1
|
Frey KA, Baker H, Purcell DK, Lewis AL. Sample preparation techniques to enhance uniformity of low-dose blends mixed by resonant acoustic mixing technology. Int J Pharm 2025; 676:125603. [PMID: 40252869 DOI: 10.1016/j.ijpharm.2025.125603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
In our previous work we presented the very first examples of uniform mixtures of < 0.1 % w/w API in a single step dry powder mixing process where caffeine (CAF), a morphologically challenging API, was successfully blended under finely tuned optimized RAM parameters in an idealized binary matrix. Presently, we introduce several effective methods to improve BU results for a lesser compatible formulation for which we had thus far been unable to prepare to acceptable levels of homogeneity to meet AV specification criteria. Simple, practical strategies for overcoming BU issues are proposed assessing a range of techniques, with results demonstrating a powerful potential for RAM performance to be improved upon through only small adjustments to initial sample conditions. Several anomalous results and behavior are reported which have eluded mechanistic understanding through conventional means. In the course of pursuing a unified theory capable of correct mechanistic interpretations of RAM results, a fresh perspective is offered from a refined theoretical development of RAM-specific principles, and mechanisms such as vibrational forcing and exponential amplification are proposed. By investigating the roles of RAM operational mechanics and fundamental acoustic principles, satisfactory explanations can begin to be obtained. By considering these facets to RAM mixing processes, microscale mixing potential was increased by a factor of 4x and allowed for homogeneity to be established at 150 μg using a semi-fine CAF sample and extend to levels down to at least 32.5 μg.
Collapse
Affiliation(s)
- Kyle A Frey
- Pharmaceutical Sciences, Quotient Sciences, Garnet Valley, PA, USA.
| | - Helen Baker
- Pharmaceutical Sciences, Quotient Sciences, Garnet Valley, PA, USA
| | | | - Andrew L Lewis
- Pharmaceutical Sciences, Quotient Sciences, Garnet Valley, PA, USA
| |
Collapse
|
2
|
Tripathi S, Escotet-Espinoza MS, Tarabokija J, Klinzing G, DiNunzio J, Davé R. Enhancing drug processibility through dry coating: Comparison at lab and pilot scales. Int J Pharm 2025; 678:125724. [PMID: 40379223 DOI: 10.1016/j.ijpharm.2025.125724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Dry coating fine pharmaceutical powders with nano-silica has been shown to enhance their bulk properties and their blend processability at lab-scale, potentially facilitating tablet manufacturing. This study critically investigates key aspects of dry coating from industrial applicability perspective: (1) evaluating the selection of silica amount based on the host particle surface area coverage (SAC) against the industry standard 1 wt% addition, (2) assessing the feasibility of continuous dry coating using a pilot-scale conical screen mill (comil-U10) compared to the lab-scale batch high-intensity vibratory mixer (HIVM), and (3) investigating downstream processing improvements from dry coating via feedability and tabletability studies. Results from six different pharmaceutical powders (d50 ∼ 3-35 μm) demonstrated that SAC-based silica wt.% selection outperformed 1 wt% silica for bulk properties enhancements. Multi-faceted characterization revealed that FFC was the most reliable amongst Hausner's ratio, compressibility, and permeability tests. Three selected materials (d50 ∼ 16-26 μm) for comil processing showed remarkable one-flow category improvement, though two finer materials fell short of the HIVM performance. The dry coated materials demonstrated superior feed rate stability, demonstrating reduced flow variability, attributed to enhanced flowability and lower compressibility. Tablets of formulations containing dry-coated API using either comil or HIVM outperformed formulations with blended silica at three drug loads, 10 %, 30 %, and 60 %, likely due to better silica dispersion. These outcomes demonstrate the benefits of potentially scalable comil-based dry coating to continuous manufacturing of tableting, potentially eliminating the need for granulation.
