1
|
Anticancer Activity–Structure Relationship of Quinolinone-Core Compounds: An Overall Review. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
2
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
3
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Jin C, Wang B, Fang W. Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Front Cell Infect Microbiol 2021; 11:751947. [PMID: 34722339 PMCID: PMC8554291 DOI: 10.3389/fcimb.2021.751947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anene N Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
4
|
ElZahabi HSA, Nafie MS, Osman D, Elghazawy NH, Soliman DH, El-Helby AAH, Arafa RK. Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity. Eur J Med Chem 2021; 222:113609. [PMID: 34119830 DOI: 10.1016/j.ejmech.2021.113609] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
This work presents the design and synthesis of a series of new quinazolin-4-one derivatives, based on the established effectiveness of quinazoline-based small molecules as anticancer agents. Synthesized compounds were more potent against MCF-7 than A-549 with low to submicromolar IC50s. Compound 17 exhibited the best IC50 being equipotent with the positive control doxorubicin (IC50 = 0.06 μM) and better than 5-fluorouracil (IC50 = 2.13 μM). Compound 17 was further tested against MDA-MB-231 and MCF-10A and was found to be > 2 folds more cytotoxic on MCF-7. Significant apoptotic activity was elicited by 17 on MCF-7 where it increased apoptotic cell death along with induction of pre-G1 and G1-phase cell cycle arrest. Similarly, 17 was able to induce apoptosis in MD-MB-231 treated cells associated with a disruption of the cell cycle causing arrest at the pre-G1 and S phases. Investigation of gene expression in MCF-7 demonstrated an increased expression of the proapoptotic genes P53, PUMA, Bax, caspases 3, 8 and 9 and a decrease of the anti-apoptotic gene Bcl2. Also, 17 reduced autophagy giving way for apoptosis to induce cancer cells death. This latter observation was associated with downregulation of EGFR and its downstream effectors PI3K, AKT and mTor. As its biomolecular target, 17 also inhibited EGFR similar to erlotinib (IC50 = 0.072 and 0.087 μM, respectively). Additionally, in vivo testing in a mouse model of breast cancer affirmed the anti-tumor efficacy of 17. Finally, docking of 17 against EGFR ATP binding site demonstrated its ability to bind with EGFR resembling erlotinib.
Collapse
Affiliation(s)
- Heba S A ElZahabi
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Girls Branch, Cairo, Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, MSA University, Egypt
| | - Nehal H Elghazawy
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Dalia H Soliman
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Girls Branch, Cairo, Egypt
| | - Abdelghany Ali H El-Helby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Boys Branch, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
5
|
Khalifa SAM, Shedid ES, Saied EM, Jassbi AR, Jamebozorgi FH, Rateb ME, Du M, Abdel-Daim MM, Kai GY, Al-Hammady MAM, Xiao J, Guo Z, El-Seedi HR. Cyanobacteria-From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar Drugs 2021; 19:241. [PMID: 33923369 PMCID: PMC8146687 DOI: 10.3390/md19050241] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eslam S. Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Fatemeh H. Jamebozorgi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, UK;
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Guo-Yin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | | | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
6
|
Sharma V, Das R, Mehta DK, Sharma D, Sahu RK. Exploring quinolone scaffold: Unravelling the chemistry of anticancer drug design. Mini Rev Med Chem 2021; 22:69-88. [PMID: 33438536 DOI: 10.2174/1389557521666210112142136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Globally, cancer is considered as the major leading cause in decreasing the patient health care system of human beings. The growing threat from drug-resistant cancers makes heterocyclic moieties as an urgent need to develop more successful candidates for anti-cancer therapy. In view of outstanding pharmacological activities Quinolone and its derivatives have attracted more attention towards drug designing and biological evaluation in the search of new drug molecules. The inspired researchers attempted efforts in order to discover quinolone based analogs due to its wide range of biological activities. Due to immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from quinolones and all the reported molecules have shown constructive anticancer activity. Some of the synthetic protocol like, one pot synthesis, post-Ugi-transformation, catalysed based synthesis, enzyme-based synthesis and nano-catalyst based synthetic procedures are also discussed as recent advancement in production of quinolone derivatives. In this review, recent synthetic approaches in the medicinal chemistry of quinolones and potent quinolone derivatives on the basis of structural activity relationship are outlined. Moreover, their major methods and modifications are discussed.
