharmacokinetics of experimental drug candidates. In the present study, we used in situ estimates of intestinal permeability, obtained in silico and from rat, wild-type (WT), and humanized PepT1 (huPepT1) mice, to predict the systemic exposure of cefadroxil, an orally administered model compound, under a variety of conditions. Using the GastroPlus simulation software program (Simulations Plus, Lancaster, CA), we found that the C max and area under the plasma concentration-time curve from time zero to the last measurable concentration of cefadroxil were better predicted using intestinal permeability estimates (both segmental and jejunal) from huPepT1 than from WT mice, and that intestinal permeabilities based on in silico and rat estimates gave worse predictions. We also observed that accurate predictions were possible for cefadroxil during oral dose escalation (i.e., 5, 15, and 30 mg/kg cefadroxil), a drug-drug interaction study (i.e., 5 mg/kg oral cefadroxil plus 45 mg/kg oral cephalexin), and an oral multiple dose study [i.e., 500 mg (6.7 mg/kg) cefadroxil every 6 hours]. Finally, the greatest amount of cefadroxil was absorbed in duodenal and jejunal segments of the small intestine after a 5 mg/kg oral dose. Thus, by combining a humanized mouse model and in silico software, the present study offers a novel strategy for better translating preclinical pharmacokinetic data to oral drug exposure during first-in-human studies.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
25
|
Tian J, Hu J, Liu G, Yin H, Chen M, Miao P, Bai P, Yin J. Altered Gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:588-599. [PMID: 30384064 DOI: 10.1016/j.envpol.2018.10.092] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Adenosine triphosphate-binding cassette (ABC) transporters, including P-glycoprotein (Pgp) and multi-resistance associated proteins (Mrps), have been considered important participants in the self-protection of zebrafish embryos against environmental pollutants, but their possible involvement in the efflux and detoxification of quantum dots (QDs), as well as their regulation mechanism are currently unclear. In this work, gene expression alterations of ABC transporters, nuclear receptors, and oxidative stress signaling in zebrafish embryos after the treatment of mercaptopropionic acid (MPA)CdTe QDs and MPA-CdSCdTe QDs were investigated. It was observed that both QDs caused concentration-dependent delayed hatching effects and the subsequent induction of transporters like mrp1&2 in zebrafish embryos, indicating the protective role of corresponding proteins against CdTe QDs. Accompanying these alterations, expressions of nuclear receptors including the pregnane X receptor (pxr), aryl hydrocarbon receptor (ahr) 1b, and peroxisome proliferator-activated receptor (ppar)-β were induced by QDs in a concentration- and time-dependent manner. Moreover, elevated oxidative stress, reflected by the reduction of glutathione (GSH) level and superoxide dismutase (SOD) activities, as well as the dramatic induction of nuclear factor E2 related factor (nrf) 2, was also found. More importantly, alterations of pxr and nrf2 were more pronounced than that of mrps, and these receptors exhibited an excellent correlation with delayed hatching rate in the same embryos (R2 > 0.8). Results from this analysis demonstrated that the induction of mrp1 and mrp2 could be important components for the detoxification of QDs in zebrafish embryos. These transporters could be modulated by nuclear receptors and oxidative stress signaling. In addition, up-regulation of pxr and nrf2 could be developed as toxic biomarkers of CdTe QDs.
Collapse
Affiliation(s)
- Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Mingli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| |
Collapse
|
26
|
Volpe DA, Qosa H. Challenges with the precise prediction of ABC-transporter interactions for improved drug discovery. Expert Opin Drug Discov 2018; 13:697-707. [PMID: 29943645 DOI: 10.1080/17460441.2018.1493454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Given that membrane efflux transporters can influence a drug's pharmacokinetics, efficacy and safety, identifying potential substrates and inhibitors of these transporters is a critical element in the drug discovery and development process. Additionally, it is important to predict the inhibition potential of new drugs to avoid clinically significant drug interactions. The goal of preclinical studies is to characterize a new drug as a substrate or inhibitor of efflux transporters. Areas covered: This article reviews preclinical systems that are routinely utilized to determine whether a new drug is substrate or inhibitor of efflux transporters including in silico models, in vitro membrane and cell assays, and animal models. Also included is an examination of studies comparing in vitro inhibition data to clinical drug interaction outcomes. Expert opinion: While a number of models are employed to classify a drug as an efflux substrate or inhibitor, there are challenges in predicting clinical drug interactions. Improvements could be made in these predictions through a tier approach to classify new drugs, validation of preclinical assays, and refinement of threshold criteria for clinical interaction studies.
Collapse
Affiliation(s)
- Donna A Volpe
- a Office of Clinical Pharmacology, Center for Drug Evaluation and Research , Food and Drug Administration , Silver Spring , MD , USA
| | - Hisham Qosa
- a Office of Clinical Pharmacology, Center for Drug Evaluation and Research , Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
27
|
Chang JH, Zhang X, Messick K, Chen YC, Chen E, Cheong J, Ly J. Unremarkable impact of Oatp inhibition on the liver concentration of fluvastatin, lovastatin and pitavastatin in wild-type and Oatp1a/1b knockout mouse. Xenobiotica 2018; 49:602-610. [DOI: 10.1080/00498254.2018.1478167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jae H. Chang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Xiaolin Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Kirsten Messick
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Yi-Chen Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Eugene Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Jonathan Cheong
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Justin Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
28
|
Hyung S, Pyeon W, Park JE, Song YK, Chung SJ. The conditional stimulation of rat organic cation transporter 2, but not its human ortholog, by mesoridazine: the possibility of the involvement of the high-affinity binding site of the transporter in the stimulation. J Pharm Pharmacol 2017; 69:1513-1523. [DOI: 10.1111/jphp.12799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
To study the functional consequences of the human and rat forms of OCT2 in the presence of phenothiazines.
Methods
MDCK cells expressing human or rat OCT2 were established, and MPP+ transport was determined by uptake assays. Concentration dependency was studied for the stimulatory/inhibitory effects of phenothiazines on MPP+ transport.
Key findings
Among the 11 phenothiazines examined, the majority were found to have comparable effects on transporter function between the orthologous forms, while three phenothiazines, particularly mesoridazine, had complex impacts on transporter function. For rOCT2, mesoridazine stimulated transport at 0.1 and 1 μmMPP+ with the mesoridazine concentration–uptake curve becoming bell-shaped. This conditional effect became less pronounced at 30 μmMPP+, resulting in an inhibition curve with a typical profile. For hOCT2, mesoridazine behaved as a typical inhibitor of transporter function at all MPP+ concentrations, although the kinetics of inhibition were still affected by the substrate concentration.
Conclusions
The conditional stimulation by mesoridazine in rOCT2, and the lack thereof in hOCT2, may be a manifestation of the interaction of phenothiazine with substrate binding at the high-affinity site of the OCT2. As OCT2 was previously indicated in some drug–drug interactions, the conditional stimulation of OCT2 and its potential species-differences may be of practical relevance.
Collapse
Affiliation(s)
- Sungwoo Hyung
- College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Wonji Pyeon
- College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ji Eun Park
- College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yoo-Kyung Song
- College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Suk-Jae Chung
- College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|