Collapse
Affiliation(s)
- Siddharth Tripathi
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ, USA; Merck & Co., Inc., Rahway, NJ, USA
| | - M Sebastian Escotet-Espinoza
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ, USA; Merck & Co., Inc., Rahway, NJ, USA.
| | - James Tarabokija
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ, USA; Merck & Co., Inc., Rahway, NJ, USA
| | - Gerard Klinzing
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ, USA; Merck & Co., Inc., Rahway, NJ, USA
| | - James DiNunzio
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ, USA; Merck & Co., Inc., Rahway, NJ, USA
| | - Rajesh Davé
- New Jersey Center for Engineered Particulates (NJCEP), New Jersey Institute of Technology, Newark, NJ, USA; Merck & Co., Inc., Rahway, NJ, USA.
| |
Collapse
|
3
|
Owasit A, Tripathi S, Davé R, Young J. Predicting Powder Blend Flowability from Individual Constituent Properties Using Machine Learning. Pharm Res 2025; 42:665-683. [PMID: 40244512 PMCID: PMC12055667 DOI: 10.1007/s11095-025-03855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE Predicting powder blend flowability is necessary for pharmaceutical manufacturing but challenging and resource-intensive. The purpose was to develop machine learning (ML) models to help predict flowability across multiple flow categories, identify key predictive features, and arrive at formulations with improved flow properties. METHODS A dataset of 410 blends, composed of 9 active pharmaceutical ingredients (APIs) and 18 excipients with varying silica dry-coating parameters, was analyzed. Supervised ML models were trained to predict various flowability categories (very cohesive, cohesive, semi-cohesive, well-flowing, and free-flowing). Particle size, morphology, surface properties, and coating parameters were used as features. Classification algorithms, including Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were evaluated. Unsupervised clustering identified natural groupings within flowability data. RESULTS The best-performing models achieved up to 85% accuracy for predicting flowability regimes of individual components and 87% for blends. Individual components generally showed higher accuracy than blends, except in the uncoated scenario with 2 flow regimes, where blends outperformed with 94.67%. SHapley Additive exPlanations (SHAP) and Feature Importance analysis indicated dry coating parameters as the most influential factors, followed by particle size and morphology. ML models effectively identified category transitions between flow regimes, offering insights into blend optimization. CONCLUSION Integrating ML with mechanistic approaches effectively predicted powder blend flowability across diverse categories and elucidated feature-property relationships. These outcomes can facilitate the rational design of blends having enhanced flow properties at reduced experimental effort through judiciously selected dry coating of a blend constituent; making this approach promising for advancing pharmaceutical process and product development.
Collapse
Affiliation(s)
- Anna Owasit
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 138 Warren St, Newark, NJ, 07103, USA
| | - Siddharth Tripathi
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 138 Warren St, Newark, NJ, 07103, USA
| | - Rajesh Davé
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 138 Warren St, Newark, NJ, 07103, USA
| | - Joshua Young
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 138 Warren St, Newark, NJ, 07103, USA.
| |
Collapse
|
4
|
Kossor C, Bhat R, Davé RN. Assessing processability of milled HME extrudates: Consolidating the effect of extrusion temperature, drug loading, and particle size via Non-dimensional cohesion. Int J Pharm 2024; 666:124833. [PMID: 39414188 DOI: 10.1016/j.ijpharm.2024.124833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
The downstream processability of Hot Melt Extrusion (HME) Amorphous Solid Dispersions (ASD), an underexplored topic of importance, was assessed through a multi-faceted particle engineering approach. Extrudates, comprised of griseofulvin (GF), a model poorly water-soluble drug, and hydroxypropyl cellulose (HPC), were prepared at four drug concentrations and three HME temperature profiles to yield cases with and without residual crystallinity and subsequently milled to five sieve cuts ranging from < 45 μm to 355 - 500 μm. Solid state characterization was performed with XRPD, FT-IR, and TGA. Particle scale properties of the milled extrudates were evaluated including particle size, density, surface energy, and morphologies imaged via SEM. It was observed that regardless of sieve cut size, drug concentration and HME conditions impacted the flowability trends, quantified via Flow Function Coefficient (FFC) and bulk density. As a novelty, the effects of various process parameters and drug loadings were consolidated into a dimensionless interparticle cohesion measure, granular Bond Number (Bog), to better correlate them with bulk powder properties. The significant contrast in particle morphologies, particle size, and densities among selected cases demonstrated that particle size alone should not be the sole consideration when correlating particle scale to bulk powder scale properties of milled extrudates. Instead, the HME temperature profile and ASD drug loading may be more suitable parameters affecting the bulk powder properties of the milled extrudates.