Collapse
Affiliation(s)
- Vishal Sharma
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr. India
| | - Rina Das
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr. India
| | - Dinesh Kumar Mehta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr. India
| | - Diksha Sharma
- Faculty of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-Hr. India
| | - Ram Kumar Sahu
- Dept of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam-788011. India
| |
Collapse
|
7
|
Savić-Gajić IM, Savić IM. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opin Drug Discov 2019; 15:383-390. [DOI: 10.1080/17460441.2020.1702964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ivan M. Savić
- Faculty of Technology, University of Nis, Leskovac, Republic of Serbia
| |
Collapse
|
8
|
Maračić S, Lapić J, Djaković S, Opačak-Bernardi T, Glavaš-Obrovac L, Vrček V, Raić-Malić S. Quinoline and ferrocene conjugates: Synthesis, computational study and biological evaluations. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Silvija Maračić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology; University of Zagreb; Marulićev trg 19 10000 Zagreb Croatia
| | - Jasmina Lapić
- Laboratory for Organic Chemistry, Faculty of Food Technology and Biotechnology; University of Zagreb; Pierottijeva 6 10000 Zagreb Croatia
| | - Senka Djaković
- Laboratory for Organic Chemistry, Faculty of Food Technology and Biotechnology; University of Zagreb; Pierottijeva 6 10000 Zagreb Croatia
| | - Teuta Opačak-Bernardi
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine; Josip Juraj Strossmayer University of Osijek; J. Huttlera 4 31000 Osijek Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine; Josip Juraj Strossmayer University of Osijek; J. Huttlera 4 31000 Osijek Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry; University of Zagreb; A. Kovačića 1 10000 Zagreb Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology; University of Zagreb; Marulićev trg 19 10000 Zagreb Croatia
| |
Collapse
|
9
|
Bajpai VK, Shukla S, Kang SM, Hwang SK, Song X, Huh YS, Han YK. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar Drugs 2018; 16:E179. [PMID: 29882898 PMCID: PMC6024944 DOI: 10.3390/md16060179] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/20/2018] [Indexed: 02/04/2023] Open
Abstract
Current trends in the application of nanomaterials are emerging in the nano-biotechnological sector for development of medicines. Cyanobacteria (blue-green algae) are photosynthetic prokaryotes that have applications to human health and numerous biological activities as dietary supplements. Cyanobacteria produce biologically active and chemically diverse compounds such as cyclic peptides, lipopeptides, fatty acid amides, alkaloids, and saccharides. More than 50% of marine cyanobacteria are potentially exploitable for the extraction of bioactive substances, which are effective in killing cancer cells by inducing apoptotic death. The current review emphasizes that not even 10% of microalgal bioactive components have reached commercialized platforms due to difficulties related to solubility. Considering these factors, they should be considered as a potential source of natural products for drug discovery and drug delivery approaches. Nanoformulations employing a wide variety of nanoparticles and their polymerized forms could be an emerging approach to the development of new cancer drugs. This review highlights recent research on microalgae-based medicines or compounds as well as their biomedical applications. This review further discusses the facts, limitations, and commercial market trends related to the use of microalgae for industrial and medicinal purposes.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| | - Sung-Min Kang
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Seung Kyu Hwang
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Xinjie Song
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Korea.
| | - Yun Suk Huh
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| |
Collapse
|
10
|
Mohammad H, Elghazawy NH, Eldesouky HE, Hegazy YA, Younis W, Avrimova L, Hazbun T, Arafa RK, Seleem MN. Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity That Targets Metal Ion Homeostasis. ACS Infect Dis 2018; 4:403-414. [PMID: 29370698 DOI: 10.1021/acsinfecdis.7b00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Globally, invasive fungal infections pose a significant challenge to modern human medicine due to the limited number of antifungal drugs and the rise in resistance to current antifungal agents. A vast majority of invasive fungal infections are caused by species of Candida, Cryptococcus, and Aspergillus. Novel antifungal molecules consisting of unexploited chemical scaffolds with a unique mechanism are a pressing need. The present study identifies a dibromoquinoline compound (4b) with broad-spectrum antifungal activity that inhibits the growth of pertinent species of Candida (chiefly C. albicans), Cryptococcus, and Aspergillus at a concentration of as low as 0.5 μg/mL. Furthermore, 4b, at a subinhibitory concentration, interfered with the expression of two key virulence factors (hyphae and biofilm formation) involved in C. albicans pathogenesis. Three yeast deletion strains ( cox17Δ, ssa1Δ, and aft2Δ) related to metal ion homeostasis were found to be highly sensitive to 4b in growth assays, indicating that the compound exerts its antifungal effect through a unique, previously unexploited mechanism. Supplementing the media with either copper or iron ions reversed the strain sensitivity to 4b, further corroborating that the compound targets metal ion homeostasis. 4b's potent antifungal activity was validated in vivo, as the compound enhanced the survival of Caenorhabditis elegans infected with fluconazole-resistant C. albicans. The present study indicates that 4b warrants further investigation as a novel antifungal agent.
Collapse
Affiliation(s)
- Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nehal H. Elghazawy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, Sixth of October City, Cairo, Egypt 12588
| | - Hassan E. Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Youssef A. Hegazy
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Waleed Younis
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Larisa Avrimova
- Bindley Bioscience Center, Purdue University, 1201 W State Street, West Lafayette, Indiana 47907, United States
| | - Tony Hazbun
- Bindley Bioscience Center, Purdue University, 1201 W State Street, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Reem K. Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, Sixth of October City, Cairo, Egypt 12588
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|