Collapse
Affiliation(s)
- Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Roopal Bhat
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Lin Z, Cabello B, Kossor C, Davé R. Facilitating direct compaction tableting of fine cohesive APIs using dry coated fine excipients: Effect of the excipient size and amount of coated silica. Int J Pharm 2024; 660:124359. [PMID: 38901539 DOI: 10.1016/j.ijpharm.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The possibility of attaining direct compression (DC) tableting using silica coated fine particle sized excipients was examined for high drug loaded (DL) binary blends of APIs. Three APIs, very-cohesive micronized acetaminophen (mAPAP, 7 μm), cohesive acetaminophen (cAPAP, 23 μm), and easy-flowing ibuprofen (IBU, 53 μm), were selected. High DL (60 wt%) binary blends were prepared with different fine-milled MCC-based excipients (ranging 20- 37 μm) with or without A200 silica coating during milling. The blend flowability (flow function coefficient -FFC) and bulk density (BD) of the blends for all three APIs were significantly improved by 1 wt% A200 dry coated MCCs; reaching FFC of 4.28 from 2.14, 7.82 from 2.96, and > 10 from 5.57, for mAPAP, cAPAP, and IBU blends, respectively, compared to the uncoated MCC blends. No negative impact was observed on the tablet tensile strength (TS) by using dry coated MCCs despite lower surface energy of silica. Instead, the desired tablet TS levels were reached or exceeded, even above that for the blends with uncoated milled MCCs. The novelty here is that milled and silica coated fine MCCs could promote DC tableting for cAPAP and IBU blends at 60 wt% DL through adequate flowability and tensile strength, without having to dry coat the APIs. The effect of the silica amount was investigated, indicating lesser had a positive impact on TS, whereas the higher amount had a positive impact on flowability. Thus, the finer excipient size and silica amounts may be adjusted to potentially attain blend DC processability for high DL blends of fine APIs.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Bian Cabello
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
6
|
Lin Z, Cabello B, Davé RN. Impact of dry coating lactose as a brittle excipient on multi-component blend processability. Int J Pharm 2024; 653:123921. [PMID: 38382769 DOI: 10.1016/j.ijpharm.2024.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Previous work demonstrated the benefits of dry coating fine-grade microcrystalline cellulose (MCC) for enabling direct compression (DC), a favored tablet manufacturing method, due to enhanced flowability while retaining good compactability of placebo and binary blends of cohesive APIs. Here, fine brittle excipients, Pharmatose 450 (P450, 19 μm) and Pharmatose 350 (P350, 29 μm), having both poor flowability and compactability are dry coated with silica A200 or R972P to assess DC capability of multi-component cohesive API (coarse acetaminophen, 22 μm, and ibuprofen50, 47 μm) blends. Dry coated P450 and P350 not only attained excellent flowability and high bulk density but also heightened tensile strength hence processability, which contrasts with reported reduction for dry coated ductile MCC. Although hydrophobic R972P imparted better flowability, hydrophilic A200 better enhanced tensile strength, hence selected for dry coating P450 in multi-component blends that included fine Avicel PH-105. For coarse acetaminophen blends, substantial bulk density and flowability increase without any detrimental effect on tensile strength were observed; a lesser amount of dry coated P450 was better. Increased flowability, bulk density, and tensile strength, hence enhanced processability by reaching DC capability, were observed for 60 wt% ibuprofen50, using only 18 wt% of the dry coated P450, i.e. 0.18 wt% silica in the blend.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Bian Cabello
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
7
|
Kunnath KT, Tripathi S, Kim SS, Chen L, Zheng K, Davé RN. Selection of Silica Type and Amount for Flowability Enhancements via Dry Coating: Contact Mechanics Based Predictive Approach. Pharm Res 2023; 40:2917-2933. [PMID: 37468827 DOI: 10.1007/s11095-023-03561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. METHOD Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. RESULTS Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. CONCLUSION Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders.
Collapse
Affiliation(s)
- Kuriakose T Kunnath
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Siddharth Tripathi
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Chen
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
8
|
Kim SS, Seetahal A, Amores N, Kossor C, Davé RN. Impact of Silica Dry Coprocessing with API and Blend Mixing Time on Blend Flowability and Drug Content Uniformity. J Pharm Sci 2023; 112:2124-2136. [PMID: 37230252 DOI: 10.1016/j.xphs.2023.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
This paper considers two fine-sized (d50 ∼10 µm) model drugs, acetaminophen (mAPAP) and ibuprofen (Ibu), to examine the effect of API dry coprocessing on their multi-component medium DL (30 wt%) blends with fine excipients. The impact of blend mixing time on the bulk properties such as flowability, bulk density, and agglomeration was studied. The hypothesis tested is that blends with fine APIs at medium DL require good blend flowability to have good blend uniformity (BU). Moreover, the good flowability could be achieved through dry coating with hydrophobic (R972P) silica, which reduces agglomeration of not only fine API, but also of its blends while using fine excipients. For uncoated APIs, the blend flowability was poor, i.e. cohesive regime at all mixing times, and the blends failed to achieve acceptable BU. In contrast, for dry coated APIs, their blend flowability improved to easy-flow regime or better, improving with mixing time, and as hypothesized, all blends consequently achieved desired BU. All dry coated API blends exhibited improved bulk density and reduced agglomeration, attributed to mixing induced synergistic property enhancements, likely due to silica transfer. Despite coating with hydrophobic silica, tablet dissolution was improved, attributed to the reduced agglomeration of fine API.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ameera Seetahal
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Nicholas Amores
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Jun Loo S, Yun Seah X, Wan Sia Heng P, Wah Chan L. Study of Diminutive Granules as Feed Powders for Manufacturability of High Drug Load Minitablets. Int J Pharm 2023; 638:122922. [PMID: 37019320 DOI: 10.1016/j.ijpharm.2023.122922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
The maximal amount of drug contained in a minitablet is limited. To reduce the total number of minitablets in a single dose, high drug load minitablets can be prepared from high drug load feed powders by various pharmaceutical processing techniques. Few researchers have however examined the influence of pharmaceutical processing techniques on the properties of high drug load feed powders, and consequently the manufacturability of high drug load minitablets. In this study, silicification of the high drug load physical mix feed powders alone did not yield satisfactory quality attributes and compaction parameters to produce good quality minitablets. The abrasive nature of fumed silica increased ejection force and damage to the compaction tools. Granulation of fine paracetamol powder was crucial for the preparation of good quality high drug load minitablets. The diminutive granules had superior powder packing and flow properties for homogenous and consistent filling of the small die cavities when preparing minitablets. Compared to the physical mix feed powders for direct compression, the granules which possessed higher plasticity, lower rearrangement and elastic energies, yielded better quality minitablets with high tensile strength and rapid disintegration time. High shear granulation demonstrated greater process robustness than fluid bed granulation, with less discernment on the quality attributes of feed powder. It could proceed without fumed silica, with the high shear forces reducing interparticulate cohesivity. An in-depth understanding on the properties of high drug load feed powders with inherently poor compactability and poor flowability is important for the manufacturability of high drug load minitablets.
Collapse
|
10
|
Kim SS, Castillo C, Cheikhali M, Darweesh H, Kossor C, Davé RN. Enhanced blend uniformity and flowability of low drug loaded fine API blends via dry coating: The effect of mixing time and excipient size. Int J Pharm 2023; 635:122722. [PMID: 36796658 DOI: 10.1016/j.ijpharm.2023.122722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Although previous research demonstrated improved flowability, packing, fluidization, etc. of individual powders via nanoparticle dry coating, none considered its impact on very low drug loaded blends. Here, fine ibuprofen at 1, 3, and 5 wt% drug loadings (DL) was used in multi-component blends to examine the impact of the excipients size, dry coating with hydrophilic or hydrophobic silica, and mixing times on the blend uniformity, flowability and drug release rates. For uncoated active pharmaceutical ingredients (API), the blend uniformity (BU) was poor for all blends regardless of the excipient size and mixing time. In contrast, for dry coated API having low agglomerate ratio (AR), BU was dramatically improved, more so for the fine excipient blends, at lesser mixing times. For dry coated API, the fine excipient blends mixed for 30 min had enhanced flowability and lower AR; better for the lowest DL having lesser silica, likely due to mixing induced synergy of silica redistribution. For the fine excipient tablets, dry coating led to fast API release rates even with hydrophobic silica coating. Remarkably, the low AR of the dry coated API even at very low DL and amounts of silica in the blend led to the enhanced blend uniformity, flow, and API release rate.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Mirna Cheikhali
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Hadeel Darweesh
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
11
|
Koutentaki G, Krýsa P, Trunov D, Pekárek T, Pišlová M, Šoóš M. 3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles. J Pharm Anal 2023; 13:276-286. [PMID: 37102110 PMCID: PMC10124118 DOI: 10.1016/j.jpha.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The properties of dry-coated paracetamol particles (fast-dissolving model drug) with carnauba wax particles as the coating agent (dissolution retardant) were investigated. Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles. The results showed that the wax existed in two forms on the surface of the paracetamol particles, forming a porous coating layer: i) whole wax particles on the surface of paracetamol and glued together with other wax surface particles, and ii) deformed wax particles spread on the surface. Regardless of the final particle size fraction (between 100 and 800 μm), the coating thickness had high variability, with average thickness of 5.9 ± 4.2 μm. The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations. The dissolution was slower for larger coated particles. Tableting further reduced the dissolution rate, clearly indicating the impact of subsequent formulation processes on the final quality of the product.
Collapse
|
12
|
Kim SS, Castillo C, Sayedahmed M, Davé RN. Reduced Fine API Agglomeration After Dry Coating for Enhanced Blend Uniformity and Processability of Low Drug Loaded Blends. Pharm Res 2022; 39:3155-3174. [PMID: 35882741 DOI: 10.1007/s11095-022-03343-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The impact of dry coating on reduced API agglomeration remains underexplored. Therefore, this work quantified fine cohesive API agglomeration reduction through dry coating and its impact on enhanced blend uniformity and processability, i.e., flowability and bulk density of multi-component blends API loading as low as 1 wt%. METHODS The impact of dry coating with two different types and amounts of silica was assessed on cohesion, agglomeration, flowability, bulk density, wettability, and surface energy of fine milled ibuprofen (~ 10 µm). API agglomeration, measured using Gradis/QicPic employing gentler gravity-based dispersion, resulted in excellent size resolution. Multi-component blends with fine-sized excipients, selected for reduced segregation potential, were tested for bulk density, cohesion, flowability, and blend content uniformity. Tablets formed using these blends were tested for tensile strength and dissolution. RESULT All dry coated ibuprofen powders exhibited dramatic agglomeration reduction, corroborated by corresponding decreased cohesion, unconfined yield strength, and improved flowability, regardless of the type and amount of silica coating. Their blends exhibited profound enhancement in flowability and bulk density even at low API loadings, as well as the content uniformity for the lowest drug loading. Moreover, hydrophobic silica coating improved drug dissolution rate without appreciably reducing tablet tensile strength. CONCLUSION The dry coating based reduced agglomeration of fine APIs for all three low drug loadings improved overall blend properties (uniformity, flowability, API release rate) due to the synergistic impact of a minute amount of silica (0.007 wt %), potentially enabling direct compression tableting and aiding manufacturing of other forms of solid dosing.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Muhammad Sayedahmed
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
13
|
Kim S, Cheikhali M, Davé RN. Decoding Fine API Agglomeration as a Key Indicator of Powder Flowability and Dissolution: Impact of Particle Engineering. Pharm Res 2022; 39:3079-3098. [PMID: 35698012 DOI: 10.1007/s11095-022-03293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Fine API agglomeration and its mitigation via particle engineering, i.e., dry coating, remains underexplored. The purpose was to investigate agglomeration before and after dry coating of fine cohesive APIs and impact on powder processability, i.e., flowability (FFC), bulk density (BD), and dissolution of BCS Class II drugs. METHOD Ibuprofen (three sizes), fenofibrate, and griseofulvin (5-20 µm), before and after dry coating with varying amounts of hydrophobic (R972P) or hydrophilic (A200) nano- silica, were assessed for agglomeration, FFC, BD, surface energy, wettability, and dissolution. The granular Bond number (Bog), a dimensionless parameter, evaluated through material-sparing particle-scale measures and particle-contact models, was used to express relative powder cohesion. RESULTS Significant powder processability improvements after dry coating were observed: FFC increased by multiple flow regimes, BD increased by 25-100%, agglomerate ratio (AR) reduction by over an order of magnitude, and greatly enhanced API dissolution rate even with hydrophobic (R972P) silica coating. Scrutiny of particle-contact models revealed non-triviality in estimating API surface roughness, which was managed through the assessment of measured bulk properties. A power-law correlation was identified between AR and Bog and subsequently, between AR and FFC & bulk density; AR below 5 ensured improved processability and dissolution. CONCLUSION Agglomeration, an overlooked material-sparing measure for powder cohesiveness, was a key indicator of powder processability and dissolution. The significant agglomerate reduction was possible via dry coating with either silica type at adequate surface area coverage. Reduced agglomeration after dry coating also countered the adverse impact of increased surface hydrophobicity on dissolution.
Collapse
Affiliation(s)
- Sangah Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Mirna Cheikhali
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| |
Collapse
|
14
|
Davé R, Kim S, Kunnath K, Tripathi S. A concise treatise on model-based enhancements of cohesive powder properties via dry particle coating. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Varun N, Ghoroi C. Engineered inhalable micro-balloon shaped drug particles for carrier-free dry powder inhalation (DPI) application. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Loo SJ, Heng PWS, Chan LW. Charge Reduction Assisted Production of Diminutive Fluid Bed Granules for High Drug Load Minitablets. Int J Pharm 2022; 623:121965. [PMID: 35764262 DOI: 10.1016/j.ijpharm.2022.121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Micronized drug powders are generally unsuitable as tableting feed to produce minitablets due to their cohesivity and poor flow. The silicification of fine paracetamol powder (PCMF) with an optimal concentration range of fumed silica (fSi) [0.7 - 0.9 %, w/w] reduced the net negative charge of PCMF and improved powder flow. The optimal fSi concentration range suitable was established through the measurement of charge and flowability of the silicified powders. Silicification of PCMF by physical mix did not satisfactorily overcome the cohesive forces between the PCMF crystals and improve powder flow sufficiently such that it will feed consistently into the smaller die orifices during tableting. Using a specialized fluid bed system with swirling air and side spray, controlled granulation of silicified PCMF packed and agglomerated the interlocking-prone needle shaped PCMF crystals into diminutive granules that are more spherical and free flowing. With optimized fSi concentration (≈ 0.8 %, w/w) and granulation process parameters, high drug load diminutive granules (D50≃ 90 μm) were successfully prepared from PCMF as starter seeds (D50≃ 30 μm). Minitablets prepared from the diminutive granules had low weight variation, and were mechanically strong with disintegration time of less than 30 s. This study demonstrated the feasibility of producing high drug load minitablets from a cohesive, electrostatic-prone fine drug powder.
Collapse
Affiliation(s)
- Shang Jun Loo
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
17
|
Zhang Y, Li J, Gao Y, Wu F, Hong Y, Shen L, Lin X. Improvements on multiple direct compaction properties of three powders prepared from Puerariae Lobatae Radix using surface and texture modification: comparison of microcrystalline cellulose and two nano-silicas. Int J Pharm 2022; 622:121837. [PMID: 35597395 DOI: 10.1016/j.ijpharm.2022.121837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 05/14/2022] [Indexed: 01/01/2023]
Abstract
It has been reported that hydrophilic nano-silica (N) markedly improved direct compaction (DC) properties of Zingiberis Rhizoma alcoholic extract. This study aims to examine the broader scope and generality of the previous work by investigating (i) three powders, i.e., the directly pulverized product, ethanol extract, and water extract prepared from the same medicinal herb-Puerariae Lobatae Radix (named DP, EE, and WE) and (ii) the effects on their DC properties of co-processing with N, hydrophobic nano-silica (BN), or microcrystalline cellulose (C). Unexpectedly, C provided the best improvement on tabletability for WE, while N for both DP and EE. More importantly, only N could move all parent powders to a regime suitable for DC, and BN rather than C enabled parent WE to be directly compressed. Typically, 6/9 N-modified powders simultaneously met the requirements of DC on bulk density, flowability, and tablet tensile strength (σt). Principal component analysis indicated that DC properties were mainly governed by flowability and texture properties. The partial least-squares regression model revealed that flowability, texture parameters, and deformation behavior of powders were dominating factors impacting tablet σt and solid fraction. Overall, the findings are promising for the manufacture of high drug loading tablets of herbs by DC.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jinzhi Li
- College of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Yating Gao
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Varun N, Dutta A, Ghoroi C. Influence of surface interaction between drug and excipient in binary mixture for dry powder inhaler applications. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Design-of-experiment approach to quantify the effect of nano-sized silica on tableting properties of microcrystalline cellulose to facilitate direct compression tableting of binary blend containing a low-dose drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zheng K, Kunnath K, Davé RN. DEM
Simulation of Binary Blend Mixing of Cohesive Particles in a High Intensity Vibration System. AIChE J 2022. [DOI: 10.1002/aic.17603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Zheng
- Chemical and Materials Engineering Department New Jersey Institute of Technology Newark New Jersey USA
| | - Kuriakose Kunnath
- Chemical and Materials Engineering Department New Jersey Institute of Technology Newark New Jersey USA
| | - Rajesh N. Davé
- Chemical and Materials Engineering Department New Jersey Institute of Technology Newark New Jersey USA
| |
Collapse
|
21
|
Kim S, Bilgili E, Davé RN. Impact of altered hydrophobicity and reduced agglomeration on dissolution of micronized poorly water-soluble drug powders after dry coating. Int J Pharm 2021; 606:120853. [PMID: 34252519 DOI: 10.1016/j.ijpharm.2021.120853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
The impact of dry coating with hydrophobic or hydrophilic nano-silica at 25-100% surface area coverage on dissolution of micronized poorly water-soluble drugs was investigated by examining their agglomeration and surface hydrophobicity. Ibuprofen (20 µm and 10 µm) and griseofulvin (10 µm) were selected having differing solubility, hydrophobicity, and surface morphology. Characterization involved particle agglomeration via two dry dispersion methods, drug dissolution using the USP IV method, cohesion reduction through shear testing, and powder wettability via the modified Washburn method. Dry coating dramatically reduced the cohesion hence agglomerate size of both the coated ibuprofen particles, but less for griseofulvin, attributed to its surface morphology. For hydrophobic silica, agglomerate size reduction outweighed the adverse impact of increased surface hydrophobicity for ibuprofen. For griseofulvin, the agglomerate reduction was much lower, not able to overcome the effect of increased drug particle hydrophobicity with hydrophobic silica coating. Hydrophilic silica coating reduced hydrophobicity for all three drug powders, leading to the synergistic improvement in the dissolution along with agglomerate size reduction. Overall, the combined effect of the drug particle surface hydrophobicity and agglomerate size, represented by specific surface area, could explain the dissolution behavior of these poorly water-soluble drugs.
Collapse
Affiliation(s)
- Sangah Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ecevit Bilgili
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
22
|
Ishikawa A, Takasaki H, Sakurai A, Katayama T, Wada K, Furuishi T, Fukuzawa K, Obata Y, Yonemochi E. Manufacturability and Properties of Granules and Tablets Using the Eco-Friendly Granulation Method Green Fluidized Bed Granulation Compared to Direct Compression. Chem Pharm Bull (Tokyo) 2021; 69:447-455. [PMID: 33952855 DOI: 10.1248/cpb.c20-00970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to compare the manufacturability and granule and tablet properties of green fluidized bed granulation (GFBG) and of direct compression (DC). Acetaminophen was used as a low compactability model drug. The process time of GFBG to produce final mixtures was comparable to that of DC, and thus GFBG could be considered a simple process. DC could not produce 30% drug load tablets owing to poor granule flowability, whereas no problems were observed in the GFBG tableting process up to 80% of drug load. Tablets prepared with GFBG showed higher tensile strength than those prepared using DC. Compactability evaluation results show that the yield pressure of the granules prepared with GFBG was significantly lower than that of DC, suggesting that the granules prepared with GFBG were easily plastically deformed. Moreover, tablets prepared with GFBG showed fast disintegration, which was faster than that of DC. We conclude that GFBG produces granules with higher drug content and desired physicochemical properties at low cost.
Collapse
Affiliation(s)
- Agata Ishikawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | | | | | | | | | | | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Yasuko Obata
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Etsuo Yonemochi
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
23
|
Kunnath K, Chen L, Zheng K, Davé RN. Assessing predictability of packing porosity and bulk density enhancements after dry coating of pharmaceutical powders. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
An investigation into the impact of key process variables on the uniformity of powder blends containing a low-dose drug in a gentle-wing high shear mixer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Escotet-Espinoza MS, Scicolone JV, Moghtadernejad S, Sanchez E, Cappuyns P, Van Assche I, Di Pretoro G, Ierapetritou M, Muzzio FJ. Improving Feedability of Highly Adhesive Active Pharmaceutical Ingredients by Silication. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Zheng K, Kunnath K, Ling Z, Chen L, Davé RN. Influence of guest and host particle sizes on dry coating effectiveness: When not to use high mixing intensity. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
D S, Muthudoss P, Khullar P, A RV. Micronization and Agglomeration: Understanding the Impact of API Particle Properties on Dissolution and Permeability Using Solid State and Biopharmaceutical “Toolbox”. J Pharm Innov 2020. [DOI: 10.1007/s12247-019-09424-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Chen L, He Z, Kunnath KT, Fan S, Wei Y, Ding X, Zheng K, Davé RN. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Int J Pharm 2019; 557:354-365. [DOI: 10.1016/j.ijpharm.2018.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
29
|
Deng X, Zheng K, Davé RN. Discrete element method based analysis of mixing and collision dynamics in adhesive mixing process. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Int J Pharm 2018; 543:288-299. [DOI: 10.1016/j.ijpharm.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022]
|
31
|
Chen L, Ding X, He Z, Huang Z, Kunnath KT, Zheng K, Davé RN. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose. Int J Pharm 2018; 536:127-137. [DOI: 10.1016/j.ijpharm.2017.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 11/30/2022]
|